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Abstract

In this paper, we present necessary optimality conditions for multi-
objective programming problems involving functions which is not nec-
essarily differential. A new concept of generalized convexity, which is
called (G,C, α, ρ, d)-convexity, is introduced. We also establish suffi-
cient optimality conditions for multiobjective programming problems
from a viewpoint of the new generalized convexity. When the sufficient
conditions are utilized, the corresponding duality theorems are derived
for general Mond-Weir type dual program.
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1 Introduction

It is well known that convexity has been playing a key role in mathematical
programming, engineering and optimization theory. The research on char-
acterizations and generalizations of convexity is one of the most important
aspects in mathematical programming and optimization theory. And many
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concepts of generalized convex functions have been introduced and applied to
mathematical programming problems in the literature.

To relax convexity assumptions imposed on theorems on sufficient optimal-
ity conditions and duality, various generalized convexity notations have been
proposed. Hanson [10] introduced the concept of differentiable invexity which
is a generalization of the convexity. After the works of Hanson, other classes
of differentiable nonconvex functions have appeared with the intent of general-
izing the class of invex functions from different points of view in the literature
[5, 8, 11, 17, 13, 19, 6, 12].

In [14] and [15], Liang et al. introduced (F, α, ρ, d)-convexity, which was
a unified formulation of generalized convexity and which is an extension of
(F, ρ)-convexity [19] and generalized (F, ρ)-convexity [6]. They obtained some
corresponding optimality conditions and duality results for the single objective
fractional problems and multiobjective problems. In a recent paper [20], Yuan
et al. introduced (C, α, ρ, d)-convexity, which is a generalization of (F, α, ρ, d)-
convexity. Chinchuluun et al. [7] and Long [16]later studied multiobjective
fractional programming problems in the framework of (C, α, ρ, d)-convexity.

Recently, Antczak extended further Hanson’s invexity to G-invexity for
scalar differentiable functions[2]. Furthermore, in the natural way, Antczak’s
definition of G-invexity was also extended to the case of differentiable vector-
valued functions in [3]. Using the G-invexity as a generalization of invexity
in the vectorial case, Antczak[3, 4] established some optimality and duality
results for a larger class of smooth multiobjective programming problems than
invex vector optimization problems.

In this paper, we are motivated by Yuan et al. [20, 21, 22], Antczak [2, 3, 4]
to consider optimality conditions and duality theorems for the general multi-
objective programming in the framework of a new generalized convexity, which
is called (G, C, α, ρ, d)-convexity. The paper is organized as follows. The for-
mulation of the general multiobjective programming problem along with some
definitions and notations for generalized convexity are given in Section 2. In
Section 3, we obtain the necessary optimality conditions for general multiob-
jective programming problems under some assumptions. We also establish suf-
ficient conditions for general multiobjective programming problems involving
(G,C, α, ρ, d)-convex functions in section 3. When the sufficient conditions
are utilized, dual problem is formulated and duality results are presented in
Section 4.

2 Notations and Preliminaries

In this section, we provide some definitions and some results that we shall use in
the sequel. The following convention for equalities and inequalities will be used
throughout the paper. For any x = (x1, x2, · · · , xn)T , y = (y1, y2, · · · , yn)T , we
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define:

x > y if and only if xi > yi, for i = 1, 2, · · · , n;

x > y if and only if xi ≥ yi, for i = 1, 2, · · · , n;

x ≥ y if and only if xi ≥ yi, for i = 1, 2, · · · , n, but x 6= y;

x ≯ y is the negation of x > y, x � y is the negation of x ≥ y.

Let Rn
+ = {x ∈ Rn|x > 0} and X be a subset of Rn.

Definition 2.1. A function C : X × X × Rn → R is convex on Rn with
respect to the third argument if and only if, for any fixed (x, x0) ∈ X ×X, the
inequality

C(x,x0)(λτ1 + (1− λ)τ2) 6 λC(x,x0)(τ1) + (1− λ)C(x,x0)(τ2), ∀λ ∈ (0, 1)

holds for all τ1, τ2 ∈ Rn.

Throughout this paper, we assume that C(x,x0)(0) = 0 for any (x, x0) ∈ X×
X. Now we introduce a generalized convexity based on the convex functions
C(x,x0) as follows:

Definition 2.2. Let f = (f1, · · · , fk) : X → Rk be a vector-valued func-
tion defined on a nonempty set X ⊂ Rn, Ifi(x) be the range of fi, i ∈ K =
{1, · · · , k}. If there exist a vector-valued function Gf = (Gf1 , · · · , Gfk) : R →
Rk such that any its component Gfi : Ifi(X)→ R is a strictly increasing func-
tion on its domain and Gfi(fi) is a differentiable function on X. If there exist
real numbers ρi(i ∈ K), real-valued functions αi : X ×X → R+\{0}(i ∈ K),
and di : X ×X → R+(i ∈ K) be functions with the property that di(x, x0) =
0⇔ x = x0, such that for any x ∈ X(x 6= x0), the inequality

Gfi(fi(x))−Gfi(fi(x0))

αi(x, x0)
> (>)C(x, x0) (O(Gfi(fi))(x0)) + ρi

di(x, x0)

αi(x, x0)

holds for each i ∈ K, then f is said to be (strictly) (Gf , C, α, ρ, d)-convex at
x0 ∈ X, where α = (α1, · · · , αk)T , ρ = (ρ1, · · · , ρk)T and d = (d1, · · · , dk)T .
The function f is said to be (strictly) (Gf , C, α, ρ, d)-convex over X if, ∀ x0 ∈
X, it is (strictly) (Gf , C, α, ρ, d)-convex at x0. In particular, f is said to
be strongly (strictly) (Gf , C, α, ρ, d)-convex or (strictly) (Gf , C, α)-convex with
respect to ρ > 0 or ρ = 0, respectively.

Remark 2.3. In order to define an analogous class of (strictly) (Gf , C, α, ρ, d)-
incave functions, the function Gfi of the inequality in the above definition
should be replaced by the function −Gfi. That is the inequality

−(Gfi(fi(x))−Gfi(fi(x0)))

αi(x, x0)
> (>)C(x, x0) (−O(Gfi(fi))(x0)) + ρi

di(x, x0)

αi(x, x0)

holds for each i ∈ K
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From Definition 2.2, (Gf , C, α, ρ, d)-convexityis is (C, α, ρ, d)-convexity [20]
whenever Gf (τ) = τ, τ ∈ R; Therefore (F, α, ρ, d)-convexity [14, 15] and (F, ρ)-
convexity [19] are special cases of (Gf , C, α, ρ, d)-convexity since any linear
function is also a convex function. However, the converse result is, in general,
not true (see Example 2.1)

Example 2.4. Let f(x) = log x. Since f is a well-known concave function
defined on X = {x : x ∈ R, x > 0}, then f is not a (C, α, ρ, d)-convex function.
However, Gf (f(x)) = x is convex function on X, where Gf (τ) = eτ , τ ∈ R.
Therefore, by Definition 2.2, f is a (Gf , C, α, ρ, d)-convex function.

Let f be differentiable on X and Gf be differentiable on its domain If (X).
It is clear that everyG-invex with respect to vector function η [2] is (Gf , C, α, ρ, d)-
convex function with the same functionGf , where d(x, x0) = ‖x−x0‖,α(x, x0) ≡
1, ρ = 0 and

C(x,x0) (O(Gfi(fi))(x0)) =
(
G′f (f(x0))Of(x0)

)T
η(x, x0).

Therefore, r-invex functions [1] are (Gf , C, α, ρ, d)-convex with the same func-
tion Gf , where Gf (τ) = erτ , τ ∈ R, because r-invex function is a special case
of G-invex function. However, (Gf , C, α, ρ, d)-convex function is not always
G-invex, and we can see the next Example 2.2.

Example 2.5. Let f(x) =
√
|x− 1| be a function defined on R. It is clear

that f is not G-invex at x∗ = 1, because f is not differentiable at x∗ = 1.
However, let Gf (τ) = τ 3, τ ∈ R, then Gf (f) is differentiable at x∗ = 1, and
we can see that f is (G,C, α, ρ, d)-convex at x∗ = 1. In fact, note that

Gf (f(x)) ≥ 0 = Gf (f(x∗))andO(Gf (f))(x∗) = 0,

we obtain

C(x,x∗)(O(Gf (f))(x∗)) := O(Gf (f))(x∗)Tη(x, x∗) ≤ Gf (f(x))−Gf (f(x∗)).

for any function η(x, x∗). Hence f is (Gf , C, α, ρ, d)-convex at x∗ = 1 with
α(x, x∗) ≡ 1, ρ = 0 and any function d.

One of important feature of (Gf , C, α, ρ, d)-convex functions is that they
are convex transformable. In other words, they can be transformed into
(C, α, ρ, d)-convex functions, see the above Example 2.4. Another important
feature of (Gf , C, α, ρ, d)-convex functions is that they can transform nondif-
ferentiable functions into differentiable ones. Let us see the above Example
2.5.
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In this sequel, we consider the nonlinear multi-objective programming prob-
lem

(CV P ) min f(x) : = (f1(x), f2(x), · · · , fk(x)),

s.t. g(x) : = (g1(x), g2(x), · · · , gm(x)) 5 0

h(x) : = (h1(x), h2(x), · · · , hp(x)) = 0

x ∈ E

where X is a nonempty set of Rn, and fi denotes a real-valued function on X.
We denote by K := {1, 2, · · · , k}, M := {1, 2, · · · ,m}, P := {1, 2, · · · , p} and
J(x) = {j ∈ M : gj(x) = 0}. Further, X denote the set of all feasible points
of (CV P ).

For the convenience, we need the following vector minimization problem:

(G− CV P ) minGff(x) : = (Gf1(f1(x), Gf2(f2(x)), · · · , Gfk(fk(x))) ,

s.t. Ggg(x) : = (Gg1(g1(x)), · · · , Ggm(gm(x))) 5 Gg(0)

Ghh(x) : =
(
Gh1(h1(x)), · · · , Ghp(hp(x))

)
= Gh(0)

x ∈ E

Before studying optimality in multiobjective programming, one has to de-
fine clearly the concepts of optimality and solutions in multiobjective program-
ming problem. Note that, in vector optimization problems there is a multitude
of competing definitions and approaches. The dominated ones are now various
scalarizations and (weak) Pareto optimality. The (weak) Pareto optimality in
multiobjective programming associates the concept of a solution with some
property that seems intuitively natural.

Definition 2.6. A feasible point x̄ is said to be an efficient solution for a
multiobjective programming problem (CVP) if and only if there exists no x ∈ X
such that

f(x) ≤ f(x̄).

Definition 2.7. A feasible point x̄ is said to be a weakly efficient solution
for a multiobjective programming problem (CVP) if and only if there exists no
x ∈ X such that

f(x) < f(x̄).

It is very easy to check the follow theorem, and we omitted the proof here.

Theorem 2.8. Let Gfi(i ∈ K) be strictly increasing function defined on
Ifi(X), Ggj(j ∈ M) be strictly increasing function defined on Igj(X) and
Ght(t ∈ P ) be strictly increasing function defined on Iht(X). Further, let
0 ∈ Igj(X), j ∈ M , and 0 ∈ Iht(X), t ∈ M . Then x̄ is a (weak) efficient
solution for (CVP) if and only if x̄ is a (weak) efficient solution for (G-CVP).
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Definition 2.9. Let X be a set of all feasible solutions in the multiobjective
programming problem (G-CVP) and x̄ ∈ X. The multiobjective programming
problem (G-CVP) is said to satisfy the Kuhn-Tucker constraint qualification
at x̄ if,

C(X, x̄) = {d ∈ Rn :O(Ggj(gj))(x̄)d 5 0, j ∈ J(x̄),

O(Ght(ht))(x̄)d = 0, t ∈ P}

where C(X, x̄) is the Bouligand tangent cone to X at x̄, for details see [3].

3 Optimality conditions

In [2], Antczak introduced the so-called G-Karush-Kuhn-Tucker necessary op-
timality conditions for differentiable mathematical programming problem. In a
natural way, he extended the so-called G-Karush-Kuhn-Tucker necessary opti-
mality conditions to the vectorial case [3] for differentiable multiobjective pro-
gramming problems. In this section, we present a differentG-Kuhn-Tucker nec-
essary optimality conditions for multiobjective programming problems (CVP),
in which each component of the objective function is not necessarily differen-
tial, through an auxiliary programming problem (G-CVP. Furthermore, we
will prove the sufficiency of the introduced G-Karush-Kuhn-Tucker necessary
optimality conditions under (G,C, α, ρ, d)-convexity defined in above section.

Theorem 3.1 (G-KKT necessary optimality conditions). Let Gfi (i ∈ K)
be strictly increasing function defined on Ifi(X), Ggj(j ∈M) be strictly increas-
ing function defined on Igj(X) and Ght(t ∈ P ) be strictly increasing function
defined on Iht(X). Let x̄ be a (weak) efficient solution for (CVP), Gf (f), Gg(g)
and Gh(h)) be differentiable at x̄. Moreover, we assume that the multiobjective
programming problem (G-CVP) satisfies the Kuhn-Tucker constraint qualifica-
tion at x̄. Then, there exist λ̄ = (λ̄1, · · · , λ̄k)T ∈ Rk, ξ̄ = (ξ̄1, · · · , ξ̄m)T ∈ Rm
and µ̄ = (µ̄1, · · · , µ̄p)T ∈ Rp such that

k∑
i=1

λ̄iO(Gfi(fi))(x̄) +
m∑
j=1

ξ̄jO(Ggj(gj))(x̄) +

p∑
t=1

µ̄tO(Ght(ht))(x̄) = 0 (1)

ξ̄j
(
Ggj(gj(x))−Ggj(gj(x̄))

)
6 0, j ∈M, ∀x ∈ E (2)

λ̄ ≥ 0,
∑k

i=1
λ̄i = 1, ξ̄ = 0 (3)

Proof. Since x̄ is a (weak) efficient solution for (CVP), then, by Theorem 2.8,
x̄ is a (weak) efficient solution for (G-CVP). Therefore, the following system:

O(Gf (f))(x̄)d 5 0,
O(Gg(g))(x̄)d 5 0,
O(Gh(h))(x̄)d = 0
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is inconsistent. Hence, from From Motzkin’s theorem [18], there exist λ ∈ Rk,
ξ ∈ Rm and µ ∈ Rp such that

k∑
i=1

λiO(Gfi(fi))(x̄) +
m∑
j=1

ξjO(Ggj(gj))(x̄) +

p∑
t=1

µtO(Ght(ht))(x̄) = 0 (4)

ξj
(
Ggj(gj(x))−Ggj(gj(x̄))

)
6 0, j ∈M,∀x ∈ E (5)

λ ≥ 0, ξ = 0 (6)

Multiplying (4) with λ0 = 1∑k
i=1 λi

, we have

k∑
i=1

λi
λ0

O(Gfi(fi))(x̄) +
m∑
j=1

ξj
λ0

O(Ggj(gj))(x̄) +

p∑
t=1

µt
λ0

O(Ght(ht))(x̄) = 0

Replacing λi
λ0

,
ξj
λ0

and µt
λ0

in the above equation by λ̄i, ξ̄j and µ̄t, respectively,
and from (5) and (6), we can get the desired result. �

Theorem 3.2 (G-KKT sufficient optimality conditions). Let x̄ be a fea-
sible point for (CVP) such that G-Karush-Kuhn-Tucker necessary optimality
conditions (1)-(3) are satisfied at x̄. Assume that f is (Gf , C, α, ρ, d)-convex
at x̄, gJ(x̄) is (GgJ(x̄)

, C, β, ρ′, d′)-convex at x̄, ht (t ∈ P+) is (Ght , C, γt, ρ̄t, d̄t)-

convex at x̄, and ht (t ∈ P−) is (Ght , C, γt, ρ̄t, d̄t)-concave at x̄ on X, where
P+ = {t ∈ P : µ̄t > 0} and P− = {t ∈ P : µ̄t < 0}. If the following inequality

k∑
i=1

λ̄iρi
di(x, x̄)

αi(x, x̄)
+

m∑
j=1

ξ̄jρ
′
j

d′j(x, x̄)

βj(x, x̄)
+

p∑
t=1

|µ̄t|ρ̄t
d̄t(x, x̄)

γt(x, x̄)
> 0 (7)

holds for any x ∈ X. Then x̄ is a weakly efficient solution for (CVP).

Proof. Suppose, contrary to the result, that x̄ is not a weakly efficient solution
for (CVP). By Theorem 2.8, x̄ is not a weakly efficient solution for (G-CVP).
Hence, there exists x0 ∈ X such that

Gfi(fi(x0)) < Gfi(fi(x̄)), i ∈ K. (8)

Condition (2), (3), (8) and the fact that

gj(x0) 6 0 = gj(x̄), j ∈ J(x̄),

ht(x0) = 0 = ht(x̄), t ∈ P

can reduce the inequality

k∑
i=1

λ̄i
Gfi(fi(x0))−Gfi(fi(x̄))

αi(x0, x̄)
+
∑
j∈J(x̄)

ξ̄j
Ggj(gj(x0))−Ggj(gj(x̄))

βj(x0, x̄)

+
∑
t∈P+−

|µ̄t|
Ght(ht(x0))−Ght(ht(x̄))

γt(x0, x̄)
< 0 (9)
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where P+− = P+ ∪P−. By the generalized invexity assumption of f , g and h,
we have

Gfi(fi(x0))−Gfi(fi(x̄))

αi(x0, x̄)
≥ C(x0, x̄) (O(Gfi(fi))(x̄)) + ρi

di(x0, x̄)

αi(x0, x̄)
, (10)

Ggj(gj(x0))−Ggj(gj(x̄))

βj(x0, x̄)
≥ C(x0, x̄)

(
O(Ggj(gj))(x̄)

)
+ ρ′j

d′j(x0, x̄)

βj(x0, x̄)
, (11)

Ght(ht(x0))−Ght(ht(x̄))

γt(x0, x̄)
≥ C(x0, x̄) (O(Ght(ht))(x̄)) + ρ̄t

d̄t(x0, x̄)

γt(x0, x̄)
, (12)

Ght(ht(x̄))−Ght(ht(x0))

γt(x0, x̄)
≥ C(x0, x̄) (−O(Ght(ht))(x̄)) + ρ̄t

d̄t(x0, x̄)

γt(x0, x̄)
, (13)

for i ∈ K, j ∈ J(x̄), t ∈ P+(x̄) and t ∈ P−(x̄), respectively. Employing
(10),(11), 12) and (13) to (9), we have

k∑
i=1

λ̄iC(x0, x̄) (O(Gfi(fi))(x̄)) +
∑
j∈J(x̄)

ξ̄jC(x0, x̄)

(
O(Ggj(gj))(x̄)

)
+

∑
t∈P+

µ̄tC(x0, x̄) (O(Ght(ht))(x̄)) +
∑
t∈P−

(−µ̄t)C(x0, x̄) (−O(Ght(ht))(x̄)) +

k∑
i=1

λ̄iρi
di(x0, x̄)

αi(x0, x̄)
+
∑
j∈J(x̄)

ξ̄jρ
′
j

d′j(x0, x̄)

βj(x0, x̄)
+
∑
t∈P+−

|µ̄t|ρ̄t
d̄t(x0, x̄)

γt(x0, x̄))
< 0 (14)

By (7) and the convexity of C, we can conclude that

C(x0, x̄)

(
1

δ

[
k∑
i=1

λ̄iO(Gfi(fi))(x̄)+

∑
j∈J(x̄)

ξ̄jO(Ggj(gj))(x̄) +
∑
t∈P+−

µ̄tO(Ght(ht))(x̄)

 < 0

where δ =
k∑
i=1

λ̄i +
∑

j∈J(x̄)

ξ̄j +
∑

t∈P+−
|µ̄t| > 0. Note that ξ̄j = 0, j ∈ M\J(x̄)

and µt = 0, t ∈ P\P+−, we have a contradiction to (1). Hence, x̄ is a weakly
efficient solution for (CVP), and the proof is complete. �

Similar to the proof of Theorem 3.2, we can establish Theorems 3.3 and
3.4. Therefore, we simply state them here.

Theorem 3.3 (G-KKT sufficient optimality condition). Let x̄ be a feasible
point for (CVP) such that conditions (1)-(3) are satisfied at x̄. Assume that
f is strictly (Gf , C, α, ρ, d)-convex at x̄, gJ(x̄) is (GgJ(x̄)

, C, β, ρ′, d′)-convex at

x̄ on X, ht (t ∈ P+(x̄)) is (Ght , C, γt, ρ̄t, d̄t)-convex at x̄, and ht (t ∈ P−(x̄)) is
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(Ght , C, γt, ρ̄t, d̄t)-concave at x̄ on X, where P+(x̄) = {t ∈ P : µ̄t > 0} and
P−(x̄) = {t ∈ P : µ̄t < 0}. Then x̄ is an efficient solution for (CVP).

Theorem 3.4 (G-KKT sufficient optimality condition). Let x̄ be a fea-
sible point for (CVP) such that conditions (1)-(3) are satisfied at x̄. As-
sume that f is (Gf , C, α, ρ, d)-convex at x̄, gJ(x̄) is (GgJ(x̄)

, C, β, ρ′, d′)-convex

at x̄, ht (t ∈ P+(x̄)) is (Ght , C, γt, ρ̄t, d̄t)-convex at x̄, and ht (t ∈ P−(x̄)) is
(Ght , C, γt, ρ̄t, d̄t)-concave at x̄ on X, where P+(x̄) = {t ∈ P : µ̄t > 0} and
P−(x̄) = {t ∈ P : µ̄t < 0}. If the following inequality

k∑
i=1

λ̄iρi
di(x, x̄)

αi(x, x̄)
+

m∑
j=1

ξ̄jρ
′
j

d′j(x, x̄)

βj(x, x̄)
+

p∑
t=1

|µ̄t|ρ̄t
d̄t(x, x̄)

γt(x, x̄)
> 0

holds for any x 6= x̄ ∈ X. Then x̄ is an efficient solution for (CVP).

4 G-Mond-Weir vector duality

Making use of the optimality conditions of the preceding section, we consider
the following multiobjective dual problem in relation to (CVP), which is in
the format of Mond-Weir [9]. And, we call it the G-Mond-Weir vector dual
problem for the multiobjective programming problem (CVP).

(GMWD) maxf(y) := (f1(y), f2(y), · · · , fk(y)),

s.t.
k∑
i=1

λiO(Gfi(fi))(y) +
m∑
j=1

ξjO(Ggj(gj))(y)

+

p∑
t=1

µtO(Ght(ht))(y) = 0 (15)

ξT (Gg(g(y))−Gg(0)) ≥ 0

µT (Gh(h(y))−Gh(0)) = 0

λ ∈ Rn, λ > 0, λTe = 1,

ξ ∈ Rm, ξ = 0, µ ∈ Rp, y ∈ X

where e = (1, · · · , 1)T , Gfi , i ∈ K, are strictly increasing functions defined
on Ifi(X), Ggj , j ∈M , are strictly increasing functions defined on Igj(X), and
Ght , t ∈ P , are strictly increasing functions defined on Iht(X), such that Gf (f),
Gg(g) and Gh(h)) are differential on X.

Let W denote the set of all feasible points of (GMWD) and prXW be
the projection of the set W on X, that is, prXW := {y ∈ X : (y, λ, ξ, µ) ∈
W}. Further, for a given (y, λ, ξ, µ) ∈ W , we denote by P+(y) and P−(y)
(or simply P+ and P−) the sets of equality constraints indices for which the
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corresponding Lagrange multiplier is positive and negative, respectively, that
is, P+(y) = {t ∈ P : µt > 0} and P−(y) = {t ∈ P : µt < 0}.

Theorem 4.1 (G-Weak duality). Let x and (y, λ, ξ, µ) be (CVP)-feasible
and (GMWD)-feasible, respectively. Assume that f is (Gf , C, α, ρ, d)-convex
at y on X∪prXW , g is (Gg, C, β, ρ

′, d′)-convex at y on X∪prXW , ht (t ∈ P+)
is (Ght , C, γt, ρ̄t, d̄t)-convex at y on X ∪ prXW , and ht (t ∈ P−) is (Ght , C, γt,
ρ̄t, d̄t)-concave at y on X ∪ prXW . Moreover the inequality

k∑
i=1

λiρi
di(x, y)

αi(x, y)
+

m∑
j=1

ξjρ
′
j

d′j(x, y)

βj(x, y)
+

p∑
t=1

|µt|ρ̄t
d̄t(x, y)

γt(x, y)
> 0 (16)

holds, then f(x) ≮ f(y).

Proof. Suppose to the contrary that f(x) ≮ f(y). Therefore, we obtain

f(x) < f(y).

or
Gfi(fi(x)) < Gfi((fi(y)), i = 1, . . . , k.

Note that

g(x) 5 0, ξT (Gg(g(y))−Gg(0)) ≥ 0, ξ = 0,

h(x) = 0, µT (Gh(h(y))−Gh(0)) = 0, µ ∈ Rp.

Hence

k∑
i=1

λi
Gfi(fi(x))−Gfi(fi(y))

αi(x, y)
+

m∑
j=1

ξj
Ggj(gj(x))−Ggj(gj(y))

βj(x, y)

+
∑
t∈P+−

|µt|
Ght(ht(x))−Ght(ht(y))

γt(x, y)
< 0 (17)

where P+− = P+ ∪P−. By the generalized invexity assumption of f , g and h,
we have

Gfi(fi(x))−Gfi(fi(y))

αi(x, y)
≥ C(x, y) (O(Gfi(fi))(y)) + ρi

di(x, y)

αi(x, y)
, (18)

Ggj(gj(x))−Ggj(gj(y))

βj(x, y)
≥ C(x, y)

(
O(Ggj(gj))(y)

)
+ ρ′j

d′j(x, y)

βj(x, y)
, (19)

Ght(ht(x))−Ght(ht(y))

γt(x, y)
≥ C(x, y) (O(Ght(ht))(y)) + ρ̄t

d̄t(x, y)

γt(x, y)
, (20)

Ght(ht(y))−Ght(ht(x))

γt(x, y)
≥ C(x, y) (−O(Ght(ht))(y)) + ρ̄t

d̄t(x, y)

γt(x, y)
, (21)
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for i ∈ K, j ∈M , t ∈ P+(y) and t ∈ P−(y), respectively. Employing (18),(19),
20) and (21) to (17), we have

k∑
i=1

λiC(x, y) (O(Gfi(fi))(y)) +
∑
j∈J(y)

ξjC(x, y)

(
O(Ggj(gj))(y)

)
+

∑
t∈P+

µtC(x, y) (O(Ght(ht))(y)) +
∑
t∈P−

(−µt)C(x, y) (−O(Ght(ht))(y)) +

k∑
i=1

λiρi
di(x, y)

αi(x, y)
+
∑
j∈M

ξjρ
′
j

d′j(x, y)

βj(x, y)
+
∑
t∈P+−

|µt|ρ̄t
d̄t(x, y)

γt(x, y))
< 0 (22)

By (23), the convexity of C and µt = 0, t ∈ P\P+−, we can conclude that

C(x, y)

(
1

δ

[
k∑
i=1

λiO(Gfi(fi))(y)+

m∑
j=1

ξjO(Ggj(gj))(y) +

p∑
t=1

µtO(Ght(ht))(y)

])
< 0

where δ = 1 +
∑m

j=1 ξj +
∑p

t=1 |µt| > 0. Hence, we have a contradiction to
(15). �

Theorem 4.2 (G-Weak duality). Let x and (y, λ, ξ, µ) be (CVP)-feasible
and (GMWD)-feasible, respectively. Assume that f is strictly (Gf , C, α, ρ, d)-
convex at y on X ∪ prXW , g is (Gg, C, β, ρ

′, d′)-convex at y on X ∪ prXW ,
ht (t ∈ P+) is (Ght , C, γt, ρ̄t, d̄t)-convex at y on X ∪ prXW , and ht (t ∈ P−) is
(Ght , C, γt, ρ̄t, d̄t)-concave at y on X ∪ prXW . Moreover the inequality

k∑
i=1

λiρi
di(x, y)

αi(x, y)
+

m∑
j=1

ξjρ
′
j

d′j(x, y)

βj(x, y)
+

p∑
t=1

|µt|ρ̄t
d̄t(x, y)

γt(x, y)
> 0 (23)

holds, then f(x) 
 f(y).

Theorem 4.3 (G-Strong duality). Let x̄ be a (weak) efficient solution of
(CV P ) and the hypothesis of Theorem 3.1 holds. Then there exist λ̄ ∈ Rk,
ξ̄ ∈ Rm and µ̄ ∈ Rp such that (x̄, λ̄, ξ̄, µ̄) is a (GMWD)-feasible point. If
also the hypothesis of Theorem 4.1 holds for all (GMWD)-feasible points
(y, λ, ξ, µ), then (x̄, λ̄, ξ̄, µ̄) is a (weak) maximum for (GMWD), and the ob-
jective functions values are equal in problems (CV P ) and (GMWD).

Proof. By Theorem 3.1, there exist λ̄ ∈ Rk, ξ̄ ∈ Rm and µ̄ ∈ Rp, such that the
G-Karush-Kuhn-Tucker necessary optimality conditions (1)-(3) hold. From
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(2), (3), g(x) 5 0 and h(x̄) = 0, we have

m∑
j=1

ξ̄j
(
Ggj(gj(x̄))−Ggj(0)

)
≥

m∑
j=1

ξ̄j
(
Ggj(gj(x̄))−Ggj(gj(x))

)
≥ 0 (24)

p∑
t=1

µ̄t (Ght(ht(x̄))−Ght(0)) = 0. (25)

Hence (x̄, λ̄, ξ̄, µ̄) is a (GMWD) feasible solution from (1), (24) and (25). Also,
by G-weak duality (Theorem 4.1 or 4.2), it follows that (x̄, λ̄, ξ̄, µ̄) is a (weak)
maximum in (GMWD). �

Theorem 4.4 (G-converse duality). Let (ȳ, λ̄, ξ̄, µ̄) be a (weak) maximum
for (GMWD) and ȳ ∈ X. Assume that f is (strictly) (Gf , C, α, ρ, d)-convex
at ȳ on X∪prXW , g is (Gg, C, β, ρ

′, d′)-convex at ȳ on X∪prXW , ht (t ∈ P+) is
(Ght , C, γt, ρ̄t, d̄t)-convex at ȳ on X∪prXW , and ht (t ∈ P−) is (Ght , C, γt, ρ̄t, d̄t)-
concave at ȳ on X ∪ prXW . Moreover, the inequality

k∑
i=1

λ̄iρi
di(x, ȳ)

αi(x, ȳ)
+

m∑
j=1

ξ̄jρ
′
j

d′j(x, ȳ)

βj(x, ȳ)
+

p∑
t=1

|µ̄t|ρ̄t
d̄t(x, ȳ)

γt(x, ȳ)
> 0 (26)

holds for all x ∈ X. Then ȳ is a (weak) efficient solution in (CV P )

Proof. Let (ȳ, λ̄, ξ̄, µ̄) be a (weak) maximum for (GMWD) and ȳ ∈ X. There-
fore

k∑
i=1

λ̄iO(Gfi(fi))(ȳ) +
m∑
j=1

ξ̄jO(Ggj(gj))(ȳ) +

p∑
t=1

µ̄tO(Ght(ht))(ȳ) = 0 (27)

Suppose to the contrary that ȳ is not a (weak) efficient solution in (CV P ).
Then, there exists x0 ∈ X such that

f(x0) 6 (<)f(ȳ)

Note that

g(x0) 5 0, ξ̄T (Gg(g(ȳ))−Gg(0)) ≥ 0, ξ = 0,

h(x0) = 0, µ̄T (Gh(h(ȳ))−Gh(0)) = 0, µ̄ ∈ Rp.

we have the inequality

k∑
i=1

λ̄i
Gfi(fi(x0))−Gfi(fi(ȳ))

αi(x0, ȳ)
+

m∑
j=1

ξ̄j
Ggj(gj(x0))−Ggj(gj(ȳ))

βj(x0, ȳ)

+
∑
t∈P+−

|µ̄t|
Ght(ht(x0))−Ght(ht(ȳ))

γt(x0, ȳ)
< 0 (28)
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where P+− = P+ ∪ P−. Using similar arguments as in the proof of Theorem
4.1, we have

C(x0, ȳ)

(
1

δ

(
k∑
i=1

λ̄iO(Gfi(fi))(ȳ) +
m∑
j=1

ξ̄jO(Ggj(gj))(ȳ)

+

p∑
t=1

µ̄tO(Ght(ht))(ȳ)

))
6

1

δ

(
k∑
i=1

λ̄i
Gfi(fi(x0))−Gfi(fi(ȳ))

αi(x0, ȳ)

+
m∑
j=1

ξ̄j
Ggj(gj(x0))−Ggj(gj(ȳ))

βj(x0, ȳ)
+
∑
t∈P+−

|µ̄t|
Ght(ht(x0))−Ght(ht(ȳ))

γt(x0, ȳ)

)

− 1

δ

(
k∑
i=1

λ̄iρi
di(x0, ȳ)

αi(x0, ȳ)
+

m∑
j=1

ξ̄jρ
′
j

d′j(x0, ȳ)

βj(x0, ȳ)
+

p∑
t=1

|µ̄t|ρ̄t
d̄t(x0, ȳ)

γt(x0, ȳ)

)
(29)

where δ = 1 +
∑m

j=1 ξ̄j +
∑p

t=1
¯|µ|t. Combining (26), (27)and (29), we deduce

k∑
i=1

λ̄i
Gfi(fi(x0))−Gfi(fi(ȳ))

αi(x0, ȳ)
+

m∑
j=1

ξ̄j
Ggj(gj(x0))−Ggj(gj(ȳ))

βj(x0, ȳ)

+
∑
t∈P+−

|µ̄t|
Ght(ht(x0))−Ght(ht(ȳ))

γt(x0, ȳ)
> 0.

This contradicts (28). �

5 Conclusions

In this paper, we consider a class of multiobjective programming problems
in which each component of the objective function is not necessarily differen-
tial. We have proved new G-necessary optimality conditions for multiobjective
programming problems with both inequality and equality constraints involving
the functions which are not necessarily differential. To relax convexity assump-
tions imposed on theorems on sufficient optimality conditions and duality, we
present a new generalized convexity, which is called (G,C, α, ρ, d)-convexity
and which is an extension including (C, α, ρ, d)-convexity[20, 7], (F, α, ρ, d)-
convexity[14, 15] and G-invexity [2, 3, 4]. Basing on this new generalized
convexity, we establish new G-sufficient optimality conditions for the multiob-
jective programming problem. Further, a general G-Mond-Weirdual problem
is introduced for the considered multiobjective programming problem. Our
results extend and improve the corresponding results in the literature.
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