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Abstract 

 

Nonnegative matrix factorization (NMF) is to decompose a nonnegative matrix 

into the product of two smaller nonnegative matrices. It is one of the popular ways 

for dimension reduction in data processing. In this paper, we firstly reduce the 

dimension of the original matrix by using the orthogonal matrices U  and V  

gotten from the stochastic SVD decomposition, and then based the framework of 

alternating nonnegative least squares, we adopt penalty trust region algorithms to 

construct a new method for NMF. Numerical experiments results demonstrate the 

high performance of the algorithm. 

 

Keywords: Nonnegative Matrix Factorization, Trust Region, Penalty Function, 

Randomized SVD 

 

 

1 Introduction 
 

The concept of Nonnegative Matrix Factorization (NMF) was first proposed by 

Paatero and Tapper [8] in 1994. Because of its simple decomposition and less 

storage, NMF has been widely applied in the fields, such as face recognition [14], 

image analysis [2], signal processing [1] and so on. NMF can be stated as the 

follows: Given a nonnegative matrix 
m nA  , finds two nonnegative matrices 

m rW   and 
r nH   such that: 

 ,A WH  (1.1) 
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where ( )min ,r m n . When the Euclidean distance between W  and H  is 

applied, problem (1.1) can be rewrote as following optimal problems: 

 
( )

21
min ,

,2

. . 0, 0

F
F W H A WH

s t W H


= −


  

 (1.2) 

where 
F

  is the Frobenius norm. 

In the last decade, there have been many algorithms for solving the problem 

(1.2). Most of them are based on multiplicative update [6] or alternating 

nonnegative least squares [10]. The basic idea of alternating nonnegative least 

squares is to solve the following two subproblems: 

 ( )1

0
arg min , ,k k

H
H F W H+


=  (1.3) 

and 

 ( )1 1

0
arg min , .k k

W
W F W H+ +


=  (1.4) 

When we apply different ways to solve the subproblem (1.3) and (1.4) above, we 

can have different methods to solve the original problem based on alternating 

nonnegative least squares, such as Projected Gradient Methods [7] and 

Alternating Projected Barzilai-Borwein Methods [4]. In [5] and [9], interior point 

trust region methods for solving NMF problems have been proposed because of 

the strong convergence properties of the trust region method [11]. Inspired by the 

above results, we present a new penalty trust region method based on alternating 

nonnegative least squares framework. Meanwhile, we apply the random singular 

value matrix decomposition technique to reduce the size of the matrix used in the 

subproblem. 

This paper is organized as follows. A penalty trust region method for solving 

subproblems is introduced in Section 2.1. A reduce dimension technique is 

presented in Section 2.2. The whole structure based on alternating nonnegative 

least squares framework is listed in Section 2.3. The numerical results and the 

conclusion of this paper are illustrated in Sections 3 and 4, respectively. 

 

2 Penalty Trust Region Algorithms for NMF  
 

2.1 Penalty Trust Region method for subproblems 
 

We first consider the following nonnegative least squares problem: 

 
( )

21
min

,2

. . 0

f x Ax b

s t x


= −


 

 (2.1) 

where ( )f x  is a real function defined in 
n

. Define 

 ( ) ( )min ,0 ,c x x− =  (2.2) 

then the nonnegative constraints in problem (2.1) are equivalent to: 
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 ( )
2

0.c x− =  (2.3) 

We have the penalty function respect to (2.1) as follows: 

 ( ) ( ) ( )
2

2
,P x f x c x  −= +  (2.4) 

where 0   is a penalty parameter, next, we get the trust region subproblems 

corresponding to (2.4), 

 
( ) ( )

2

2

2

,

1
m n

.

i
2

.

T T

k k k k k

k

d g d d B d x d

s t d

 
−

=







+ +




+
 (2.5) 

where ( ) ( )k k kg x f xg = =  , k  is the radius of the trust region, kB  is an 

approximate Hessian of the Lagrange function in (2.1). Denote 

 ( ) ( ).
kk x P xP =  (2.6) 

We can apply trust region algorithm in [13] to solve the problem (2.1). Since 

( )f x  and x  are continuously differentiable, by the similar proof, we can get the 

following theorem. 

 

Theorem 1. Assuming that  kx  and  kB  are uniformly bounded, if k =  

for all large k , then the sequence  kx  is not bounded away from K-T points. 

 

Now, we adopt the method above to solve the matrix problem (1.3) and (1.4). 

firstly, we rewrite problem (1.3) as the form of (2.1), namely, 

 
( )

2

min
.

. .

1

2

0

k

F
F H

s

W H A

t H


= −








 (2.7) 

In order to use the same algorithm framework to solve problem (1.4), we take the 

following transformation to make (1.3) and (1.4) have same structure,  

 
( ) ( )

2
1min

.

.

1

2

0.

T
T k T T

F

F AHW W

s t W

+
= −



 

 (2.8) 

Therefore, we only consider the problem (2.7), Denote 

 ( )( ) ( )min ,,0ijij
c H H− =  (2.9) 

then constraints condition 0H   is equivalent to: 

 ( ) 0.
F

c H− =  (2.10) 

The corresponding subproblem is: 

  

                         
( ) ( )

2

min
,

1
, ,

2

. .

k k k k k

k

F

F

d Hg d d B d

s t d

d 
−

  




= +


+




+
 (2.11) 
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where ( ) ( ) ( ) ( )
T

k k k

k k kg H F H W H Ag W= =  = − ， ,   is the sum of the 

component-wise product of two matrices. Let ( ) ( ) ( )
2

F
P cH F H H  −= + . The 

matrix form algorithm for solving problem (2.7) is given below. 

 

Algorithm 1. 

Step 1 Given 1

r nH  , 1 0  , 1

rrB   symmetric, 1 0  , 1 0  , 1k = . 

Step 2 Solve subproblem (2.11), giving ks ; if 0ks =  then stop; 

Step 3 Calculate 

 
( ) ( )

( ) ( )
;

0

k k k k k

k

k k k

r
P H P H s

s 

− +
=

−
 (2.12) 

If 0kr  , then go to Step 4; Otherwise, 1 / 4k Fks+ = ; 1k kH H+ = ; 

1k k= + ; go to Step 2; 

Step 4 1k k kH sH + = + ; 

 

( )

( )
1

max 2 ,

, 0.1 ;

min / 4, / 2

0

,

, 4 0.9

.9

0.1

F

k

k k k

kk F

k k

k

r

r

s

r

s

+






= 

 

 






 (2.13) 

Generate 1kB + . 

Step 5 if 

 ( ) ( ) ( )( )0 min , ,k k k k k k k F
s c H    −−   (2.14) 

1 2k k + = , 1 / 4k k + = ; Otherwise, 1k k + = ; 1k k + = ; 

1k k= + , go to Step 2. 

 

2.2 Randomized SVD for Matrix Factorization 
 

With the increase of the scale of the problem, we need to reduce the dimension of 

the original matrix in order to accelerate the decomposition speed and save the 

calculation cost. In [12], authors proposed a nonnegative matrix factorization 

method with random projections, derived a smaller matrix from the original input 

matrix. In this paper, we apply the results of a two-stage approach Random SVD 

algorithm [3] to reduce the dimension of the matrix. 

A two-stage approach [3] solves the following problem: Given 
m nA  , a 

target rank k , finds matrix factors 
m kU   and 

k nV   such that 

 ,TA UDV  (2.15) 

where U  and V  are orthonormal, D  is diagonal. The following is the algorithm. 

 

Algorithm 2. (Basic Randomized SVD, RSVD) 

Input: A matrix m nA  , a target rank k , an over-sampling parameter p , 
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( )min ,k p m n+ . 

Output: Matrices U , D , and V . 

Stage A: 

(1) Form a Gaussian random matrix 
( )n k p

G
 +

 . 

(2) Form the sample matrix Y AG= . 

(3) Orthonormalize the columns of the sample matrix ( )orthQ Y= . 

Stage B: 

(4) Form 
( )k p nTQ A B
+ 

=  . 

(5) Form the SVD of the small matrix B : ˆ TB UDV= . 

(6) Form ˆU UQ= . 

 

It is easy to see that all the error incurred by the RSVD algorithm is in Stage A, 

and we also have 

 .T TA UDV A QQ A− = −  (2.16) 

We next analyse the error in the process of applying U and V to reduce the 

dimension of the original matrix. According to (1.2), We denote 

 ( )
2

.
F

J A A WH= −  (2.17) 

Decompose the matrix A  by Algorithm 2, i.e., TA UDV . We have 

 ( )
2

.ˆ T

F
J A UDV WH= −  (2.18) 

Since the Frobenius norm is a unitarily invariant norm, then 

 .T T T T

FF F F
UDV DV UD WH DWH U WH V U WHV= = =− −− − (2.19) 

From (2.17) and (2.18), 

 ( ) ( ) ( )ˆ .T T

F F F
J A A WH UDJ V A UDVA WH − +− −−  (2.20) 

We assume that 1

T

F
WU V HD −  , where 1  is a positive constant. According to 

the conclusions in reference [3], (2.16) and (2.20), we have the following theorem. 

 

Theorem 2. Suppose that m nA   is a real matrix with singular values 

1 2 3      Choose a target rank 2k   and an over-sampling 

parameter 4p  , where ( )min ,m nk p + . Draw a standard Gaussian matrix 

( )n k p
G

 +
 , and construct the sample matrix Y AG= . For all 1,u t  , 

 ( ) ( ) 2

1 2 2 ,ˆ 2J J AA  +−  (2.21) 

with failure probability at most 
2 /25 2p uet− −+ , where  

 

( )
1/2

2

2 11 12 /
1

j k

j k

e k p
t k p ut

p
  +



  +
= + + 

+ 
 . 
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Remark. If Algorithm 1 convergence, there must exists a constant 0  such 

that T

F
WUDV H−  . 

 

2.3 Penalty Trust Region Algorithms with reduction technique 

applied into NMF 
 

In this subsection, we present a new method which summarize the procedures 

above. 

 

Algorithm 3. Randomized Penalty Trust Region method (RPTR) 

Step 1 Given m nA  , Decompose the matrix A  by Algorithm 2, TA UDV . 

Step 2 Use Algorithm 1 to solve the following subproblems: 

 ( )
2

1

0
arg min , ,

1

2

k k T T k

H F
H DF W H HUV W+


= = −  (2.22) 

and 

 ( )
2

1 1 1

0
arg min ,

1

2
.k k k

W F
W F W H UD WH V+ + +


= = −  (2.23) 

Step 3 Output W  and H . 

 

 

3 Numerical experiments 
 

We compare the proposed RPTR methods with Multiplicative Update Methods [6] 

(MU), Projected Gradient Methods [7] (PG) and Alternating Projected Barzilai-

Borwein Methods [4] (APBB2). All implementations were performed on 

MATLAB. 

In Algorithm 1, we use the Matlab build-in function fmincon to solve the 

subproblem (2.11). The initial value 1B  is set to I  and 1kB +  is updated by BFGS 

formula 

 
1 ,

T T

k k k k k k
k k T T

k k k k k

B s s B
B

y y
B

s B s y s
+ = − +  (3.1) 

where ( ) ( )k k k ky g x s g x= + − , 1 10 = , 1 10 = , 1 0.01 = . The stopping 

criterion in Step 2 should be k F
s   for some small positive tolerance number  

in the practical implementation of the algorithm. 

Let ( ),p k kF W H  be the projected gradient, the stopping criterion in 

Algorithm 3 is set as 

 ( ) ( )0 0 ., ,p k k

F F
H F W HF W    (3.2) 

 

Test 1. We consider the problem with size 25 25 , 50 50  and 100 100 . The 

matrix is randomly generated by the uniform distribution: ( )rand ,A m n= . The  
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initial ( )0 0,W H  is constructed by the same way. The values of k p+  are in the 

following order: 15, 25, 75. We try 10 different sample matrices for the same size, 

and report the average results. All the methods share the same initial point. We set 

value of 
( )

( )0 0

,

,

k k

F

F

F W H

F W H


=


 to be 210−=  and 310−  in order to investigate the 

results. Let iter  denote the number of external iterations and niter denote the 

number of internal iterations, 

2

2
0 0

k k

F

F

A W H
e

A W H

−
=

−
 is the relative error, ( , , )m n r  is 

the size of matrix and the dimension of decomposition. We list the results in the 

following Table 1. 

 

 

Table 1: Results for random matrices problems 

m,n,r  
iter niter e  

1.0E-02 1.0E-03 1.0E-02 1.0E-03 1.0E-02 1.0E-03 1.0E-02 1.0E-03 

25,25,5 

RPTR 2 4.1 18.7 56.3 0.0650 0.0566 2.3718E-03 6.9299E-04 

PG 4.3 13.9 59.6 299.1 0.0599 0.0502 7.5900E-03 4.9791E-04 

APBB2 3.1 4.2 26.7 118.5 0.0922 0.1265 7.5555E-03 9.1039E-04 

MU 74 974   0.0517 0.0492 9.2900E-03 9.5323E-04 

25,25,6 

RPTR 2 6.3 21.7 105.4 0.0377 0.0290 2.6800E-03 7.2912E-04 

PG 4.1 11.6 56.1 240.4 0.0371 0.0274 6.4700E-03 7.4984E-04 

APBB2 2.4 5.7 15 139.8 0.0586 0.0766 6.4700E-03 8.5831E-04 

MU 57 863   0.0284 0.0259 9.4200E-03 9.3915E-04 

50,50,5 

RPTR 2 2.6 21.5 34.2 0.0800 0.0782 1.1087E-03 6.3933E-04 

PG 2.8 4.9 17 71.4 0.0849 0.0727 9.1000E-03 8.8632E-04 

APBB2 2.2 5.1 12.2 158.1 0.1007 0.1230 6.0700E-03 9.1243E-04 

MU 37 921   0.0748 0.0694 9.3600E-03 9.5935E-04 

50,50,6 

RPTR 2 2.9 21.2 40.8 0.0486 0.0461 1.0967E-03 6.7649E-04 

PG 2.6 5.2 14.4 62.2 0.0533 0.0431 7.2800E-03 8.3078E-04 

APBB2 2 6 6.1 134.3 0.0645 0.0791 7.2700E-03 8.9024E-04 

MU 31 700   0.0460 0.0408 9.2300E-03 9.5989E-04 

100,100,5 

RPTR 2 2 21.4 21.4 0.0860 0.0860 4.9236E-05 4.9236E-05 

PG 4 9 44.7 148.9 0.0870 0.0812 8.4300E-03 4.2174E-04 

APBB2 2 5.6 7 123 0.1030 0.1118 4.9500E-03 8.2759E-04 

MU 18 601   0.0882 0.0803 8.5400E-03 9.6978E-04 

100,100,6 

RPTR 2 2 21.9 21.9 0.0558 0.0558 9.5545E-05 9.5545E-05 

PG 3.9 6.5 31.7 96.4 0.0563 0.0526 4.1881E-03 5.0929E-04 

APBB2 2 5.7 6.1 107.7 0.0687 0.0752 6.1400E-03 9.2880E-04 

MU 10 621   0.0596 0.0514 8.4500E-03 9.6815E-04 
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From the experimental results in the Table 1, we can see that the number of 

external and internal iterations of PRTR methods is less than that of the other 

three algorithms in most cases for the same stopping criterion. The advantage 

becomes more obvious with the improvement of precision and the enlargement of 

matrix size. It demonstrates that the algorithm is expected to improve the 

efficiency of matrix factorization. Furthermore, the relative errors are a little 

difference among PRTR methods, MU methods and PG method, but are 

obviously bigger than other three methods in APBB2 methods. 

 

Test 2. We select six pictures randomly from the ORL Faces Database. We 

apply our method, Multiplicative Update Methods [6] and Projected Gradient 

Methods [7] to solve the image decomposition, and compare the corresponding 

reconstructed matrices in Table 2. The dimension of decomposition in the test of 

three methods is 15r = , the stopping criterion is 310−= .  

 

Table 2: From left to right, original image, reconstructed images of PG, MU, 

PRTR 

    
(a) (b) 

    
(c) (d) 

    
(e) (f) 

 

The face images can actually be understood as a weighted linear combination 

of base images for NMF. The base image is generally composed of local features 

of each part of the face. By comparing, the reconstructed images obtained by 

PRTR methods have more distinct features in the main parts of face, like eyes, 

mouth and nose, etc. In addition, the number of iterations of PRTR methods is 

lesser for the same stopping criterion in image decomposition.  

 

4 Conclusions 
 

This paper constructs the trust region model by introducing penalty functions, and 

proposes a new algorithm for NMF based on the trust region methods. The 

numerical experiments results demonstrate the high performance of the new algo- 
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rithm. However, the algorithm still needs to be improved. For example, it is 

convenient that use algorithm fmincon to solve the subproblem (2.11), but it does 

not work very well on large-scale matrix factorization. In the following research, 

we can try to find a more efficient algorithm to make further improvement on the 

efficiency of the whole algorithm. 
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