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Abstract

It is known that some algorithms are feasible, and some take too
long to be practical/ For example, if the running time of an algorithm
is 2", where n = len(z) is the bit size of the input z, then already for
n = 500, the computation time exceeds the lifetime of the Universe. In
computer science, it is usually assumed that an algorithm A is feasible
if and only if it is polynomial-time, i.e., if its number of computational
steps ta(z) on any input x is bounded by a polynomial P(n) of the
input length n = len(z).

An interesting encubation phenomenon is that once we succeed in
finding a polynomial-time algorithm for solving a problem, eventually
it turns out to be possible to further decrease its computation time until
we either reach the cubic time £ 4(z) ~ n? or reach some even faster time
n® for a < 3.

In this paper, we provide a possible physics-based explanation for
the encubation phenomenon.

Mathematics Subject Classification: 68Q15 83F05 92B20

Keywords: encubation, feasible algorithms, computational complexity,
lifetime of the Universe



6 Vladik Kreinovich et al.

1 What Is Encubation

Some algorithms are feasible, some are not. It is known that:
e some algorithms are feasible, and
e some take too long to be practical.

For example:

e if the running time of an algorithm is 2", where n = len(x) is the bit size
of the input z,

e then already for n = 500, the computation time exceeds the lifetime of
the Universe.

In computer science, it is usually assumed that an algorithm A is feasible
if and only if it is polynomial-time. In other words, an algorithm is feasible
if its number of computational steps t4(x) on any input x is bounded by a
polynomial P(n) of the input length n = len(z); see, e.g., [2, 3].

Enculation. An interesting encubation phenomenon is that:

e once we succeed in finding a polynomial-time algorithm for solving a
problem,

e eventually it turns out to be possible to further decrease its computation
time

3

e until we either reach the cubic time ¢4(x) &~ n*® or reach some even faster

time n® for o < 3.

How can we explain the encubation phenomenon? How do we explain
the fact that the complexity of each formally feasible algorithm is eventually
reduced to cubic time?

2 How to Explain Encubation?

Physical reminder. According to modern physics, the Universe has ~ 10%
particles; see, e.g., [1, 5].

There are ~ 10*> moments of time. The number of moments of time can
be obtained if we divide:

e the lifetime of the Universe (7" &~ 20 billion years)

e by the smallest possible time At.
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Here, At is the time that light passes through the size-wise smallest possible
stable particle — a proton.

How many computational steps can we perform? The above amounts
means that overall:

e even if each elementary particle is a processor that operates as fast as
physically possible,

e the largest possible number of computational steps that we can perform
is 10% - 10%2 = 10132,

This is the largest possible number of computational steps ¢(n).

What is largest possible input size. The largest possible input size comes
if you input 1 bit per unit time. Thus, during the lifetime of the Universe, the
largest possible length of the input is n ~ 10%? bits.

Main idea behind our explanation. If an algorithm is feasible, then:
e for the largest possible length n of the input

e it should still perform the physically possible number of steps.

This idea indeed explains encubation. For ¢(n) ~ n® and n ~ 10?2 this
means that
t(n) =~ n® < 10"
132 22
Thus,wegetagﬂz—%?).

This is exactly what we want to explain.

Comment. Since - ~ 7, maybe 7 and not 3 is the actual upper bound?

3 What About Human Computations?

Formulation of the problem. What if instead computability in a computer
we consider computability in a human brain?
Let us repeat similar computations for such human computing.

Biological reminder. A human life lasts for ~ 80 years. Each year has ~ 30
million second, so overall, we get ~ 2.4 - 10° seconds.

Brain processing is performed by neurons. Typical neurons involved in
thinking and processing data have an operation time about 100 milliseconds,
i.e., about 0.1 seconds. Thus, during the lifetime, we have ~ 2.4-10'° moments
of time.

There are about 10! neuron in a brain; for details, see, e.g., [4].
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How many computational steps can we perform? Due to the above,
overall, if all the neurons are active all the time, we can perform

t(n) =~ (2.4 -10'%) - 10" ~ 10%°

computational steps.

What is largest possible input size. Similarly to the physical case, we
can gauge the largest possible size by assuming that enter 1 bit every single
moment of time. Thus, the largest input size is n ~ 10'°.

Let us apply our main idea. Similarly to the physical case, let us check
for which a, the number of computational steps ¢(n) needed to process the
largest possible input n ~ 10'° does not exceed the largest possible number of
computational steps: t(n) = n® < 10%.

In this case, we conclude that o < 2 i.e., that only quadratic-time (and
faster) algorithms are feasible in terms of human computations.

Comment. This makes sense: e.g., sorting algorithms that describe how we
sort by hand, such as insertion sort, are indeed quadratic-time.
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