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Abstract 

 

SVMs are shown to be effective at clustering when used with metaheuristics to 

recover label information in a bootstrap learning process. An automated tuning 

solution for Support Vector Machine (SVM) classification and clustering methods 

is described. This is shown for two complemetary situations: (1) by implementing 

a simulated annealing with perturbation tuning procedure on the relabeler-SVM 

boosted clustering method (single-pass), where kernel and algorithmic parameters 

are already optimized both by brute force computational search and by genetic 

algorithm evolutionary search; and (2) by implementing a multi-pass, random 

restart, SVM clustering optimization analysis (with fixed kernel and algorithmic 

parameters). Informatics-based SVM kernels, introduced previously, are used. 

Tuning is done by using the SVM performance on training data to define a fitness 

function. Tuning metaheuristics offer an automated way to obtain a powerful 

SVM classifier, or clustering process, for a given dataset. The SVM discussion is 

interwoven with data analysis involving channel current data, with specific 

application to the signal processing associated with the nanopore transduction 

detector.  
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1 Introduction 
 

Clustering is an unsupervised learning problem whose goal is finding structure in 

a collection of unlabeled data. A cluster is a collection of objects which are similar 

to the other objects in that collection and dissimilar to the objects belonging to the 

other clusters [1, 2]. Clustering is a knowledge discovery process that has utility in 

almost any field. Some applications of clustering include search engine document 

classification [3], finding groups of customers with similar buying patterns [4], 

image clustering for computer forensics [5], and knowledge discovery in a general 

setting where feature or concept primitives themselves need to be identified [6]. 

 

 

Classification methods allow class identity to be ‘learned’ from a collection of 

training data, where the class identity is already known. A trained classfier, that 

has learned a rule for class discrimination, can be applied to similarly generated 

data for automated classification. Clustering methods allow class structure to be 

discovered from a collection of data when the class identity is not already known. 

 

 

Application of informatics and machine learning can start with a variety of 

challenging initial signal processing stages involving signal (data instance) 

acquisition and related signal feature extraction. Once a collection of numerical 

signal features is chosen we’ve arrived at a signal representation, or data instance 

representation, as a feature vector, where training data consist of such a signal to 

feature vector mapping with the additional datum of the signal class. Regardless 

of the preprocessing or observational method, once the signals or data instances 

are represented as (numerical) feature vectors, the data instance feature vector 

information is in the form needed for the classification and clustering descriptions 

that follow [1,2,6]. 

 

 

The definition of cluster is whatever can be clustered… and we don’t know what 

can be clustered until we’ve done it. This makes clustering even less well-defined 

than the legal notion of obscenity (according to the Supreme Court’s”I know it 

when I see it” criterion [7]). Fortunately, many clustering problems are almost 

trivial (you do know it when you ‘see’ it, as shown in Fig. 1), with a simple 

clustering process sufficing to reliably capture the clusters of interest. 

 

 

 

 

 



Clustering via support vector machine boosting with simulated annealing          55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 What is a Cluster? (A)  Homogenous, no structure; (B) Two obvious 

clusters; (C) Three obvious line-shaped clusters; (D) The line clusters joined as 

one cluster in a triangle; (E) The line clusters segmented as three line-clusters in a 

triangle (corners missing). (F) Shows two centered clusters, one central the other 

annular. 

 

The example of two clusters, clearly separated, in Fig. 1.B gives us the first idea 

on how to describe a cluster: the instances within a cluster should be notably 

nearer to each other than to instances of any other cluster. Two clusters as 

approximately parallel lines (Fig.1.C) are an example where this criterion will 

begin to fail. Focusing on two Gaussian (spherically symmetric) clusters, and data 

that can reasonably be modeled as such, we can describe separable clusters with 

mean  and standard deviation , as those for which 1-2>1+2 (see Fig. 2, 

related to the Davies-Bouldin clustering index [8]). This can be trivial for many 

nicely ‘peaked’ Gaussian clusters with >>. This statistical relation on 

Gaussians is a comparable relation to the classical Rayleigh criterion from star 

resolution studies (important in classification of the star as a binary or not) and in 

later laser optics studies (see Fig. 2). In the case of laser optics, the resolution of 

two sources can be pushed beyond the Rayleigh limit by means of information 

pertaining to the individual photons that arrive. Information at the individual data 

instance or feature vector level is automatically the case with the classification 

and clustering methods that follow, so again the rough resolution-limit criteria for 

clusters and their separability can often be surpassed by the actual results, e.g., 

solutions in practice will offer better resolution than the Rayleigh limit or 

maximal Gaussian overlap limit (see Fig. 2), especially with higher-dimensional 

feaure vectors and kernel functions.  

 

Distance measure is an important component of clustering algorithms. Either 

domain knowledge is used to choose an appropriate choice of distance formula, or 

a collection of distance measures must be tuned over. Euclidean distance is often 

used, for example, in a regularized form that gives rise to the Gaussian kernel, as 
will be described in the Background and in the Supplement. The choice of distance  
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measure, via choice of feature mapping kernel, can strongly affect the SVM 

convergence (if it even occurs), whether in classification applications or clustering 

applications. 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Classical Cluster Separation Limits: Left: Gaussian overlap limit is set at 

theircontacting at their full width at half maximum (where FWHM = 2.355 std. 

dev.s). No closer than touching at half-height is approximately the same as being 

more than two standard deviations between the means, which is related to the 

Davies-Bouldin clustering index [8]. Right: the overlap limit for resolution 

according to the Rayleigh Criterion, where the first local minima of the diffraction 

pattern must be nearer to the maximum than the maximum of the other diffraction 

pattern. 

 

Sometimes the training data in classification problems admits no fully separable 

solution. So, whether working on classification or clustering, a completely 

separable training set or cluster identity is not always a given. Assuming the 

notion of separability is satisfactorily worked out, however, there are still 

complications with notions of connectivity, as already indicated in Fig. 1.D where 

there is one cluster while the slightly smaller set in 1.E has three clusters. There 

are also complications due to clusters being embedded inside other clusters (Fig. 

1F). Many of these problems are eliminated in practice by effectively mapping to 

higher dimensions (as occurs in all the kernel methods described in the 

Background) where embedding issues are trivially eliminated, and connectivity 

(topology) information retained. 

 

2 Background 
 

There are two main types of clustering: partition-based and agglomerative 

(hierarchical). The partition-based methods try to directly split the data instances 

into clusters, where the clusters can be disjoint or overlapping (the ‘fuzzy’ 

methods), with some cluster fitness measure to determine when clustering is 

complete. Partitioning can also be done in a model-based fashion, such as with 

mixtures of Gaussian, where expectation-maximation can be used to optimize the 

clustering solution. Partitioning can also be done in a Lagrangian optimization 

context (the SVM-based methods [1, 2, 9]).  
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All of the classification and clustering methods discussed in this paper rely on a 

notion of distance (or information divergence) between the feature vectors. Simple 

clustering rules can be devised based on criteria for maximal distances allowed to 

be considered in the same cluster, and minimal distances required to be considered 

separate from elements of some other cluster. An example of disjoint partitioning 

method is K means clustering (since this is used in comparisons a brief description 

is given in Sec. 2.1). An example of an overlapping partitioning method is robust 

kernel fuzzy clustering (in Sec. 2.2 for the same reason). An example of model-

based partitioning is the aforementioned mixture of Gaussian methods (see Sec. 

2.3). The SVM-based clustering methods (partitioning-based using Lagrangian 

optimization and bootstrap convergence [1, 2, 6, 10], and single-class SVM 

clustering [9]) are described in detail in Sec. 2.4 and Sec. 3.1. 

 

The agglomerative or hierarchical methods produce a data-instance relationship 

tree in the process of doing their clustering. This is itself of interest in many cases, 

as in phylogentic tree construction in biology. But here more than in the other 

clustering methods is made all the more apparent the need for ‘cluster and verify’. 

Previously we saw how we didn’t know if a clustering solution existed until we 

found one. With the agglomerative approaches we will see that obtaining a 

clustering solution is not a problem, the problem is that the clustering is one of so 

many possibilities. The number of rooted binary trees with N leaves grows as a 

factorial, (2N-3)!/[2^(N-2)(N-3)!], so for N=3 have 1 tree, for N=5 have 105 trees, 

and for N=10 have 34,459,425 trees [11]. So the indicated tree solution, and 

subsequently the indicated clustering solution, is often for just one tree selected 

from millions or more. Again, a separate objective evaluation of cluster 

performance is needed before trusting the clustering solution indicated by any 

method. Even the strongest methods benefit from retry-handling for overall better 

clustering as will be seen in the Results that follow. 

 

Classification methods are split into two classes: discriminative and generative. 

Discriminative methods are partition rule based, while generative methods can be 

hierarchical tree associated via Bayesian Nets, including Bayesian Classification 

and Naïve Bayes as special cases. Examples of discriminative methods include the 

classic Perceptron, neural nets (NNs) and SVMs. Some classification methods are 

very simple and ‘local’, like k-Nearest-Neighbors (kNN), which classifies 

according to the k nearest data instances with label information (usually combined 

according to a majority vote). The online learning of NNs allow them to have a 

generative mode of classification as well. Further details on general classification 

methods are discussed elsewhere [12-14]. In what follows we focus on classifier 

specifications for SVM, along with related SVM-based clustering specifications. 

 

A classifier is typically a simple rule whereby a class determination can be made, 

such as a decision boundary. Fig. 3 shows labeled training data and a decision 

boundary with a margin region. Learning the decision rule, or a sufficiently good 

decision rule, especially if simple and elegant, is the implementation aspect of a  
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classifier, and can be difficult and time consuming. Even so, this is often 

manageable because at least there is data to ‘learn from’, e.g., supervised learning, 

with instances and their classifications (or ‘labels’). Learning for classification can 

be done very effectively using generalized Support Vector Machines (SVMs), as 

will be described in what follows. With clustering efforts, or unsupervised 

learning, on the other hand, we don’t have the label information during training. 

In what follows SVMs will also be shown to be incredibly effective at clustering 

when used with metaheuristics to recover label information in a bootstrap learning 

process. Implementation details will also be describe (Sec. 3.5) for distributed 

SVM training [15], and other speedup optimizations, allowing practical 

deployment, with the auto-tuning methods described here, of the generalized 

SVM classification and clustering methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Decision boundary (solid line); with margin (region between dotted lines). 

Instances are indicated as positive class (+) or negative class (), where 

misclassified data on wrong side of hyperplane (or penalized if in margin), is 

allowed by incurring a penalty in the optimization process. The misclassified or 

partly penalized margin-region instances are shown with double walled circles. 

 

In setting up an SVM Classifier one must have training data in the form of feature 

vectors, where all of the feature vectors are the same length. One typically needs 

to specify a choice of kernel and kernel parameter (and possibly other 

parameters), and therein lies the rub. The SVM may not converge with your 

specification. SVMs have a surprising amount of practical functionality, however, 

as will be shown. It is fairly easy to tune SVMs, in many cases, by simply using a 

default set of kernel’s and parameter ranges. There is more robust performance, 

however, with more sophisticated tuning. In the SVM applications that attempt to 

bootstrap a clustering solution, there appears to be more sensitivity to kernel and 

kernel parameter overall. More sophisticated tuning methods are, thus, strongly 

indicated for use in the more challenging SVM applications. 
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The SVM-based clustering method that will be described here makes use of the 

SVM-classifier convergence process. Single-convergence initialized clustering 

methods that use label-flipping after each SVM convergence [1], will be described 

in the Background Section. The single-convergence methods outperform the non-

SVM based methods on the test sets considered. In examining the clustering 

failures (albeit fewer than with parameterized methods), there appears to be room 

for improvement. Efforts to handle this with more sophisticated tuning have met 

with initial success, as will be related in the Results, where perturbed single-

convergence processes and multiple convergence processes are examined and 

scored according to a post-processing sum-of-squared-error (SSE) criterion, where 

a minimal SSE is sought, to reliably obtain very well-tuned strong SVM 

clustering performance (further details in Methods).  

 

Use of SVMs for clustering (unsupervised learning) is possible in a number of 

different ways. As with the multiclass SVM discriminator generalizations, the 

strong performance of the binary SVM enables SVM-External as well as SVM-

Internal approaches to clustering [1, 2 ,6]. Non-parametric SVM-based clustering 

methods may allow for much improved performance over parametric approaches, 

particularly since they can apparently be designed to inherit the strengths of their 

supervised SVM counterparts as will be shown in the data analyzed here. The 

‘external’ SVM clustering algorithm, described in detail in the Methods and 

Results, clusters data vectors with no a priori knowledge of each vector’s class.  

 

In application to channel current signal analysis, also briefly described in what 

follows (with brief details regarding experimental data acquisition provided in the 

Methods and Supplement), there is generally an abundance of data available (if 

not, the experimenter can usually just take more samples and make it so). In this 

situation it is appropriate to seek a method good at both classifying data and 

evaluating a confidence in the classifications given. In this way, data that is low 

confidence can simply be dropped. The structural risk minimization at the heart of 

the SVM method’s robustness also provides a strong confidence measure. For this 

reason, SVM’s are the classification method of choice for channel current 

analysis, as they have excellent performance at 0% data drop, and as weak data is 

allowed to be dropped, the SVM-based approaches become remarkably accurate 

[16] (see Fig.s in Supplement). 

 

The ability to do fast SVM training (with distributed chunking [15] and, possibly, 

GPU enhancements [17]) means that online SVM learning can be managed in a 

brute-force fashion, with re-tuning on kernels periodically, and directly re-training 

on a moving window of data. Note: the applications of the SVM methods not only 

include classification and clustering, but also impact feature extraction and 

identification in HMM-based methods, using an HMM/SVM vectorization/ 

classification boost [18], among other things. 
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The Background sub-sections that follow provide further details on K means 

clustering and its variants (e.g., disjoint-cluster based methods) in Sec. 2.1, and 

details on overlapping-cluster based methods, such as Fuzzy Clustering, in Sec. 

2.2. Sec. 2.3 briefly describes the popular model-based method of Mixtures of 

Gaussians and the single central cluster identification method that uses an SVM 

with a separating hypersphere (not hyperplane) boundary. Sec. 2.4 (and material 

placed in the Supplement Section) provides a review of the standard SVM 

formulations and the variations implemented here. In Sec. 2.4, background is 

provided on the multiclass SVM method and how it handles boundary support 

vectors and outliers, where the SV handling in the classification algorithm [6] 

suggests the direct label handling used in the SVM-based clustering process that is 

described in the Methods (a form of boosting since the training set is thereby 

altered). Specific details on SVM training via chunking (thereby extending the 

practical use of SVMs to Big Data settings) are provided in the Methods. The 

distributed SVM processing discussion is outside the scope of this paper, 

however, so is mainly described elsewhere [15]. Sec. 2.5 briefly describes the 

SVM tuning task (and how it is impacted by choice of kernel, algorithmic 

variants, chunking implementations, and choice of clustering implementation). 

Sec. 2.5 describes how search metaheuristics are used to perform the tuning task, 

with particular detail on the simulated annealing type of tuning optimization that 

is used in this paper. 

 

2.1 K means and Kernel K means 

K-means clustering is an example of disjoint or exclusive clustering. The 

procedure classifies a data set as a certain number of clusters, “K”, that is chosen a 

priori. The algorithmic steps: 

 

1. Randomly place K points into the data space. These points represent the initial 

cluster centroids. 

 

2. Assign each data vector to the cluster that has the “closest” centroid. Closeness 

is often defined using the Euclidean distance, although any metric could be used. 

Information diverences, such as the symmetrized relative entropy, can provide a 

measure of closeness as well. 

 

3. When all the data vectors have been assigned, recalculate the position of the K 

centroids. This calculation is done making each centroid the minimizer of the 

distance-based objective function of its associated cluster (which will be their 

mean). 

 

4. Repeat steps 2 and 3 until the centroids no longer move. This produces a 

separation of the data objects into clusters. 

 

There are several problems with the K-means algorithm. Since the number of 

clusters must be specified a priori, the algorithm by itself cannot solve problems  
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where the number of clusters is unknown (i.e., need further handling with repeated 

runs over a range of K values). Next, the algorithm does not always find the 

optimal clusters because the objective function used does not always use an 

appropriate distance metric for the problem or that data clusters aren’t sufficiently 

spherically symmetric. Finally, the location of the initial random cluster centroids 

can heavily influence the clustering solution, creating the possibility that the final 

cluster identification will be trapped in local minima of the objective function. 

Kernel K-means is a K-means clustering algorithm in which the data is mapped 

into a higher dimensional space. The mapping, and related kernel function, 

performs a non-linear transformation of the data by mapping it into a space where 

the separability of the data is increased and notably improved clustering solutions 

are often found [12-14].  

 

2.2 Fuzzy Clustering 

Robust Kernel Fuzzy clustering is an example of overlapping clustering, which 

allows each data vector to belong to more than one cluster. It is a kernel extension 

to Fuzzy C-Means clustering [19]. The Robust Kernel Fuzzy clustering method 

uses a fuzzy partition matrix in its objective function (from Fuzzy C-Means 

clustering). The fuzzy partition matrix allows data points to have membership 

values in each of the clusters [20]. In contrast to the Fuzzy C-Means method, the 

Robust Kernel Fuzzy clustering uses a kernel, which enables recognition of 

arbitrarily shaped clusters [21, 22]. The method gains robustness through the 

modification of the Euclidean distance formula in its objective function [9]. This 

clustering algorithm is similar to the K-means algorithm, in that it aims to 

minimize its objective function when determining a data vector’s cluster 

membership (giving rise to the same local minima weakness). It is different in that 

it includes a fuzzy partition matrix, which scores each data vector’s membership 

value with every cluster in the problem.  

The Robust Kernel Fuzzy clustering method aims to perform better than the 

Kernel KMeans algorithm, through providing more resistance to noisy data [20-

22]. Data can be dropped by setting a minimum membership score requirement. 

Then, using the fuzzy partition matrix, the data points that do not meet the 

minimum score requirement for any clusters are dropped.   

 

2.3 Mixtures of Gaussians and Single Class SVM Clustering 

 

Mixtures of Gaussians is an example of model-based clustering. In this approach, 

clusters are considered Gaussian distributions centered on their centroids. The 

Expectation/Maximization (EM) [6, 14] algorithm is used to find the Gaussian 

distributions, which model the data. In the clustering process used in this paper, 

Gaussian distributions also model clusters in both the preprocessing (Kernel K-

means) and External-Relabel SVM clustering phases (see Methods). 

 

The Single Class SVM clustering method [9] identifies a single central data 
instance cluster, separate from ‘other’ data instances, including outliers. It does this 
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using a single SVM run with central cluster boundary given by an enclosing 

hypersphere. A hypersphere is similar to a hyperplane in that it is a boundary in 

D-dimensional space which separates data instances. It is different than a 

hyperplane because, instead of separating the data vectors with different 

classifications, it surrounds a centralized ‘cluster’ of data instances inside a 

hypersphere for single cluster identification (with separation from outliers and 

non-central clusters). 

 

2.4 SVM Review 

In Fig. 3 a decision boundary is shown as the solid line for a 2-D domain, where 

separating hyperplane generalizations to planes in 3-D and hyperplanes in higher 

dimensional domains are also possible (within any orientable hyperplane 

manifold). The notion of a separating hyperplane is not unique to the SVM 

approach, but it is with use of further Structural Risk Minimization (SRM) 

constraints via maximizing a margin around the decision hyperplane, where there 

are constrained to be low numbers of training instances in the margin region (zero 

if fully separable). The margin is shown as the region around the decision 

boundary in Fig. 3 that is between the dotted lines on either side of the decision 

hypersurface. Generalizations to compact [9] or multiple decisions surfaces [1, 

23-25] are also possible. The standard binary SVM optimization problem is 

described in the Supplement, along with the Lagrangian formulation and a brief 

description of the kernel generalations that are used that are based on informatics 

and statistical physics stability criteria [1, 6, 16]. The multiclass SVM 

implementation is decribed next, with particular attention to BSV handling during 

the learning process as this will then be suggestive of how to proceed with the 

more direct label-flipping method described in the Methods for the SVM-based 

clustering used in this paper. 

In the multiclass SVMformulation used previously [23-25], there are ‘k’ classes 

and hence ‘k’ linear decision functions – a description of that approach is given 

here, but with decoupling modifications to enable a new type of multiclass 

discriminator [1,6] . The role of BSV handling in this formalism is very clear, and 

provides an automatic parameter selection (no tuning required) for BSV handling. 

For a given input ‘x’, the output vector corresponds to the output from each of 

these decision functions. The class of the largest element of the output vector 

gives the class of ‘x’. Each decision function is given by: fm(x) = wm.x + bm for all 

m = (1,2,…,k). If yi is the class of the input xi, then for each input data point, the 

misclassification error is defined as follows: maxm{fm(xi) + 1 – δi
m} - fyi(xi), where 

δi
m is 1 if m = yi and 0 if m ≠ yi. We add the slack variable ζi where ζi ≥ 0 for all i 

that is proportional to the misclassification error: maxm{fm(xi) + 1 – δi
m} - fyi(xi) = 

ζi, hence fyi(xi) - fm(xi) + δi
m ≥ 1 - ζi for all i, m. To minimize this classification 

error and maximize the distance between the hyper-planes (Structural Risk 

Minimization) we have the following formulation: 

 

Minimize: ∑iζi + β(1/2)∑mwm
Twm + (1/2)∑mbm

2, 

where β > 0 is defined as a regularization constant. 
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Constraint: wyi.xi + byi - wm.xi - bm - 1 + ζi + δi
m ≥ 0 for all i,m 

 

Note: the term (1/2) ∑mbm
2 is added for de-coupling, 1/β = C, and m = yi in the 

above constraint is consistent with ζi ≥ 0. The Lagrangian is: 

 

L(w,b,ζ) = ∑iζi + β(1/2)∑mwm
Twm + (1/2)∑mbm

2  - ∑i∑mαi
m(wyi.xi+byi-wm.xi-

bm-1+ζi+δi
m), 

 

where all αi
ms are positive Lagrange multipliers. Now taking partial derivatives of 

the Lagrangian and equating them to zero (Saddle Point solution): ∂L/∂ζi = 1 - 

∑mαi
m = 0. This implies that ∑mαi

m = 1 for all i. ∂L/∂bm = bm + ∑iαi
m - ∑iδi

m = 0 

for all m. Hence bm = ∑i(δi
m – αi

m). Similarly: ∂L/∂wm = βwm + ∑i αi
mxi - ∑i δi

mxi 

= 0 for all m. Hence wm = (1/ β)[∑i(δi
m - αi

m)xi] Substituting the above equations 

into the Lagrangian and after simplification reduces into the dual formalism: 

 

Maximize:  -½∑i,j∑m(δi
m - αi

m)( δj
m – αj

m)(Kij + β) - β∑i,mδi
mαi

m  

Constraint:  0 ≤ αi
m, ∑mαi

m = 1, i = 1…l; m = 1…k, 

 

where Kij = xi.xj is the Kernel generalization [1]. 

 

SVM Speedup via differentiating BSVs and SVs 

If we track the status of support vectors (SVs) according to whether they are 

boundary (penalty) support vectors (BSVs) or not, and select accordingly, we can 

get speedup (even in the binary SVM, where choice of C=100 usually good, but 

C10 typically usually okay too). For the multiclass-internal SVM, on the other 

hand, the speedup with choice of C can be more significant, where C100 

typically is needed [1].  

In some implementations [23-25], the algorithm does not differentiate between SV 

and BSV, so a lot of time is spent in trying to adjust the weights of the BSVs, i.e., 

the weak data. In the alternate algorithms used here [1], as soon as we identify a 

BSV its weight is no longer adjusted. Hence faster convergence is achieved 

without sacrificing accuracy. 

 

2.5 Kernel tuning via directed search and via search metaheuristics 

It is possible to initiate SVM training with model parameters, such as the kernel or 

kernel parameter, that are so far out of the operational regime that no convergence 

is obtained in training. So training must be repeated, minimally, to at least obtain 

convergence, and is typically explored further with tuning on SVM parameters, to 

obtain convergence that provides high-confidence class or cluster separation. In 

many situations the SVM tuning can simply be done manually, or partly 

automatically, with simple range testing, where only small, separated, subsets of 

the training data are used in the initial tuning tests, before performing more 

targetedSVM kernel tuning evaluations on the full dataset. Sometimes more 

elaborate tuning procedures are necessary. In prior kernel tuning efforts (not 
shown), with the same datasets used here, massive brute-force search was matched by 
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genetic algorithm (GA) tuning that ran almost instantly in comparison. 

Tuning is a form of optimization, and excellent metaheuristics are known for 

identifying optimal solutions when a scoring function (a fitness function) can be 

identified and such is provided by the SVM via sensitivity and specificity scores 

on training data. Metaheuristic optimizations that have been attempted include 

genetic algorithms, simulated annealing, and steepest ascent hill-climbing, among 

others. Applications of the simulated annealing methods are shown here for the 

results involving SVM-external clustering. 

Our ability to assess a score with SVMs, and thereby assign a fitness, allows for a 

collection of metaheuristics that basically reduce to ‘look around and take the best 

way forward’ via a series of tweaks. This isn’t possible for some problems; 

however, because the ‘looking around’ part isn’t that informative, e.g., the fitness 

landscape has sections that are at a fixed level (with noise variations about that 

level, for example). This is the typical global-search problem that is addessed via 

random restart, but if the fitness landscape or configuration space is too large 

random restart won’t offer a solution in a reasonable amount of time (even if it 

can). This is where more clever metaheuristics must be drawn upon to extend to a 

more global optimization algorithm. 

One of the weaknesses of the brute force random restart approach mentioned is 

that the parameter ‘tweak’ involved is with a bounded perturbative change, which 

may already exclude the possibility of reaching the solution sought (given the 

computational resources and a reasonable amount of time). So one generalization 

is to allow for tweaks that are unbounded, but in some perturbatively stable way, 

such as via the probability of such a perturbation given via a Boltzmann factor, 

and in doing this we arrive at the Simulated Annealing approach shown in Fig. 4 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The Simulated Annealing SearchMetaheuristic. (1) Perform ‘tweak’, or 

small perturbation, on the current configuration. (2) The tweak configuration is 

taken with probability = (1/N)exp[( F(tweak) – F(best) )/T], where N is a 

normalization factor, and T is a ‘temperature’, e.g., a Boltzmann probability factor 

for occasionally selecting a lower scoring, possibly non-local, configuration (the 

case shown for the first transition in the configuration shown to a lower Fitness 

value). (3) Repeat (1)-(2) until some exit condition is met (no improvements for 

MAX tries, for example). 
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3 Methods 
 

The setup for the nanopore experiment, data acquisition, and signal acquisition, is 

the same as that used in previous nanopore detector analyses [6, 16], and is briefly 

described in Supplemental Sec. 2. The HMM-based feature extraction methods [6, 

16] are described in Sec. S.3, and the Data-rejection heuristics that allow for 

highly accurate signal calling [6, 16] are described in Sec. S.4. The Methods 

specifically relevant to the clustering results are given next, including the 

Bootstrap SVM clustering method in Sec. 3.1, and the  

 

3.1 Bootstrap SVM-clustering 

 

The ‘External’ SVM Clustering algorithm works by first running a Binary SVM 

against a data set, with each vector in the set randomly labeled (usually half 

positives and half negatives), until the SVM converges.  Choice of an appropriate 

kernel and an acceptable sigma value will affect convergence. After the initial 

convergence is achieved, the (sensitivity + specificity) will be low.  The algorithm 

now improves this result by iteratively relabeling the worst misclassified vectors, 

which have confidence factor values beyond some threshold, followed by 

rerunning the SVM on the newly relabeled data set.  This continues until no more 

progress can be made.  Progress is determined by an increasing value of 

(sensitivity + specificity).  With sub-cluster identification upon iterating the 

overall algorithm on the positive and negative clusters identified (until the clusters 

are no longer separable into sub-clusters), this method provides a way to cluster 

data sets without prior knowledge of the data’s clustering characteristics, or the 

number of clusters (by iteration on clusters in the binary SVM or direct with 

merge of multiclass SVM with label flipping algorithms). See Results for a 

performance comparaison with other clustering methods. The algorithmic variants 

include modifications to tolerate a suitably low number of KKT violators [1, 6].  

 

 

In practice, the initialization step, that obtains the first SVM convergence, 

typically takes longer than all subsequent partial re-labeling and SVM rerunning 

steps. Although convergence is always achieved with the single-convergence 

SVM-clustering method in the label-flippings, after the initial convergence, 

convergence to a global optimum is not guaranteed. Fig. 5 shows the Purity and 

Entropy (with the RBF kernel) as a function of Number of Iterations, while Fig. 5 

(right) shows the SSE as a function of Number of Iterations [2, 10]. The stopping 

criteria used for the algorithm is based on the unsupervised (external) SSE 

measure. Comparison to fuzzy c-means and kernel k-means is shown on the same 

dataset (the solid blue and black lines in Fig. 5 left and center).  
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Fig. 5. SVM-external clustering results. (a) and (b) show the boost in Purity and 

Entropy, respectively, as a function of Number of Iterations of the SVM clustering 

algorithm. (c) shows that SSE, as an unsupervised measure, provides a good 

indicator in that improvements in SSE correlate strongly with improvements in 

purity and entropy. The blue and black lines are the result of running fuzzy c-

mean and kernel k-mean (respectively) on the same dataset. In clustering 

experiments in [2,10], a data set consisting of 8GC and 9GC DNA hairpin data is 

examined (part of the data sets used in [1,16]). Purity = 

(TP+TN)/(TP+TN+FP+FN). Entropy = TN/(TN+FN). 

 

Purity = (TP+TN)/(TP+TN+FP+FN) in Fig. 5, which is also known as the Rand 

Measure [26]. Purity is more typically TP/(TP+FP) (TP are the number of true 

positive, FP are the number of false positives; this definition is the same as 

specificity in gene-finding, or positive predictive value in electrical engineering). 

Entropy = TN/(TN+FN) (the specificity in gene-finding but on negatives). 

The pathology of the single-convergence SVM initialization, to get stuck in local 

minima, motivates the introduction of perturbations into the methods, as shown in 

Fig.s 6 & 7 for applications involving the Re-labeler Algorithm with 

perturbations, and with the hybrid k-means/SVM-clustering method with 

perturbations (details in Sec. 3.3). It is found that the result of the re-labeler 

algorithm can be significantly improved by randomly perturbing a weak clustering 

solution and repeating the SVM-external label-swapping iterations as depicted in 

Fig. 6.  To explore this further, a hybrid SVM-external approach to the above 

problem is introduced to replace the initial random labeling step with k-means 

clustering (Fig. 7). The initial SVM-external clustering must then be slightly and 

randomly perturbed to properly initialize the re-labeling step; otherwise the SVM 

clustering tends to return to the original k-means clustering solution. A 

complication is the unknown amount of perturbation of the k-means solution that 

is needed to initialize the SVM-clustering -- it is generally found that a weak 

clustering method does best for the initialization (or one weakened by a sufficient 

amount of perturbation) [6, 27].  
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Fig. 6. The Re-labeler Algorithm with Perturbation. The Left plot shows the 

SSE, the Right the Purity, as the learning process proceeds (vs. learning 

iteration).The spikes are drops followed by recovery in the validity of the clusters 

as a result of random perturbation. Note that after 4 runs of perturbation best 

solution is typically recovered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Left and Right represent the SSE and Purity evaluation of hybrid Re-

labeler with Perturbation on the same dataset. Data is initially clustered using k-

means to initialize the Re-labeler algorithm. The first segment of the plot (right 

before the spike at 16) is the result of Re-labeler after 10% perturbation, while the 

second segment is the result after 30% perturbation. 

 

3.2 Clustering using K-means variants 

In work mainly presented elsewhere [27] the Kernel K-means step was used in 

hybrid clustering efforts to first roughly identify each data vector’s cluster before 

the data vectors were run through an SVM clustering method. A bootstrap Kernel 

K-means, with intial retraining on data with weak cluster scores dropped (distant 

from centroid), was also attempted. Minimal details are given on these methods, 

however, as they never matched the purely SVM-based clustering performance, 

seemingly inheriting a local minima performance (and limitations) of the K-means 

approaches. 
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The data is first mapped into kernel space. The absdiff kernel is used [1, 6, 16], 

and the K-Means algorithm is performed on the data. The K-Means 

implementation used in the results that follow use the constraint that every k-

means clustering has two clusters (with one cluster when the data cannot be 

separated into two clusters). Further cluster identification is obtained through 

iteratively clustering the results of prior clustering runs. The other difference 

involves the definition of the initial clusters as defined in the first step of the 

algorithm. Instead of randomly picking a cluster centroid in the data space 

explicitly, the initial centroids are defined by the initial random labeling of the 

data vectors. Each vector is randomly labeled with a 50% chance of being positive 

and a 50% chance of being negative, and the two centroids are defined as the 

barycenter of their respective data vectors. This form of initialization is the same 

as that used in the SVM clustering methods, allowing a more direct comparison of 

the methods. 

 

3.3 Hybrid K-means/SVM-drop Clustering 

The External-Drop SVM clustering method improves the accuracy on a data set 

that has already been split into two clusters. We use this method after the Kernel 

K-Means algorithm has separated a set of data into clusters. The External-Drop 

SVM then acts as a filter, dropping all data that isn’t strongly identified with 

either cluster, and thus improving the cluster identifications. The SVM can then 

be iteratively rerun, defining a more accurate hyperplane for clustering the current 

data, and for cluster classification of new similar data.  

 

Results on the Hybrid K-means/SVM-drop clustering methods are not the focus of 

this paper, so are described elsewhere [27]. 

 

3.4 The SVR Method 

Support Vector Reduction (SVR) is a process that is run right after the SVM 

learning step is complete [6, 15]. Instead of going on to testing data against the 

training results to get accuracy, we further reduce the support vector set. One way 

to do this is to coerce some alphas to zero which means they would now fall into 

the polarization set. Converting the smaller alphas to zeros makes the most sense 

since a larger alpha indicates that the data point is stronger towards its grouping 

(polarized sign). This is done using a user-defined alpha cut off value. All alpha 

values that are under the cut off are pushed to zero. It is not entirely trivial since 

certain mathematical constraints must be met. The constraint that must be met for 

this method is the linear equality constraint: 

0
1




N

i

iiy  

Therefore, the alpha values not meeting the cutoff cannot just be forced to zero 

unless the value is retained somewhere else in the set. This is done by first sorting 

the alpha values of the support vectors. Then for each alpha that does not meet the 

cut off value, the small left over value is added to the largest alpha of the same  
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polarity (further biases towards SVR). Since the list is sorted it can loop through 

and evenly distribute the left over values through the larger alphas starting with 

the largest. The reduction process can cut the number of support vectors 

significantly, while not significantly diminishing the accuracy. Other observations 

have shown that the easier the dataset to classify, the larger the reduction via this 

process. 

 

3.5 Distributed SVM Learning (Chunking Protocols) 

Distributed learning on SVMs can be accomplished by breaking the training set 

into smaller chunks, running separate SVM processes on each of those chunks, 

and pooling the information that is ‘learned’, e.g., the support vectors identified as 

well as nearby (in terms of confidence value) training data vectors and outliers. 

The reduced pool of data is randomly repartitioned into another round of chunk 

processing. This is a general approach can be repeated until only a single chunk 

remains, whose solution is then the overall solution sought or close to it (other 

minor refinements could be sought).  

 

The training set chunking used in distributed learning is a need that arises even if 

not interested in a distributed processing speedup since there is a fundamental 

memory limit encountered with larger SVM training sets (where we need to use a 

sequential chunk-handling process if on a single machine). For this circumstance, 

for sequential processing of chunks, we take the SV’s identified from the prior 

round of chunk training and merge it with the next chunk to be trained, and iterate. 

In this way we never have a pure SV training set [6, 15]. If multiple CPU’s are 

available, however, we can distribute the processing on chunks amongst the CPUs 

or machines, and pool their SV’s (i.e., pass their SV’s to the training pool for the 

next round). The resulting ‘pure SV’ training sets, however, are often found to not 

converge, thus requiring more care to avoid convergence pathologies [15]. 

 

Chunking the SVM learning process becomes a necessity when training (and 

classifying) large datasets.  The number and size of the chunks depends on the 

size of the dataset to be trained and the capacity of the computational resource 

used. When training on an individual chunk is complete, the resulting trained 

feature vectors split into distinct sets (support vectors, polarization set, penalty set, 

and KKT violator).  If the SVM learning is done well, the largest set consists of 

the support and polarization feature vectors.  The polarization set consists of the 

feature vectors that have been properly classified. These feature vectors pass the 

KKT relations and have an alpha coefficient equal to zero. The penalty set 

consists of the feature vectors which pass the KKT relations, and have alpha 

coefficients equal to C (the max value). The KKT violators make up another set 

consisting of feature vectors that violate one of the KKT relations. (The KKT 

violator set is usually zero at the end of the training process, unless some minimal 

number of violators, the aforementioned ‘tolerance’ parameter, is allowed upon 
learning completion.) These sets give the user different categories of feature vectors 
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that they can pass to the next chunk(s).  To keep the SVM converging to a better 

solution on the next chunk run, however, support vectors (and sometimes some of 

the polarization set) are passed to the next chunk(s).  The optimal pass-

percentages of each feature vector set depend on which kernel is used and the 

dataset, thus compound what is already a complex SVM tuning optimization 

problem. 

 

There are different methods of extracting a specified percentage of the feature 

vectors from the different sets.  The specified percentages of feature vectors are 

randomly chosen from each of the sets except for one.  The support feature 

vectors extraction method differs since it extracts the support vectors that are 

nearest to the decision hyperplane.  We choose feature vectors that are closer to 

the hyperplane (i.e. with smallest magnitude confidence values) in order to pass a 

tighter hyperplane on to the next chunk(s), and manage accumulation of outliers. 

 

The chunk learning topology used in our distributed approach is slightly different 

from the Binary Tree splitting described in the Cascade SVM [28].  As discussed 

above, the large dataset is broken into smaller chunks and the SVM is run on each 

separate chunk.  Instead of bringing the results of paired chunks together, all 

chunk results are brought together and re-chunked as occurred in the first layer.  

This process occurs until the final chunk is calculated which gives the trained 

result. At each training stage, the user has the option to tune the percentage of 

support vectors and non support vectors to pass to the next set of chunks.  

Additionally, passed support vectors can be chosen to satisfy some max value 

(approx. C/10 in cases examined) to produce a tighter hyperplane to better 

distinguish the polarization sets and eliminate outliers. We also incorporate SVR 

post-processing in some of the dataruns, where SVR runs as part of the core SVM 

learning task on each chunk. It uses a user-defined alpha cutoff value for further 

tuning and can significantly reduce the number of support vectors passed to the 

next set of chunks (with bias towards elimination of outliers and the large non-

boundary alphas). These additional steps reduce the size of the chunks, thus 

making the algorithm run faster without loss of accuracy. The SVR post-

processing also appears to offer similar immunity to the convergence pathology 

(noted in cases involving 100% SV passing on distributed learning topologies). 

 

There are a variety of ways to avoid the pure SV training-set pathology [6, 15, 

29]. Since we are interested in training set reduction overall, we consider the 

possibility of simply reducing the SV set. This appears to work in preliminary 

tests on well-studied datasets of interest (see Table 1), where the SV’s nearest to 

the decision hyperplane (most supporting the hyperplane) are retained. For the 

channel current data examined in, with 150-component feature vectors, we find 

that 30% SV passing is optimal on distributed learning topologies. The low SV-

passing percentage that is found to work in distributed chunking might 

fundamentally be an issue of outlier control during distributed learning. Further 

reduction of SV passed is possible with dropping SV’s with confidence values at  
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the other extreme, near zero (i.e., those nearest and most strongly supporting the 

hyperplane). This entails a additional Support Vector reduction (SVR) process 

that is run right after the SVM learning step is complete, where we further reduce 

the support vector set according to some confidence cut-off (actually imposed via 

cut-off on associated Lagrange multiplier in the SVM/SMO implementation). By 

reducing the number of support vectors propagated into the next round, we further 

accelerate the chunked processing. In this way, a strongly performing distributed 

chunk-training process is possible, with speedup by ~10 for the multicore PC used 

in the example shown in the table shown in Table 1 (with no significant loss in 

accuracy). It appears possible to automate the tuning & selection procedures. To 

achieve this, it is necessary to examine the stability of the algorithmic parameters 

such as the pass percentages on the different types of learned data (e.g., see Table 

1 for pass percentages indicated). Further results on distributed SVM learning is 

given in [6, 15, 29]. 

 

SVM Method Sensitivity Specificity (SN+SP)/2 Time (ms) 

SMO (non-chunked) 0.87 0.84 0.86 47708 

Sequential Chunking 0.84 0.86 0.85 27515 

Multi-threaded Chunking 0.88 0.78 0.83 7855 

SMO (non-chunked) with SV Reduction 0.91 0.81 0.86 43662 

Sequential Chunking with SV Reduction 0.90 0.82 0.86 18479 

Multi-threaded Chunking with SV Reduction 0.85 0.83 0.84 5232 

Multi-threaded Dist. Chunking with SVR 0.85 0.83 0.84 5973 

 

Table 1. Performance comparison table for the different SVM methods.  The 

distributed chunking used three identical networked machines. Dataset = 

9GC9CG_9AT9TA (1600 feature vectors, 400 each from class 

{9GC,9CG,9AT,9TA}, where {9GC,9CG} are labeled positives, and {9AT,9TA} 

are labeled as negatives). SVM Parameters: Absdiff kernel (with sigma=.5, C = 

10, Epsilon = .001, Tolerance = .001). For chunking methods: Pass 90% of 

support vectors, Starting chunk size = 400, maxChunks = 2. For SVR methods: 

Alpha cut off value = 0.15. 

 

To further enhance processing speed, one can also boost thread-processing speed 

on a given computer via use of GPU processing. This has already been 

undertaken,where distributed chunks of SVM training data were processed using a 

CPU/GPU that, at marginal added cost (a graphics card), provided as much as a 

32-fold speedup on the channel current blockade classification [17]. Similar GPU 

speed enhancements to the other machine learning algorithms are possible as well. 

 

3.6 Bootstrap Tuning Methods 

Tuning is needed to optimize the choice of kernel & kernel-parameter used by the 

SVM. This is often handled simply by ranging over a collection of roughly 10  
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kernel types and each with roughly 10 attempted kernel parameter settings 

(assuming each kernel is single-parameter kernel), and to do this only on smaller 

test sets in the training data, where the time complexity of the SVM training is 

directly tied to the training-kernel computation, which is quadratic in the number 

of training instances. Although caching can modify the assumptions on time-

complexity, there is generally an approximately quadratic time-complexity in the 

size of the training instances regardless. Chunking must be used to break past this, 

possibly with use of GPU capabilities (where there is still the need to do 

chunking).   

 

Once the small test set is done on the initial kernel screening indicated above, a 

sub-set of kernel will emerge as best, and these are considered again with larger 

training sets, eventually allowing selection of a good choice of kernel and kernel 

parameter that is trained and tested on the full dataset. The more directed tuning 

paradigms typically involve simulated annealing in this kernel optimization 

setting (and in the clustering process described in the Results to follow). 

Algorithmic and implementation parameters can also be considered in the tuning, 

which means we now have a collage of different parameter types in a coupled 

optimization task. For this type of generalization, genetic algorithms have been 

applied with success (but not shown in what follows). These more sophisticated 

tuning methods may not always be necessary in the SVM classification 

applications, however, but do allow for successful classifications in some 

situations where simple methods do not. In the SVM-based clustering methods to 

be described in what follows, these tuning methods generally play an even more 

important role.  

 

4 Results 
 

4.1 Clustering Method Comparison 

The single-convergence initialized SVM-based clustering algorithm [1, 2, 6] 

clusters data with no a priori knowledge of input classes. The algorithm initializes 

by first running a binary SVM classifier against a data set with each vector in the 

set randomly labeled, this is repeated until an initial convergence occurs. The 

convergence may have to be attempted several times (with different randomized 

initializations) before a SVM solution is obtained -- but convergence is usually 

seen on the first or second try. Once an SVM solution is obtained, however, the 

strengths of the SVM classifier can start to be levereged to full advantage. SVMs 

are ideal in this effort as they not only classify, but offer a confidence parameter 

with their classification, and can do so in a generalized kernel space. Thus, once a 

convergent solution is obtained, label-flipping can be done for high confidence 

mislabels (where the confidence score has large magnitude but is not in agreement 

with the current label sign). At each label-flipping iteration we can potentially 

have unequal numbers of positives and negatives changing their labels, thus, 

asymmetrically sized clusters can be realized from a half-positive/half-negative 

initialization. This iterative process continues until there is no longer a high-confi- 
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dence mislabel by the SVM, or until an external cluster validation, such as the 

sum-of-squared error (SSE) on each cluster, remains relatively unchanged. There 

are numerous tuning parameters in the SVM-classification process itself, as well 

as in the SVM-clustering halting specification, and even tuning choices in the 

SVM chunk-training (that may be necessary for larger data sets). As shown in Fig. 

8, SVM-based clustering [1] often outperforms other methods. Further details for 

the implemenations for each of the methods is given in [1, 6, 30]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Clustering performance comparisons: SVM-external clustering compared 

with explicit objective function clustering methods. Nanopore detector blockade 

signal clustering resolution from a study of blockades due to individual molecular 

capture-events with 9AT and 9CG DNA hairpin molecules [6, 30]. The SVM-

external clustering method consistently out-performs the other methods. The 

optimal drop percentage on weakly classified data differed for the different 

methods for the scores shown: Our SVM relabel clustering with drop: 14.8%; 

Kernel K-means with drop: 19.8%; Robust fuzzy with drop: 0% (no benefit); 

Vapnik’s Single-class SVM (internal) clustering: 36.1%. 

 

4.2 Stabilized, single-convergence intitialized, SVM-External Clustering 

The External (‘bootstrap’) SVM Clustering data set is chosen to initialize with an 

equal number of positives and negatives. In the dataset studeud there are 200 8GC 

blockade signals and 200 9GC blockade signals (see [16] for details about these 

molecules). Each feature vector is 150 dimensional and normalized to satisfy the 

L1 (norm = 1) constraint. Features from the 8 and 9 base-pair blockade signals 

were extracted using Hidden Markov Models (for details, see [16]). Although 

convergence was easily achieved with the External SVM Clustering algorithm 

(see the Methods), convergence to a global optimum was not guaranteed.  

 

In [10, 27], we see that a small value of Kernel-SSE (herein referred to as SSE) is 

shown to provide us with a reliable cluster validation measure. The External SVM 

Clustering (SVM-Relabeler) algorithm does not use an objective function, and the 

hope is that by running the algorithm in its purest form, the resulting clusters are 

reliable solutions. However, running this algorithm in this basic fashion does not 

consistently provide us with a satisfying clustering solution. In fact, the solution  
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space can be divided into three sets: successful, local-optimum, and unsuccessful. 

Unsuccessful solutions and local optima solutions are undesirable and the 

objective is to find a method to eliminate their selection by simply re-clustering 

for objectively improved clustering (via SSE scoring, for example). Since, the 

solutions in the unsuccessful set are easily identified by an SSE comparable to that 

of a randomly labeled data set, they can be easily eliminated by post-processing. 

In a control experiment we have randomly labeled the dataset 5000 times and 

calculated the SSE distribution for the experiment. The resulting distribution has a 

good fit to Johnson’s SB distribution and is illustrated in the histogram of Fig. 9. 

Using a fitted distribution one can calculate the p-value of a given SSE. For a SSE 

threshold of 170.5 (accidentally very unlikely) we can directly eliminate the 

unsuccessful set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Nanopore feature vector data (in standard 150 component, L1-norm, 

format) is randomly labeled 5000 times followed by evaluation of SSE values and 

production of a histogram of those values as shown. The resulting distribution has 

a good fit to Johnson’s SB distribution with gamma= −5.5405, delta = 1.8197, 

lambda = 2.7483, epsilon = 168.46. 

 

To substantially reduce the local optimum solutions, however, SSE thresholding 

does not scale well. One solution is to use a simple hill climbing algorithm which 

is to run the algorithm for a sufficiently long number of iterations to find the 

solution with the lowest SSE value. To do this, the clustering algorithm is run 

repeatedly and randomly initialized every time. A solution is accepted as the best 

solution if it has a lower SSE than the previously recorded value. This can be a 

very slow learning process, and suggest and alternative tuning method from 

statistical learning – simulated annealing. 

 

It is observed that random perturbation by flipping each label at some probability, 

ppert, is often sufficient to switch to another subspace where a better solution can 

be found. (Note that ppert = 0.50 has the effect of random reinitialization and ppert = 

1 flips all of the labels.) The hope is that perturbation with ppert  0.50 results in a 
faster convergence. Reliability can then be achieved by searching through the solution 
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space. The procedure described next uses a modified version of Simulated 

Annealing to achieve this desired reliability. 

 

As shown in Fig. 10 left, top panel, constant perturbation with ppert = 0.10 results 

in a local-optimum solution that could be otherwise avoided by using a 

perturbation function depending on the number of iterations of unchanged SSE 

(Fig. 10 right, top panel). These results were produced using an exponential 

cooling function, Tk+1 = kTk, with  = 0.96 and T0 = 10. The initial temperature, 

T0 should be large enough to be comparable with the change of SSE, SSE, and 

therefore increase the randomness by making the Boltzman factor e  SSE / T  e0, 

while  (< 1) should be large enough to speed up the cooling effect. See [6, 10, 

27] for further details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. (left) Simulated annealing with constant perturbation, (right) Simulated 

annealing with variable perturbation. As shown in left, top panel, simulated 

annealing with a 10% initial label-flipping results in a local-optimum solution. In 

the right panel this is avoided by boosting the perturbation function depending on 

the number of iterations of unchanged SSE (right, top panel). These results were 

produced using an exponential cooling function, Tk+1 = kTk, with  = 0.96 and T0 

= 10. Using Absdiff kernel with gamma = 1.8. 

 

In the effort shown in Fig. 10 it was found that random perturbation and 

hybridized methods (with more traditional clustering methods) could help 

stabilize the clustering method, but often at significant cost to its performance 

edge over other clustering methods (apparently due to getting stuck in local 

minima traps to which the other parametric clustering methods are susceptible).  
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The ‘pure’ SVM-external clustering method appears to offer very strong solutions 

about half the time – which allows for optimization simply by repeated clustering 

attempts and looking for the most tightly clustered (smallest SSE) solution. 

Details on the more informed (multiple-conversion initialized) version of the 

process given next. 

 

4.2 Stabilized, multiple-convergence, SVM-External Clustering 

In Fig. 11 the SSE scoring is tracked with learning iteration on three 

representative SVM clustering processes for the successful, unsuccessful, and 

local minima solutions, where we use the same datasetas in Sec. 4.1, and same 

kernel settings (Absdiff kernel with gamma = 1.8), and computing SSE, but now 

iterating with multiple convergences instead of perturbations. See [6, 10, 27] for 

further details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Multiple-convergence, SVM-External Clustering. Three multiple 

clustering convergences (different trials) of SVM-Relabeler algorithm 

demonstrating the range of the possible solution space as measured by SSE and 

purity (a ‘successful’, an unsuccessful, and a partly-successful trial). Choosing the 

good SSE external measure (Left Panel) typically provides a generalized 

clustering that has high purity (Right Panel). The improvments in Purity and SSE 

with learning iterations are shown. Once Learning slows (SSE unimproved), a 

restart for a new convergence clustering is done. Usually in the first two or three 

attempts a strongly performing converegence is seen as with the example shown 

here. 

 

5 Discussion 
 

Single-convergence SVM-clustering, that uses simulated annealing to tune over 
the clustering relabel rate, is shown to be very effective at obtaining good clustering  
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solutions. This is shown to be enhanced further with introduction of perturbations. 

Multiple-convergence SVM-clustering is also shown to be very effective, and 

provides an overall non-parametric means to clustering. In preliminary work [1,6], 

it is found that the relabel-based SVM-based clustering method also offers 

prospects for inheriting the very strong performance of standard SVMs from the 

supervised classification setting. This offers a remarkable prospect for knowledge 

discovery via recognition of patterns and clusters without the limitations imposed 

by requiring a parametric model (e.g., no cooling rate for the simulated annealing, 

etc.). Resolution of the clusters can be at an accuracy comparable to the 

supervised setting (i.e., where cluster identities are already specified).  

The completely non-parametric clustering approach is to first obtain multiple 

SVM convergences from separate initializations. An objective SSE evaluation can 

be done on the solutions, and the best could simply be taken, as shown in the 

Results. This clustering algorithm already provides very good results but could do 

even better with further use of the multiple convergences and the confidence 

information they obtain (to then be used in repeated multiple convergences). This 

is similar to steepest ascent search where numerous configurations are generated 

and the one with the best fitness is chosen at the end of each iteration. 

 

6 Conclusion 
 

SVMs are fast, easily trained, discriminators, for which strong discrimination is 

possible without over-fitting complications. SVMs are firmly grounded as a 

variational-calculus based optimization method that is constrained to have 

structural risk minimization (SRM), unlike neural net classifiers, such that an 

SVM offers noise tolerant solutions for pattern recognition in a variety of settings. 

An SVM determines a hyperplane that optimally separates one class from another, 

while the structural risk minimization (SRM) criterion manifests as the hyperplane 

having a thickness, or “margin,” that is made as large as possible in the process of 

seeking a separating hyperplane. The SVM approach thereby encapsulates model 

fitting and discriminatory information in the choice of kernel in the SVM, and a 

number of novel kernels are used. SVMs are good at both classifying data and 

evaluating a confidence in the classifications given, which leaves an opening for 

use of metaheuristics to bootstrap into a clustering capability, as explored in a 

number of algorithmic variations in this paper. SVM use in clustering appears to 

offer a very robust clustering platform when enhanced with simulated annealing 

tuning on clustering parameters. 
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Supplement 

 

S.1 The Binary SVM  
 

S.1.1 SVM Lagrangian formulation [6] 

The SVM approach encapsulates a key Structured Risk Minimization (SRM) 

criterion when it seeks to obtain the separable solution for which margin thickness 

for the separating hyperplane, “d”, is the greatest. This is the solution for which 

the separating (decision) hyperplane is the furthest distance possible from the 

positive & negative support vectors (the nearest data points if separable), which 

permits structural risk minimization. 

 

In order to formulate the SVM Lagrangian, we first need multipliers for the 

collection of separability constraints on solutions: yi(xb)10 i. For SRM, 

we then need to maximize d=2/||||, or minimize || ||2, which is chosen due to 

simplifications in the formalism that follows (i.e., if we max 2/|||by min on |||, it 

could just as well be done with min on || ||2). The Lagrangian formulation then 

should have one multiplier constraint for each training instance, where 

yi(xb)10, and minimize on || ||2 overall, so: 

L( 


,,b )=
2||||

2

1
 - ]1)([  bxy ii

i
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We seek to minimize L on { b,


} and to extremize (maximize in this case) L on {




}, i.e., we seek a minimization -- maximization saddle-point optimization for 

the solution.  

 

The Wolfe Dual Calculations, with or without slack variable, have the form: 
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where we want to find the  ’s that maximize L( ). Similarly, for the L Dual: 
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So, the duals are the same, with or without slack variable, aside from the C i  ( 

max C)( ) constraint. 

 

S.1.2 SVM Kernels and Algorithm Variants 

Notice how in the Dual reduction the dependence on the training data only 

appears in the inner product term. We can generalize from the simple inner 

product term in a number of ways, and in doing so arrive at the SVM Kernel 

generalization. The choice of kernel eliminates the need for refining a choice on 

feature vector mappings beyond a certain point, such as requiring some consistent 

normalization on feature vectors, for example, which is made consistent with choice 
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of kernel (e.g., one could take a discrete probability distribution as feature vector, 

with its L1-norm, and its pairing with the entropic kernel). The SVM kernels used 

in the analysis are referred to as ’Occam’s Razor’, or ‘Stability’ kernels [1,6]. All 

of the stability kernels examined perform strongly on channel current data, often 

outperforming the Gaussian Kernel. The kernels fall into two classes: regularized 

distance (squared) kernels; and regularized information divergence kernels. The 

first set of kernels strongly models data with classic, geometric, attributes or 

interpretation. The second set of kernels is constrained to operate on (R+)N, the 

feature space of positive, non-zero, real-valued feature vector components. The 

space of the latter kernels is often also restricted to feature vectors obeying an L1-

norm = 1 constraint, i.e., the space of discrete probability vectors. In all of the 

data-runs with the probability feature vector channel current data considered in 

[1,6], the two best-performing kernels are the entropic and the indicator 

‘Adbsdiff’ (or ‘Variational’) kernels, with the Gaussian trailing in performance in 

general (but still outperforming other methods such as polynomial and dot 

product). The L1-norm channel current feature vector components appear to 

encapsulate a key constraint of a discrete probability vector via its domain 

selection and its associated optimal kernel sets. 

 

If the distance term in the Gaussian is denoted dG = xixj = (k (xj
kxi

k)2), the 

Gaussian Kernel can be written as KG(xi,xj) = exp((dG)2/22).  In general, 

exponential regularization of a metric on the feature vectors, as in the Gaussian, 

will provide a Kernel satisfying Mercer's conditions [6,31].  Since the "kernels" 

considered in what follows are an extension from those justified by the geometric 

heuristic to those justified by an information-theoretic heuristic (the final arbiter 

of performance being empirical results), the key property from the above, in 

obtaining alternate kernels, will be the exponential regularization.  

 

It is found that the other key property is a stability property that ties together the 

best performing kernels from the various cases.  For the Gaussian kernel, the 

stability property is exhibited when the log Kernel variation on feature vector 

components is calculated: 

 ln (KG(xi , xj) ) / xi
k = (xj

kxi
k)/2, 

where "xi
k" is the kth component of the ith feature vector and "stability" is indicated 

by the sign of the difference term (xj
kxi

k), e.g., for 
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Clearly, the sign is important, as is a notion of difference. Suppose we generalize 

on this basis to decouple the sign (stability in orientation) convention from the 

“notion of differance”, here providing a new kernel expression, for the 

“variational kernel” by way of an integration factor: 
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The subscript "V" in KV is meant to denote "variational" kernel (sometimes 

referred to as “indicator” kernel or “Absdiff” kernel). For suitable choice of tuning 

parameter , the variational kernel offers the best performance on the data sets 

considered. The regularized distance in KV is the square root of the “Variational” 

distance: V(xixj)=k xj
kxi

k. It is found that the variational kernel is usually 

the best performing kernel on the 1L  normed data considered in the channel 

current analysis ( 1L  norm: |x|1=
k

kx || , a discrete prob. dist if 0kx  also). The 

argument of the exponential in the variational kernel is a distance squared, with

)2exp( 22 vv dK  , thus the variational kernel automatically satisfies Mercer’s 

conditions. 

 

Consider now the case where the notion of difference is not arithmetic but 

multiplicative, i.e., based on (1-zk/yk) rather than (yk-zk) (for the Gaussian). In 

doing so, we must restrict to 0ky of course. As before, the sign of (yk-zk)  is 

information preserved in (1-zk/yk), but the latter is not integrable. However, 

)ln( kk zy also provides sign info -- positive when kk zy  , etc., as before, and 

also includes a ratio. Which to go with? A combination seems best as this is 

integrable: 
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This is usually a close 2nd to the vK kernel, in performance, sometimes 

outperforming for the datasets examined. This kernel relates feature vectors via 

relative entropy terms: 


k k

k
k

z

y
yzyD )ln()||(  

The doubly novel aspect of the entropic kernel is that it would be the very first 

guess if one wanted to generalize from kernels based on exponentially 

regularized, square distances, to exponentially regularized, symmetrized, 

divergences (beginning with the most fundamental, symmetrized ”relative 

entropy” also known as the Kullback-Leibler information divergence). 



84                                                                                              Stephen Winters-Hilt 
 

 

A comparison of some of the SVM Kernels of interest is shown in Suppl. Fig. 1, 

with “regularized” distances or divergences, where they are regularized if in the 

form of an exponential with argument the negative of some distance-measure 

squared (d2(x,y))  or symmetrized divergence measure (D(x,y)), the former if 

using a geometric heuristic for comparison of feature vectors, the latter if using a 

information divergence heuristic. Results in Suppl. Fig. 1 are shown for the 

Gaussian Kernel: d2(x,y)=Σk(xk-yk)2; for the Absdiff or Variational Kernel 

d2(x,y)=(Σk|xk-yk|)1/2; and for the Symmetrized Relative Entropy Kernel 

D(x,y)= D(x||y)+D(y||x), where D(x||y) is the standard relative entropy. 

 

In the standard Platt SMO algorithm, =2*K12-K11-K22, for which speedup 

variations are described to avoid calculation of this value entirely [6,32,33]. A 

middle ground is obtained with the following definition  =2*K12-2; If ( >=0) 

{ 1;} (labeled WH SMO in Suppl. Fig. 1, with underflow handling and other 

details that differ slightly in the WH-SMO implementation as well). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppl. Fig. 1. Comparative results are shown on SVM performance with 

different kernels and algorithmic variants. The classification is between two 

DNA hairpins. The classification is done on blockade signals produced by 

molecules when occluding ion flow through a nanometer-scale channel (for 9TA 

vs (GC types of molecular signals, with feature vector extraction as described in 

the Methods). Implementations: WH SMO (W); Platt SMO (P); Keerthi1 (1); and 

Keerthi2 (2). Kernels: Absdiff (a); Entropic (e); and Gaussian (g). 

 

The best algorithm/kernel in Suppl. Fig. 1, and in other channel blockade data 

studied, has consistently been the WH SMO variant and the Absdiff and Entropic 

Kernels. Another benefit of the WH SMO variant is its significant speedup over 

the other methods (about half the time of Platt SMO and one fourth the time of 

Keerthi 1 or 2). The alpha handling and other modifications in WH SMO [6] 

relate to boundary support vector (BSV) handling (associated with handling on 

outliers), which is also critical to enhancements to a multiclass SVM solution 

described in the Background. 
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Given any metric space (, d) one can build a positive-definite kernel of the form 

ed2
. Conversely, any positive definite kernel with such form must have a ‘d’ 

that is a metric  (this is Mercer’s condition in another form). This suggests that the 

‘simplest’ distance-based kernel is the Gaussian kernel, since the ‘simplest’ 

distance, the Euclidean distance, is used. Likewise, this suggests that the simplest 

divergence-based kernel would be the aforementioned entropic kernel. 

 

The use of probability vectors, and L1-norm feature vectors in general (often in 

conjunction with the entropic kernel), turns out to provide a very general 

formulation, wherein feature extraction makes use of signal decomposition into a 

complete set of separable states that can be interpreted or represented as a 

probability vector (or normalized collection of such, or concatenation, then 

normalization, etc.). A probability vector formulation also provides a 

straightforward hand-off to the SVM classifiers since all feature vectors have the 

same length with such an approach. What this means for the SVM, however, is 

that geometric notions of distance are no longer the best measure for comparing 

feature vectors. For probability vectors (i.e., discrete distributions), the best 

measures of similarity are the various information-theoretic divergences: 

Kullback–Leibler, Renyi, etc. By symmetrizing over the arguments of those 

divergences, the entropic kernels are obtained, where the (symmetrized) Kullbach-

Leibler Diveregence [34] is used in the entropic kernel in [1, 6] and in the Results. 

 

S.2 Experimental Data and FSA Acquisition 

S.2.1 Nanopore Detector Experiments [6,16] 

Each experiment is conducted using one alpha-hemolysin channel inserted into a 

diphytanoyl-phosphatidylcholine/hexadecane bilayer across a, typically, 20-

micron-diameter horizontal Teflon aperture. The alpha-hemolysin pore has a 2.0 

nm width vestibule opening allowing a dsDNA molecule to be captured (while a 

ssDNA molecule translocates). The effective diameter of the bilayer ranges 

mainly between 1-25 μm. This value has some fluctuation depending on the 

condition of the aperture, which nanopore station is used, and the bilayer applied 

on a day to day basis. Seventy microliter chambers on either side of the bilayer 

contain 1.0 M KCl buffered at pH 8.0 (10 mM HEPES/KOH) except in the case of 

buffer experiments where the salt concentration, pH, or identity may be varied. 

Voltage is applied across the bilayer between Ag-AgCl electrodes. DNA control 

probes are typically added to the cis chamber at 10-20 nM final concentration. All 

experiments are maintained at room temperature (23 ± 0.1 °C), using a Peltier 

device. 

 

S.2.2 NTD control probes 

The five DNA hairpins studied in [1, 6, 16] have been carefully characterized, so 

are used as highly sensitive controls (obtained from IDT DNA with PAGE 

purification). The nine base-pair hairpin molecules share an eight base-pair 

hairpin core sequence, with addition of one of the four permutations of Watson-

Crick base-pairs that may exist at the blunt end terminus, i.e., 5'-G|C-3', 5'-C|G-3',  
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5'-T|A-3', and 5'-A|T-3'. Denoted 9GC, 9CG, 9TA, and 9AT, respectively. The 

full sequence for the 9GC hairpin is 5'-GTTCGAACGTT TTCGTTCGAAC-3'. 

The eight base-pair DNA hairpin (8GC) is identical to the core eight base-pair part 

of the 9GC sequence, except the terminal base-pair is changed to be 5'-G|C-3' 

(e.g., 5'-GTCGAACGTT TTCGTTCGAC-3'). Each hairpin was designed to adopt 

one base-paired structure.  

 

S.2.3 Data acquisition and FSA-based Signal acquisition [16] 

 

Data is acquired and processed in two ways depending on the experimental 

objectives: (i) using commercial software from Axon Instruments (Redwood City, 

CA) to acquire data, where current was typically filtered at 50 kHz bandwidth 

using an analog low pass Bessel filter and recorded at 20 µs intervals using an 

Axopatch 200B amplifier (Axon Instruments, Foster City, CA) coupled to an 

Axon Digidata 1200 digitizer. Applied potential was 120 mV (trans side positive) 

unless otherwise noted. In some experiments, semi-automated analysis of 

transition level blockades, current, and duration were performed using Clampex 

(Axon Instruments, Foster City, CA). (ii) using LabView based experimental 

automation. In this case, ionic current was also acquired using an Axopatch 200B 

patch clamp amplifier (Axon Instruments, Foster City, CA), but it was then 

recorded using a NI-MIO-16E-4 National Instruments data acquisition card 

(National Instruments, Austin TX). In the LabView format, data was low-pass 

filtered by the amplifier unit at 50 kHz, and recorded at 20 s intervals. Signal 

acquisition from the 20 s sample stream was done using a Finite State 

Automaton (FSA) [6, 16]. 

 

S.3 HMM-based Feature Extraction 

 

With completion of FSA preprocessing, an HMM is used to remove noise from 

the acquired signals, and to extract features from them. The HMM in one 

configuration (for control probe validation) is implemented with fifty states, 

corresponding to current blockades in 1% increments ranging from 20% residual 

current to 69% residual current [6]. The HMM states, numbered 0 to 49, 

corresponded to the 50 different current blockade levels in the sequences that are 

processed. The state emission parameters of the HMM are initially set so that the 

state j, 0 <= j <= 49 corresponding to level L = j+20, can emit all possible levels, 

with the probability distribution over emitted levels set to a discretized Gaussian 

with mean L and unit variance. All transitions between states are possible, and 

initially are equally likely. Each blockade signature is de-noised by 5 rounds of 

Expectation- Maximization (EM) training on the parameters of the HMM. After 

the EM iterations, 150 parameters are extracted from the HMM. The 150 feature 

vectors obtained from the 50- state HMM-EM/Viterbi implementation are: the 50 

dwell percentage in the different blockade levels (from the Viterbi trace-back 

states), the 50 variances of the emission probability distributions associated with 

the different states, and the 50 merged transition probabilities from the primary  
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and secondary blockade occupation levels (fits to two-state dominant modulatory 

blockade signals). Variations on the HMM 50 state implementation are made as 

necessary to encompass the signal classes under study. 

 

S.4 Data-rejection heuristics 

 

The SVM Decision Tree shown in Suppl. Fig. 2 obtained nearly perfect sensitivity 

and specificity, with a high data rejection rate, and a highly non-uniform class 

signal-calling throughput. In Suppl. Fig. 3, the Percentage Data Rejection vs 

SN+SP  curves are shown for test data classification runs with a binary classifier 

with one molecule (the positive, given by label) versus the rest (the negative). 

Since the signal calling wasn’t passed through a Decision Tree, the way these 

curves were generated, they don’t accurately reflect total throughput, and they 

don’t benefit from the “shielding” shown in the Decision Tree in Suppl. Fig. 2 

prototype. In the SVM Decision Tree implementation described in Suppl. Fig. 2 

[16], this is managed more comprehensively, to arrive at a five-way signal-calling 

throughput at the furthest node of 16% (in Suppl. Fig. 2, 9CG and 9AT have to 

pass to the furthest node to be classified), while the best throughput, for signal 

calling on the 8GC molecules, is 75%. 

 

 

The SVM Decision Tree classifier’s high, non-uniform, rejection can be managed 

by generalizing to a collection of Decision Trees (with different species at the 

furthest node). The problem is that tuning and optimizing a single decision tree is 

already a large task, even for five species (as in [16]). With a collection of trees, 

this problem is seemingly compounded, but can actually be lessened in some ways 

in that now each individual tree need not be so well-tuned/optimized. Although 

more complicated to implement than an SVM-External method, the SVM-Internal 

multiclass methods are not similarly fraught with tuning/optimization 

complications.  

 

 

Suppl. Fig. 4 shows the Percentage Data Rejection vs SN+SP curves on the same 

train/test data splits as used for Suppl. Fig. 3, except now the drop curves are to be 

understood as simultaneous curves (not sequential application of such curves as in 

Suppl. Fig. 3). Thus, comparable, or better, performance is obtained with the 

multiclass-internal approach and with far less effort, since there is no managing 

and tuning of Decision Trees. Another surprising, and even stronger argument for 

the SVM-Internal approach to the problem, for many situations, is that a natural 

drop zone is indicated by the margin. 
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Suppl. Fig. 2. Nanopore Detector signal analysis architecture, with use of an 

SVM Decision Tree for classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppl. Fig. 3. The Percentage Data Rejection vs SN+SP  curves for test data 

classification runs with a binary classifier with one molecule (the positive, 

given by label) versus the rest (the negative). Since the signal calling wasn’t 

passed through a Decision Tree, it doesn’t accurately reflect total throughput, and 

they don’t benefit from the “shielding” shown in the Decision Tree in Suppl. Fig. 

2 prototype. The Relative Entropy Kernel is shown because it provided the best 

results (over Gaussian and Absdiff). 

 

Suppose we define the criteria for dropping weak data as the margin: For any data 

point xi; let maxm{fm(xi)} = fyi, and Let fm = maxm{fm(xi)} for all m ≠ yi, then we  
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define the margin as: (fyi - fm), hence data point xi is dropped if (fyi - fm) ≤ 

Confidence Parameter. (For this data set using Gaussian, AbsDiff & Sentropic 

kernel, a confidence parameter of at least (0.00001)*C was required to achieve 

100% accuracy.) Using the margin drop approach, there is even less tuning, and 

there is improved throughput (approximately 75% for all species) [16]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppl. Fig. 4.   The Percentage Data Rejection vs SN+SP curves are shown 

for test data classification runs with a multiclass discriminator. The following 

criterion is used for dropping weak data: for any data point xi; if maxm{fm(xi)} ≤ 

Confidence Parameter, then the data point xi is dropped. For this data set using 

AbsDiff kernel (σ2 = 0.2) performed best, and a confidence parameter of 0.8 

achieve 100% accuracy. 
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