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Abstract

The purpose of the present paper is to find the hypersurface of a Finsler space with
exponential change of (a, B) metric L= ae P* + B given by b(x) = constant. We shall
find the conditions under which the hypersurface be a hyperplane of the first or
second kinds have been obtained. This hypersurface is not a hyperplane of third
kind.
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1 Introduction

Let F " = (M", L) be an n -dimensional Finsler space, where M" is an n-
dimensional differentiable manifold and L (x, y) is the fundamental function' The
concept of an (o, B) metric was introduced in 1972 by Matsumoto [4]. A Finsler
space F " is called an (a, B) metric if L is positively homogeneous function of o and
B of degree one, where o 2= a;j (x) yiyl and B=b;(x)y' isoneform of M"
. As well-known examples are Randers metric L=a + 3 [5] Kropina metric L=
a2

5 [1]. In 1989 M. Matsumoto while studying the slope of mountain introduced

an (a, B) metric given by L =

a?

a-p

, which has been called Matsumoto space [5].

2 Fundamental quantities of Finsler space with exponential
change of (0, ) metric

The Finsler space with exponential change of (o, ) metric is given by
(2.1) L(a,p)= aeP® +p, where a?= a;j (x) yiyl andB = bi(x)y'
The derivatives of (2.1) with respect to o and J are given by
@@L = Y8 et Ly = ePe 41

= B b N B 1% = 1
(2.3) (a) Laa PR (b) Lap -z et (c) Lgp s
Where,

oL _ oL 9L _ 9L _ 0°L

Lo = % ,L[B = a8 ,Loux __00.'2 ) LaB 9 0B and Lﬁ[} 2 52
The normalized element of supportlizg—;i is given by [8].

1 .
24) 1i = - LaYi+Lpbi where Yi = a;; y'.

. L . .
The angular metric tensor h;; = L 35707 1S given by [8].
(2.5) hyj = paijtqobibj +q1(biYj+bjYi)+q2Yi Yj, where
B ePla Blo.

(26) p= LLia" = = (a—P)(ae +B).

B/a
(2.7) qo=LLgpp = eT(ae% +P).

B/a
(2.8) q=LLapa! = % B(aelr +B),

S (B2-atap) (ael +p).

(2.9) q:2 =La? (Loa - Loa! ) =

The fundamental metric tensor
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o= 1 0oL
gii = 2 aytayl
(2.10)gij = paij +pobibj +pi1(biY; +bjYi)+p2Yi Yj

Bla
@Ipo =qo + L% == (aef +p)+ (P +1)°
Bla
(2.12)pi1=q1 + pLpL"! =ea3 [a(a—PB)P® +1)=P(aeP® +P)]

B - 0+ o) (wePe + )+ a(o-f) e P]

a

is given by [8] .

e

(2.13)p2=q2+ p*L7*=
Moreover, the reciprocal tensor g/ of gij 1s given by
(2.14) g¥ = plall - sobibi-si( byl + bl y')-—s2y!yl where
(2.15)(a)b'=a'l bj, b= ajjbibl ,
1
(b) so = — [ppot(pop2—p1?)a’],
1
(¢) st = [pp1+ (pop2-p1?)B],
(d) s2 = %[ppz +(pop2-p1?)b?],
€ T =p(PFpob’+tp1B)+(pop2—p?)(a’b’-p?)

The hv - torsion tensor  Cjjy, = % aaiikj
(2.16) 2pCijx =p1(hijmk +hjkmi +hxi mj ) + y1 mi mjmk .
Where

2.17) (a) y; = paapBO ~3piqo, (b) mi = bi- a2pYi.

It is noted that the covariant vector mi is a non-vanishing one and is orthogonal to

is given by [9] .

the element of support y .

Let { jik } be the component of Christoffel's symbol of associated
Riemannian space R"and V k denotes the covariant differentiation with respect to x
K relative to the Christoffel's symbol. We shall use the following tensors.

(2.18) (@) 2 E;; = b;j + bj;, (b)2 F;; = b;j- by,
where, b;; = V;bi.
If we denote the Cartan's connection CI" as ( I;,*(l N jik )

then the difference tensor D]-ik = I}-*i -{ jik } of exponential change of Finsler

space with (a, B) metricL = oeP® +Bis given by [2].
(2.19) Di =B'Ej+F} Bj +F Bk + B/ box + B boj -bom g™ Bjk - Chy,
AR - Cian AT+ Ciram AT €' +1° (i Cl + Ciom C} - Chs C)
where
(220)(a) Bk=pobkx +p1Yk
(b)B'= g" Bj ,
(©) Ff = g Fji,



4 S. K. Tiwari, Akhilesh Kumar Rai and C. P. Maurya

1 - dpo
(d)Bij = E{pl(aij -a?YiYj) + ZPo mim;j},

op
(e)Bf = gYBii,
(D AR =B Epy + B™"Eko +Bkx F"+Bo F*,
(g A™ =B™ E,, +2BoF™, (h) B, = Biy'.
Where '0' denote the contraction with y ! except for the quantities p o,q o and so.

3 Induced Cartan Connection

Let F™!'=(M"™! L (u, v)) be a hypersurface of F"=(M™" L (x,y))
given by the equations x! = xi (u*), where o =1,2,3--------- n-1

Suppose that the matrix of the projection factor B = aaj; is of rank n-1.
The element of support y' of F"is to be taken tangential to F""! i. e.
(3.1) y' =BL(u)v®.
Thus v¥ is the element of support of F™! at the point u® . The metric tensor
g op and hv — torsion tensor C opy of F™! is given by
(3-2)(a)gup = gij Bk By, (b) Capy = Ciji Bs By B .
At each point u *of F ™! a unit normal vector N ' (u, v) is defined by
(3.3) (@) gij (x (W, y(v)) By NI =0,

(®) gij(x (u),y(wv)) N' N/ =1 .
As for the angular metric tensor hij we have
(34) (@ hap = hij BL B) . (b) hy BE NI =0 ,(c) hyy N' NI =1,
If ( B, Ni) denote the inverse of (BY ,N') then we have
(3.5 (a) Bf = gij g*? B} , (b) BL Bl =38%,

(c) B¥ N' = 0 , (d BLNi =0,
(e) Ni = gij N, (H) By Bf + N'Nj=35].

The induced connection ICT = (I3%, G§ , Cg, ) of F™" induced from the Cartan's
connection
Cr = ( I, I . Cly ) is given by [6].
(3:6) Ip= Bf( By, *I; By Bf)+ M H, .
(3.7) Gf =Bf( B+ I, By ).
(3.8) Cf= Bf Ci By By .
Where

(3.9)(a) Mg, = NiCj By Bf , (b) M§ = g* My, .
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(3.10) Hp = Ni ( Big + I} B) ).

(3.11)(a) Bl = =% ,(b) Bly = Big v”.

The quantities M gy and H p are called second fundamental v- tensor and normal
curvature vector respectively [6].

The second fundamental h- tensor H py is defined as [6].

(3.12) Hp,=Ni(Bh, + i B} Bf)+ My H, where

(3.13) Mp=NiCix Big Nk

The relative h and v — covariant derivatives of projection factor B} with respect to
ICT are given by

(3.14) (a) Byyz = Hayy N' ,(b) BL|B = Map N'.

The equation (3.12) shows that Hg,, is generally not symmetric and

(3.15) Hg, -H,p = Mp H, - M, Hp .

Furthermore (3.10), (3.12), (3.13) yield

(3.16) (a) H,, = H,,(b)H,, = H,+M, Ho .

We quote the following lemma which is due to Matsumoto [6].

Lemma 3.1 - The normal curvature Ho = H, v¥ vanishes if and only if normal
curvature vector Hp vanishes.

The hyperplanes of first, second and third kind are defined in [6] and we only quote
the following.

Lemma3.2 - A hypersurface F ™! is a hyperplane of the first kind iff H, =0
Lemma3.3 -A hypersurface F ™! is a hyperplane of the second kind iff H, = 0 and

Haﬁ =0.
Lemma3.4 - A hypersurface F ™! is a hyperplane of the third kind iff H, = 0 and
Maﬁ = Haﬁ =0.

4 Hypersurface F "!(c) of Finsler space with exponential change of
(o, B) metric

Let us consider the Finsler space with exponential change of (o, ) metric
L= oeP® +p witha gradient b i(x) = 6i b for a scalar function b(x) =c (constant).
From parametric equations x ' = x' (u %) of F™! (c) we get
2 {b(x(w) } = 0, which implies that biB; =0.
So that b i (x) are regarded as covariant components of a normal vector of F™
! (¢). Therefore, along the F™! (c) we have
(4.1)(@)biB. =0, (b)biy' =0.
In general, the induced metric L (u, v) from the F ™! (c) is given by
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aij Ba BBU vh

L(uwyv) =

\/aUBa BB v pB — p; BL, v&

Therefore, the induced metric of F™! (c) becomes

(4.2) (@) L (u, v) = \/aa/; vk | (b)ay =ay Bl B) |

which is the Riemannian metric. At the point of F™! (¢) from (2.6), (2.7), (2.8) and
(2.9) we have

(43)p=l.qo =1, q1-0,q2 =-— .

The quantities in the equations (2.11), (2.12) and (2.13) reduces to

(44) po=5, pi==, p2=0

Whereas (2.15) reduces to

4 b?

(45) (a)r :(1+b2),(b) So = (1+—bz) (C) S1 = W (d) S2 = - OKZ(TbZ)'
Therefore from (2.14) we get

= 5. ipi - iwpiviys 407 Ligi
(46) g a (1+b2 b'b a(1+b2 b’ y! +bly ) a?(1+ b? ) yy
Thus along F ™! (c), (4.1) and (4.6) gives

. b2

1] : = —
(4.7) g bib; ai57) . Therefore, we get,

(48) bix@) = |52 Ny,

where b> =a'l bib; andb is the length of the vector b'
Again from (4.6) and (4.8) we have
2b? i

49)b' =all bj =.b? 1+ b2 )N + —yi.

2

Hence we have the following.

Theorem 4.1 - Let F"be an exponential change of Finsler space with (a, B) metric
L=oaeP® + B with gradient b i(x) = &i b (x) and let F™! (c) be a hypersurface of F
"which is given by b(x) =c (constant). Suppose the Riemannian metric a ij (x) dx
d xJ be positive definite and b i be non-zero field. Then the induced metric on F ™!
(c) is a Riemannian metric given by (4.2) and the relations (4.8) and (4.9) hold.
Along F ™! (c) the angular metric tensor and metric tensor are given by

1

(4.10) h;; = aij+bibj - =
2

(411) 9gij = aU+5b1bJ + ;(blY] +b]Yl)

Ifh®gp denote the angular metric tensor of the Riemannian a i j(x) then using (4.1)

in (4.10) we have along F ™! (c)
(4.12) he = h®@p From (2.11) we have

(4.13) aa%;’ = % (along F™!(c)) . Therefore (2.17) gives

and
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1

(4.14) (a) y4 =--, (b) m; =bi.

Therefore hv - torsion tensor becomes

(4.15) Cyjx Z%(hij bk +hjkbi +hxki bj )-ibi bjbxk .
Hence from (3.9), (4.1), (4.8), and (4.15) we have

1 , b?
(416) MaB = Z a+p2 ) ha[} .

Also from (3.4), (3.13), (4.1) and (4.15) we have
(4.17) M¢=0. Onusing (4.17) in (3.15) we have
(418) HaB = Hﬁa.

Theorem 4.2 - The second fundamental v- tensor M o8 of F ™! (¢) is given by (4.16)
and the second fundamental h- tensor Hp is symmetric.
Next from (4.1) we get
byg By +bi By =0.
Therefore from (3.14) and the fact that

blllg = bl|] Bé +bi|j I\IJ Hﬁ , we get
(4.19) by; BL B} + byl; BL NI Hp +bi Hyy N'=0.
Since b;|; = - bn C"j , from (3.13), (4.8) and (4.17) we get

i Rj ’ b? _
(420) bi|jBa Bjﬁ + (Zl-I-T) Haﬁ =0.

Since b;; is symmetric tensor Contracting (4.20) with respect to v Pand using (3.16)
we get

b2
(1+ b2 )

(421) by;Bla yi + Hoe =0.

Further contracting (4.21) with respect to v* we get
i i b2 _
(422) bl|] y yJ + (1+b2 ) Ho =0.
In view of Lemma (3.1) and (3.2) the hypersurface F ™! (c) is a hyperplane of

the first kind if and only if Ho = 0. Thus from (4.22) it follows that F ™! (¢c) is a
being the

hyperplane of the first kind if and only if by y'y’ =0.This by,

covariant derivative with respect to CI" of F" , it may depend on y' . On the other
hand Vjbi =bij is the covariant derivative with respect to the Riemannian tensor

{ jik } constructed from aij(x), therefore b;; does not depend on y! . We shall
consider the difference b;; - b;; in the following . The difference tensor
Di = Lil - { jik Y is given by (2.19).

Since biis a gradient vector from (2.18) we have
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(4.23) Eij = bij, Fij= 0, F}-i =0.

Thus (2.19) reduces to

(424) Djy = B' byt Bf box+ Bi boj - bom g™ Bjk - Clyy AF' - Cioy AT +
Citem AT &' +1° (G i+ CemCi} - Caus G ) -

But in view of (4.3), (4.4) and (4.6) the expression (2.20) reduces to

(4.26)

(a) Bi = 5bi+§Yi,

b B'=g" Bj = mbi * a(1+ b2 )y1 ’

(c) Bij = %(aij -%Yin )+% bibj,

(d) Bji - 1(81 'i LY+ Za(libz) by - fxiaib;i by,

(e) AF = B} boo+B bko ,
(f) A" =B™ by, .
By virtue of (4.1) we have B, =0, Bio =o which gives A7 =B™ b,, .We
have therefore
(426) Df, = B'bjo+B} by, - B™Cly beo
Again contracting (4.26) with yJ, we get

] i — bt 2 i
(4'27) DéO :B bOO_[(1+b2 ) +0((1+b2)y ]bOO’

Thus paying attention to (4.1) along the F ™! (c) we ﬁnally get

i b2 ) (2 +5b2) i
(428) by Dfy = sbio + 228 by b ib Gy by
On contracting (4.28) by yJ we have

. b2

L —
(429) by Dby = 2 buo .

From (3.13), (4.8), (4.9) and (4.17) we have
b b™ Cfpy B} =b2Ma =0 . Therefore the relation
b;j = b;; - by Dj; and the equations (4.28) and (4.29) give
i1 . 1
(4.30) bi|j y'y! =boo - by Dgo= (+p2z ) PJoo-
Consequently (4.21) and (4.22) may be written as
b2

i i

430 | oy Het o bz by BL =0.
b2 1 _

432 | @y e Ty Do =0

Thus the condition H o= 0 is equivalent to beo, where b ij does not depend
on y!Since y'is to satisfy (4.1), the condition is written as bij y'y’ =(bi y’) (C
iy?) for some C j(x), so that we have
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(4.33)2bij =biCj+bjCi From (4.1)and (4.33) it follows that
(4.34) (a) by =0, (b) by; BL B} =0,(c) byBL y/ =0.
Hence (4.32) gives H 0= 0.
Again from (4.24), (4.25) and (4.33) we have
. 1 r_ . 5 _ . 5 . 1
(4.35) (@) bip b'=-co b?,(b) A7=0(c) 4 B; =0,(d) B B By == hap.
Thus from (4.23) we have
. 5 1 . .
(4.36) b, D; B B)=- Z( g"® bybs )Cohop + by Cijyy AT 27° B, B[f, .

B
Also from (4.6) we find
2
(4.37) brbsg™ = (1+”b2 - - With the help of (3.9), (4.9), (4.16), (4.24)and (4.25)
[ j Cob2 rs
we get (4.38) by Cijm AT g™ Bl Bj = TN (brbsg™ Yhap .

Substituting (4.37), and (4.38) in (4.36), we get

P Cob?
(4.39) b, Df; B By =- 2 b T)E h s .Therefore (4.20) reduces to
b2 Cob? _
(440) RENSE HaB+ mhaﬁ—o.

Hence the hypersurface F ™! (c) is umbilic.

Theorem 4.3- The necessary and sufficient condition for F ™! (¢) to be hyperplane
of first kind is (4.23) and in this case the second fundamental tensor of F ™! (c) is
proportional to its angular metric tensor.

In view of Lemma (3.3) F ™! (c) is a hyperplane of second kind iff H «= 0 and H op
- 0. Thus from (4.40) we get Co=Ci(x) y'=0.

Therefore, there exist a function W(x) such that

(4.41) Ci(x) = ¥(x) bi(x). Thus (4.33) gives

(442)bi; =¥Dbib;

Theorem 4.4 — The necessary and sufficient condition for F ™! (c) to be hyperplane
of second kind is (4.42).

Finally (4.16), (4.17) and lemma (3.4) shows that F ™! (c) does not become a
hyperplane of the third kind.

Theorem 4.5 — The hypersurface F ™! (c) is not a hyperplane of the third kind.
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