

Hypersurface of Finsler Space with Exponential Change of (α, β) Metric

S. K. Tiwari

Professor and Head, Department of Mathematics
K. S. Saket P. G. College Ayodhya, 224123, India

Akhilesh Kumar Rai

Department of Mathematics
K S Saket P. G. College Ayodhya, 224123, India

C. P. Maurya

Assistant Teacher, Adarsh Inter College
Saltauwa Gopalpur Basti 272190, India

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2026 Hikari Ltd.

Abstract

The purpose of the present paper is to find the hypersurface of a Finsler space with exponential change of (α, β) metric $L = \alpha e^{\beta/\alpha} + \beta$ given by $b(x) = \text{constant}$. We shall find the conditions under which the hypersurface be a hyperplane of the first or second kinds have been obtained. This hypersurface is not a hyperplane of third kind.

Mathematics Subject Classification: 53B40, 53B60

Keywords: Hypersurface, Hyperplane of first, second and third kind, Finsler space

1 Introduction

Let $F^n = (M^n, L)$ be an n -dimensional Finsler space, where M^n is an n -dimensional differentiable manifold and $L(x, y)$ is the fundamental function. The concept of an (α, β) metric was introduced in 1972 by Matsumoto [4]. A Finsler space F^n is called an (α, β) metric if L is positively homogeneous function of α and β of degree one, where $\alpha^2 = a_{ij}(x) y^i y^j$ and $\beta = b_i(x) y^i$ is one form of M^n . As well-known examples are Randers metric $L = \alpha + \beta$ [5] Kropina metric $L = \frac{\alpha^2}{\beta}$ [1]. In 1989 M. Matsumoto while studying the slope of mountain introduced an (α, β) metric given by $L = \frac{\alpha^2}{\alpha - \beta}$, which has been called Matsumoto space [5].

2 Fundamental quantities of Finsler space with exponential change of (α, β) metric

The Finsler space with exponential change of (α, β) metric is given by

$$(2.1) \quad L(\alpha, \beta) = \alpha e^{\beta/\alpha} + \beta, \text{ where } \alpha^2 = a_{ij}(x) y^i y^j \text{ and } \beta = b_i(x) y^i$$

The derivatives of (2.1) with respect to α and β are given by

$$(2.2) (a) L_\alpha = \frac{(\alpha - \beta)}{\alpha} e^{\beta/\alpha}, \quad (b) L_\beta = e^{\beta/\alpha} + 1.$$

$$(2.3) (a) L_{\alpha\alpha} = \frac{\beta^2}{\alpha^3} e^{\beta/\alpha}, \quad (b) L_{\alpha\beta} = -\frac{\beta}{\alpha^2} e^{\beta/\alpha}, \quad (c) L_{\beta\beta} = \frac{1}{\alpha} e^{\beta/\alpha}$$

Where,

$$L_\alpha = \frac{\partial L}{\partial \alpha}, \quad L_\beta = \frac{\partial L}{\partial \beta}, \quad L_{\alpha\alpha} = \frac{\partial^2 L}{\partial \alpha^2}, \quad L_{\alpha\beta} = \frac{\partial^2 L}{\partial \alpha \partial \beta} \text{ and } L_{\beta\beta} = \frac{\partial^2 L}{\partial \beta^2}.$$

The normalized element of support $l_i = \frac{\partial L}{\partial y^i}$ is given by [8].

$$(2.4) \quad l_i = \frac{1}{\alpha} L_\alpha Y_i + L_\beta b_i \quad \text{where } Y_i = a_{ij} y^j.$$

The angular metric tensor $h_{ij} = L \frac{\partial^2 L}{\partial y^i \partial y^j}$ is given by [8].

$$(2.5) \quad h_{ij} = p a_{ij} + q_0 b_i b_j + q_1 (b_i Y_j + b_j Y_i) + q_2 Y_i Y_j, \text{ where}$$

$$(2.6) \quad p = L L_\alpha \alpha^{-1} = \frac{e^{\beta/\alpha}}{\alpha^2} (\alpha - \beta) (\alpha e^{\beta/\alpha} + \beta).$$

$$(2.7) \quad q_0 = L L_{\beta\beta} = \frac{e^{\beta/\alpha}}{\alpha} (\alpha e^{\beta/\alpha} + \beta).$$

$$(2.8) \quad q_1 = L L_{\alpha\beta} \alpha^{-1} = \frac{e^{\beta/\alpha}}{\alpha^3} \beta (\alpha e^{\beta/\alpha} + \beta),$$

$$(2.9) \quad q_2 = L \alpha^{-2} (L_{\alpha\alpha} - L_\alpha \alpha^{-1}) = \frac{e^{\beta/\alpha}}{\alpha^5} (\beta^2 - \alpha^2 + \alpha\beta) (\alpha e^{\beta/\alpha} + \beta).$$

The fundamental metric tensor

$g_{ij} = \frac{1}{2} \frac{\partial^2 L}{\partial y^i \partial y^j}$ is given by [8] .

$$(2.10) g_{ij} = p_0 a_{ij} + p_0 b_i b_j + p_1 (b_i Y_j + b_j Y_i) + p_2 Y_i Y_j$$

$$(2.11) p_0 = q_0 + L^2 \beta = \frac{e^{\beta/\alpha}}{\alpha} (\alpha e^{\beta/\alpha} + \beta) + (e^{\beta/\alpha} + 1)^2$$

$$(2.12) p_1 = q_1 + p L \beta L^{-1} = \frac{e^{\beta/\alpha}}{\alpha^3} [\alpha(\alpha - \beta)(e^{\beta/\alpha} + 1) - \beta(\alpha e^{\beta/\alpha} + \beta)]$$

$$(2.13) p_2 = q_2 + p^2 L^{-2} = \frac{e^{\beta/\alpha}}{\alpha^5} [(\beta^2 - \alpha^2 + \alpha\beta)(\alpha e^{\beta/\alpha} + \beta) + \alpha(\alpha - \beta)^2 e^{\beta/\alpha}]$$

Moreover, the reciprocal tensor g^{ij} of g_{ij} is given by

$$(2.14) g^{ij} = p^{-1} a^{ij} - s_0 b^i b^j - s_1 (b^i y^j + b^j y^i) - s_2 y^i y^j, \text{ where}$$

$$(2.15) (a) b^i = a^{ij} b_j, \quad b^2 = a_{ij} b^i b^j,$$

$$(b) s_0 = \frac{1}{\tau p} [p p_0 + (p_0 p_2 - p_1^2) \alpha^2],$$

$$(c) s_1 = \frac{1}{\tau p} [p p_1 + (p_0 p_2 - p_1^2) \beta],$$

$$(d) s_2 = \frac{1}{\tau p} [p p_2 + (p_0 p_2 - p_1^2) b^2],$$

$$(e) \tau = p(p + p_0 b^2 + p_1 \beta) + (p_0 p_2 - p_1^2)(\alpha^2 b^2 - \beta^2)$$

The hv - torsion tensor $C_{ijk} = \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k}$ is given by [9] .

$$(2.16) 2 p C_{ijk} = p_1 (h_{ij} m_k + h_{jk} m_i + h_{ki} m_j) + \gamma_1 m_i m_j m_k.$$

Where

$$(2.17) (a) \gamma_1 = p \frac{\partial p_0}{\partial \beta} - 3 p_1 q_0, \quad (b) m_i = b_i - \alpha^2 \beta Y_i.$$

It is noted that the covariant vector m_i is a non-vanishing one and is orthogonal to the element of support y^i .

Let $\{\frac{i}{jk}\}$ be the component of Christoffel's symbol of associated Riemannian space R^n and ∇_k denotes the covariant differentiation with respect to x^k relative to the Christoffel's symbol. We shall use the following tensors.

$$(2.18) (a) 2 E_{ij} = b_{ij} + b_{ji}, \quad (b) 2 F_{ij} = b_{ij} - b_{ji},$$

where, $b_{ij} = \nabla_j b_i$.

If we denote the Cartan's connection $C\Gamma$ as $(\Gamma_{jk}^{*i}, \Gamma_{ok}^{*i}, C_{jk}^i)$

then the difference tensor $D_{jk}^i = \Gamma_{jk}^{*i} - \{\frac{i}{jk}\}$ of exponential change of Finsler space with (α, β) metric $L = \alpha e^{\beta/\alpha} + \beta$ is given by [2] .

$$(2.19) D_{jk}^i = B^i E_{jk} + F_k^i B_j + F_j^i B_k + B_j^i b_{ok} + B_k^i b_{oj} - b_{om} g^{im} B_{jk} - C_{jm}^i A_k^m - C_{km}^i A_j^m + C_{jkm} A_s^m g^{is} + \lambda^s (C_{jm}^i C_{sk}^m + C_{km}^i C_{sj}^m - C_{ms}^i C_{jk}^m),$$

where

$$(2.20) (a) B_k = p_0 b_k + p_1 Y_k$$

$$(b) B^i = g^{ij} B_j,$$

$$(c) F_i^k = g^{kj} F_{ji},$$

$$(d) B_{ij} = \frac{1}{2} \{ p_1 (a_{ij} - \alpha^{-2} Y_i Y_j) + \frac{\partial p_o}{\partial \beta} m_i m_j \},$$

$$(e) B_i^k = g^{kj} B_{ji},$$

$$(f) A_k^m = B_k^m E_{oo} + B^m E_{ko} + B_k F_o^m + B_o F_k^m,$$

$$(g) \lambda^m = B^m E_{oo} + 2 B_o F_o^m, (h) B_o = B_i y^i.$$

Where 'o' denote the contraction with y^i except for the quantities p_o, q_o and s_o .

3 Induced Cartan Connection

Let $F^{n-1} = (M^{n-1}, L(u, v))$ be a hypersurface of $F^n = (M^n, L(x, y))$ given by the equations $x^i = x^i(u^\alpha)$, where $\alpha = 1, 2, 3, \dots, n-1$

Suppose that the matrix of the projection factor $B_\alpha^i = \frac{\partial x^i}{\partial u^\alpha}$ is of rank $n-1$.

The element of support y^i of F^n is to be taken tangential to F^{n-1} i. e.

$$(3.1) \quad y^i = B_\alpha^i(u) v^\alpha.$$

Thus v^α is the element of support of F^{n-1} at the point u^α . The metric tensor $g_{\alpha\beta}$ and $h\nu$ -torsion tensor $C_{\alpha\beta\gamma}$ of F^{n-1} is given by

$$(3.2) (a) g_{\alpha\beta} = g_{ij} B_\alpha^i B_\beta^j, (b) C_{\alpha\beta\gamma} = C_{ijk} B_\alpha^i B_\beta^j B_\gamma^k.$$

At each point u^α of F^{n-1} a unit normal vector $N^i(u, v)$ is defined by

$$(3.3) (a) g_{ij}(x(u), y(u, v)) B_\alpha^i N^j = 0,$$

$$(b) g_{ij}(x(u), y(u, v)) N^i N^j = 1.$$

As for the angular metric tensor h_{ij} we have

$$(3.4) (a) h_{\alpha\beta} = h_{ij} B_\alpha^i B_\beta^j, (b) h_{ij} B_\alpha^i N^j = 0, (c) h_{ij} N^i N^j = 1.$$

If (B_α^i, N_i) denote the inverse of (B_α^i, N^i) then we have

$$(3.5) (a) B_i^\alpha = g_{ij} g^{\alpha\beta} B_\beta^j, (b) B_\alpha^i B_i^\beta = \delta_\alpha^\beta,$$

$$(c) B_i^\alpha N^i = 0, (d) B_\alpha^i N_i = 0,$$

$$(e) N_i = g_{ij} N^j, (f) B_\alpha^i B_\beta^\alpha + N^i N_j = \delta_i^j.$$

The induced connection $IC\Gamma = (\Gamma_{\beta\gamma}^{*\alpha}, G_\beta^\alpha, C_{\beta\gamma}^\alpha)$ of F^{n-1} induced from the Cartan's connection

$IC\Gamma = (\Gamma_{jk}^{*i}, \Gamma_{ok}^{*i}, C_{jk}^i)$ is given by [6].

$$(3.6) \quad \Gamma_{\beta\gamma}^{*\alpha} = B_i^\alpha (B_{\beta\gamma}^i + \Gamma_{jk}^{*i} B_\beta^j B_\gamma^k) + M_\beta^\alpha H_\gamma.$$

$$(3.7) \quad G_\beta^\alpha = B_i^\alpha (B_{o\beta}^i + \Gamma_{oj}^{*i} B_\beta^j).$$

$$(3.8) \quad C_{\beta\gamma}^\alpha = B_i^\alpha C_{jk}^i B_\beta^j B_\gamma^k.$$

Where

$$(3.9) (a) M_{\beta\gamma} = N_i C_{jk}^i B_\beta^j B_\gamma^k, (b) M_\beta^\alpha = g^{\alpha\gamma} M_{\beta\gamma}.$$

$$(3.10) \quad H_\beta = N_i (B_{\alpha\beta}^i + \Gamma_{\alpha j}^{*i} B_\beta^j).$$

$$(3.11) (a) \quad B_{\beta\gamma}^i = \frac{\partial B_\beta^i}{\partial u^\gamma}, (b) \quad B_{\alpha\beta}^i = B_{\gamma\beta}^i v^\gamma.$$

The quantities $M_{\beta\gamma}$ and H_β are called second fundamental v- tensor and normal curvature vector respectively [6].

The second fundamental h- tensor $H_{\beta\gamma}$ is defined as [6].

$$(3.12) \quad H_{\beta\gamma} = N_i (B_{\beta\gamma}^i + \Gamma_{jk}^{*i} B_\beta^j B_\gamma^k) + M_\beta H_\gamma, \text{ where}$$

$$(3.13) \quad M_\beta = N_i C_{jk}^i B_{jk}^i N^k.$$

The relative h and v – covariant derivatives of projection factor B_α^i with respect to ICF are given by

$$(3.14) (a) \quad B_{\alpha|\beta}^i = H_{\alpha\beta} N^i, (b) \quad B_{\alpha\beta}^i = M_{\alpha\beta} N^i.$$

The equation (3.12) shows that $H_{\beta\gamma}$ is generally not symmetric and

$$(3.15) \quad H_{\beta\gamma} - H_{\gamma\beta} = M_\beta H_\gamma - M_\gamma H_\beta.$$

Furthermore (3.10), (3.12), (3.13) yield

$$(3.16) (a) \quad H_{\alpha\gamma} = H_\gamma, (b) \quad H_{\gamma\alpha} = H_\gamma + M_\gamma H_\alpha.$$

We quote the following lemma which is due to Matsumoto [6].

Lemma 3.1 - The normal curvature $H_\alpha = H_\gamma v^\gamma$ vanishes if and only if normal curvature vector H_β vanishes.

The hyperplanes of first, second and third kind are defined in [6] and we only quote the following.

Lemma3.2 - A hypersurface F^{n-1} is a hyperplane of the first kind iff $H_\alpha = 0$

Lemma3.3 -A hypersurface F^{n-1} is a hyperplane of the second kind iff $H_\alpha = 0$ and $H_{\alpha\beta} = 0$.

Lemma3.4 - A hypersurface F^{n-1} is a hyperplane of the third kind iff $H_\alpha = 0$ and $M_{\alpha\beta} = H_{\alpha\beta} = 0$.

4 Hypersurface $F^{n-1}(c)$ of Finsler space with exponential change of (α, β) metric

Let us consider the Finsler space with exponential change of (α, β) metric

$L = \alpha e^{\beta/\alpha} + \beta$ with a gradient $b_i(x) = \partial_i b$ for a scalar function $b(x) = c$ (constant).

From parametric equations $x^i = x^i(u^\alpha)$ of $F^{n-1}(c)$ we get

$$\frac{\partial}{\partial u^\alpha} \{ b(x(u)) \} = 0, \text{ which implies that } b_i B_\alpha^i = 0.$$

So that $b_i(x)$ are regarded as covariant components of a normal vector of $F^{n-1}(c)$. Therefore, along the $F^{n-1}(c)$ we have

$$(4.1) (a) \quad b_i B_\alpha^i = 0, \quad (b) \quad b_i y^i = 0.$$

In general, the induced metric $L(u, v)$ from the $F^{n-1}(c)$ is given by

$$L(u, v) = \frac{a_{ij} B_\alpha^i B_\beta^j v^\alpha v^\beta}{\sqrt{a_{ij} B_\alpha^i B_\beta^j v^\alpha v^\beta - b_i B_\alpha^i v^\alpha}}.$$

Therefore, the induced metric of $F^{n-1}(c)$ becomes

$$(4.2) (a) L(u, v) = \sqrt{a_{\alpha\beta} (u) v^\alpha v^\beta}, \quad (b) a_{\alpha\beta} = a_{ij} B_\alpha^i B_\beta^j,$$

which is the Riemannian metric. At the point of $F^{n-1}(c)$ from (2.6), (2.7), (2.8) and (2.9) we have

$$(4.3) p_0 = 1, q_0 = 1, q_1 = 0, q_2 = -\frac{1}{\alpha^2}.$$

The quantities in the equations (2.11), (2.12) and (2.13) reduces to

$$(4.4) p_0 = 5, \quad p_1 = \frac{2}{\alpha}, \quad p_2 = 0$$

Whereas (2.15) reduces to

$$(4.5) (a) \tau = (1 + b^2), (b) s_0 = \frac{1}{(1 + b^2)}, (c) s_1 = \frac{2}{\alpha(1 + b^2)}, (d) s_2 = -\frac{4b^2}{\alpha^2(1 + b^2)}.$$

Therefore from (2.14) we get

$$(4.6) g^{ij} = a^{ij} - \frac{1}{(1 + b^2)} b^i b^j - \frac{2}{\alpha(1 + b^2)} b^i y^j + b^j y^i + \frac{4b^2}{\alpha^2(1 + b^2)} y^i y^j.$$

Thus along $F^{n-1}(c)$, (4.1) and (4.6) gives

$$(4.7) g^{ij} b_i b_j = \frac{b^2}{(1 + b^2)}. \text{ Therefore, we get,}$$

$$(4.8) b_i(x(u)) = \sqrt{\frac{b^2}{(1 + b^2)}} N_i,$$

where $b^2 = a^{ij} b_i b_j$ and b is the length of the vector b^i

Again from (4.6) and (4.8) we have

$$(4.9) b^i = a^{ij} b_j = \sqrt{b^2 (1 + b^2)} N^i + \frac{2b^2}{\alpha^2} y^i.$$

Hence we have the following.

Theorem 4.1 - Let F^n be an exponential change of Finsler space with (α, β) metric $L = \alpha e^{\beta/\alpha} + \beta$ with gradient $b_i(x) = \partial_i b(x)$ and let $F^{n-1}(c)$ be a hypersurface of F^n which is given by $b(x) = c$ (constant). Suppose the Riemannian metric $a_{ij}(x) dx^i dx^j$ be positive definite and b_i be non-zero field. Then the induced metric on $F^{n-1}(c)$ is a Riemannian metric given by (4.2) and the relations (4.8) and (4.9) hold.

Along $F^{n-1}(c)$ the angular metric tensor and metric tensor are given by

$$(4.10) h_{ij} = a_{ij} + b_i b_j - \frac{1}{\alpha^2} Y_i Y_j, \text{ and}$$

$$(4.11) g_{ij} = a_{ij} + 5 b_i b_j + \frac{2}{\alpha} (b_i Y_j + b_j Y_i).$$

If $h^{(a)}_{\alpha\beta}$ denote the angular metric tensor of the Riemannian $a_{ij}(x)$ then using (4.1) in (4.10) we have along $F^{n-1}(c)$

$$(4.12) h_{\alpha\beta} = h^{(a)}_{\alpha\beta}. \text{ From (2.11) we have}$$

$$(4.13) \frac{\partial p_0}{\partial \beta} = \frac{5}{\alpha} \text{ (along } F^{n-1}(c)). \text{ Therefore (2.17) gives}$$

$$(4.14) (a) \gamma_1 = -\frac{1}{\alpha}, \quad (b) m_i = b_i.$$

Therefore $h v$ - torsion tensor becomes

$$(4.15) C_{ijk} = \frac{1}{\alpha} (h_{ij} b_k + h_{jk} b_i + h_{ki} b_j) - \frac{1}{2\alpha} b_i b_j b_k.$$

Hence from (3.9), (4.1), (4.8), and (4.15) we have

$$(4.16) M_{\alpha\beta} = \frac{1}{\alpha} \sqrt{\frac{b^2}{(1+b^2)}} h_{\alpha\beta}.$$

Also from (3.4), (3.13), (4.1) and (4.15) we have

$$(4.17) M_\alpha = 0. \text{ On using (4.17) in (3.15) we have}$$

$$(4.18) H_{\alpha\beta} = H_{\beta\alpha}.$$

Theorem 4.2 - The second fundamental v - tensor $M_{\alpha\beta}$ of $F^{n-1}(c)$ is given by (4.16) and the second fundamental h - tensor $H_{\alpha\beta}$ is symmetric.

Next from (4.1) we get

$$b_{i|\beta} B_\alpha^i + b_i B_{\alpha|\beta}^i = 0.$$

Therefore from (3.14) and the fact that

$$b_{i|\beta} = b_{i|j} B_\beta^j + b_i|_j N^j H_\beta, \text{ we get}$$

$$(4.19) b_{i|j} B_\alpha^i B_\beta^j + b_i|_j B_\alpha^i N^j H_\beta + b_i H_{\alpha\beta} N^i = 0.$$

Since $b_i|_j = -b_h C^{hij}$, from (3.13), (4.8) and (4.17) we get

$$(4.20) b_{i|j} B_\alpha^i B_\beta^j + \sqrt{\frac{b^2}{(1+b^2)}} H_{\alpha\beta} = 0.$$

Since $b_{i|j}$ is symmetric tensor Contracting (4.20) with respect to v^β and using (3.16) we get

$$(4.21) b_{i|j} B_\alpha^i y^j + \sqrt{\frac{b^2}{(1+b^2)}} H_\alpha = 0.$$

Further contracting (4.21) with respect to v^α we get

$$(4.22) b_{i|j} y^i y^j + \sqrt{\frac{b^2}{(1+b^2)}} H_\alpha = 0.$$

In view of Lemma (3.1) and (3.2) the hypersurface $F^{n-1}(c)$ is a hyperplane of the first kind if and only if $H_\alpha = 0$. Thus from (4.22) it follows that $F^{n-1}(c)$ is a hyperplane of the first kind if and only if $b_{i|j} y^i y^j = 0$. This $b_{i|j}$ being the covariant derivative with respect to $C\Gamma$ of F^n , it may depend on y^i . On the other hand $\nabla_j b_i = b_{ij}$ is the covariant derivative with respect to the Riemannian tensor $\{ \frac{i}{jk} \}$ constructed from $a_{ij}(x)$, therefore b_{ij} does not depend on y^i . We shall consider the difference $b_{i|j} - b_{ij}$ in the following. The difference tensor

$$D_{jk}^i = \Gamma_{jk}^{*i} - \{ \frac{i}{jk} \} \text{ is given by (2.19).}$$

Since b_i is a gradient vector from (2.18) we have

$$(4.23) \quad E_{ij} = b_{ij}, \quad F_{ij} = 0, \quad F_j^i = 0.$$

Thus (2.19) reduces to

$$(4.24) \quad D_{jk}^i = B^i b_{jk} + B_j^i b_{ok} + B_k^i b_{oj} - b_{om} g^{im} B_{jk} - C_{jm}^i A_k^m - C_{km}^i A_j^m + C_{jkm} A_s^m g^{is} + \lambda^s (C_{jm}^i C_{sk}^m + C_{km}^i C_{sj}^m - C_{ms}^i C_{kj}^m).$$

But in view of (4.3), (4.4) and (4.6) the expression (2.20) reduces to

(4.26)

- (a) $B_i = 5 b_i + \frac{2}{\alpha} Y_i,$
- (b) $B^i = g^{ij} B_j = \frac{1}{(1+b^2)} b^i + \frac{2}{\alpha(1+b^2)} y^i,$
- (c) $B_{ij} = \frac{1}{\alpha} (a_{ij} - \frac{1}{\alpha^2} Y_i Y_j) + \frac{5}{2\alpha} b^i b_j,$
- (d) $B_j^i = \frac{1}{\alpha} (\delta_{ij} - \frac{1}{\alpha^2} y^i Y_j) + \frac{3}{2\alpha(1+b^2)} b^i b_j - \frac{(2+5b^2)}{\alpha^2(1+b^2)} y^i b_j,$
- (e) $A_k^m = B_k^m b_{oo} + B^m b_{ko},$
- (f) $\lambda^m = B^m b_{oo}.$

By virtue of (4.1) we have $B_o^i = 0, \quad B_{io} = 0$ which gives $A_o^m = B^m b_{oo}$. We have therefore

$$(4.26) \quad D_{jo}^i = B^i b_{jo} + B_j^i b_{oo} - B^m C_{jm}^i b_{oo}.$$

Again contracting (4.26) with y^j , we get

$$(4.27) \quad D_{oo}^i = B^i b_{oo} = \left[\frac{b^i}{(1+b^2)} + \frac{2}{\alpha(1+b^2)} y^i \right] b_{oo},$$

Thus paying attention to (4.1) along the Fⁿ⁻¹ (c) we finally get

$$(4.28) \quad b_i D_{jo}^i = \frac{b^2}{(1+b^2)} b_{jo} + \frac{(2+5b^2)}{2\alpha(1+b^2)} b_j b_{oo} - \frac{1}{(1+b^2)} b_i b^r C_{jr}^i b_{oo}.$$

On contracting (4.28) by y^j we have

$$(4.29) \quad b_i D_{oo}^i = \frac{b^2}{(1+b^2)} b_{oo}.$$

From (3.13), (4.8), (4.9) and (4.17) we have

$$b_i b^m C_{jm}^i B_\alpha^j = b^2 M_\alpha = 0. \quad \text{Therefore the relation}$$

$b_{i|j} = b_{ij} - b_r D_{ij}^r$ and the equations (4.28) and (4.29) give

$$(4.30) \quad b_{i|j} y^i y^j = b_{oo} - b_r D_{oo}^r = \frac{1}{(1+b^2)} b_{oo}.$$

Consequently (4.21) and (4.22) may be written as

$$(4.31) \quad \sqrt{\frac{b^2}{(1+b^2)}} H_\alpha + \frac{1}{(1+b^2)} b_{io} B_\alpha^i = 0.$$

$$(4.32) \quad \sqrt{\frac{b^2}{(1+b^2)}} H_o + \frac{1}{(1+b^2)} b_{oo} = 0.$$

Thus the condition $H_o = 0$ is equivalent to b_{oo} , where b_{ij} does not depend on y^i . Since y^i is to satisfy (4.1), the condition is written as $b_{ij} y^i y^j = (b_i y^i) (C_j y^j)$ for some $C_j(x)$, so that we have

(4.33) $2 b_{ij} = b_i C_j + b_j C_i$. From (4.1) and (4.33) it follows that

$$(4.34) (a) b_{ij} = 0, (b) b_{ij} B_\alpha^i B_\beta^j = 0, (c) b_{ij} B_\alpha^i y^j = 0.$$

Hence (4.32) gives $H_\alpha = 0$.

Again from (4.24), (4.25) and (4.33) we have

$$(4.35) (a) b_{io} b^i = \frac{1}{2} c_0 b^2, (b) \lambda^r = 0 (c) A_j^i B_\beta^j = 0, (d) B_{ij} B_\alpha^i B_\beta^j = \frac{1}{\alpha} h_{\alpha\beta}.$$

Thus from (4.23) we have

$$(4.36) b_r D_{ij}^r B_\alpha^i B_\beta^j = -\frac{1}{2\alpha} (g^{rs} b_r b_s) C_0 h_{\alpha\beta} + b_r C_{ijm} A_s^m g^{rs} B_\alpha^i B_\beta^j.$$

Also from (4.6) we find

$$(4.37) b_r b_s g^{rs} = \frac{b^2}{(1+b^2)}. \text{ With the help of (3.9), (4.9), (4.16), (4.24) and (4.25)}$$

$$\text{we get (4.38) } b_r C_{ijm} A_s^m g^{rs} B_\alpha^i B_\beta^j = \frac{c_0 b^2}{2\alpha(1+b^2)} (b_r b_s g^{rs}) h_{\alpha\beta}.$$

Substituting (4.37), and (4.38) in (4.36), we get

$$(4.39) b_r D_{ij}^r B_\alpha^i B_\beta^j = -\frac{c_0 b^2}{2\alpha(1+b^2)^2} h_{\alpha\beta}. \text{ Therefore (4.20) reduces to}$$

$$(4.40) \sqrt{\frac{b^2}{(1+b^2)}} H_{\alpha\beta} + \frac{c_0 b^2}{2\alpha(1+b^2)^2} h_{\alpha\beta} = 0.$$

Hence the hypersurface $F^{n-1}(c)$ is umbilic.

Theorem 4.3- The necessary and sufficient condition for $F^{n-1}(c)$ to be hyperplane of first kind is (4.23) and in this case the second fundamental tensor of $F^{n-1}(c)$ is proportional to its angular metric tensor.

In view of Lemma (3.3) $F^{n-1}(c)$ is a hyperplane of second kind iff $H_\alpha = 0$ and $H_{\alpha\beta} = 0$. Thus from (4.40) we get $C_0 = C_i(x) y^i = 0$.

Therefore, there exist a function $\Psi(x)$ such that

$$(4.41) C_i(x) = \Psi(x) b_i(x). \text{ Thus (4.33) gives}$$

$$(4.42) b_{ij} = \Psi b_i b_j.$$

Theorem 4.4 – The necessary and sufficient condition for $F^{n-1}(c)$ to be hyperplane of second kind is (4.42).

Finally (4.16), (4.17) and lemma (3.4) shows that $F^{n-1}(c)$ does not become a hyperplane of the third kind.

Theorem 4.5 – The hypersurface $F^{n-1}(c)$ is not a hyperplane of the third kind.

References

[1] C. Shibata, On a Finsler space with Kropina metric, *Reports on Mathematical Physics*, **13** (1978), 117-128. [https://doi.org/10.1016/0034-4877\(78\)90024-1](https://doi.org/10.1016/0034-4877(78)90024-1)

- [2] C. Shibata, On a Finsler space with (α, β) metric, *J. Hokkaido University of Education*, **35** (1) (1984), 1-16.
- [3] G. S. Asanov, C-reducible Finsler space with Rander metric and Kropina metric (Russian) problem of geo II (1980) 65-88, English trans: *J. Sov. Math.*, **17** (1981), 1610-1624. <https://doi.org/10.1007/bf01084593>
- [4] M. Matsumoto, On C-reducible Finsler spaces, *Tensor N.S.*, **24** (1972), 29-37.
- [5] M. Matsumoto, On Finsler spaces with Rander metric and special form of important tensors, *J. Math. Kyoto Univ.*, **14** (1974), 477-498.
<https://doi.org/10.1215/kjm/1250523171>
- [6] M. Matsumoto, The induced intrinsic connection of a hyperplane and Finslerian projective geometry, *J. Math. Kyoto University*, **25** (1985), 107-144.
<https://doi.org/10.1215/kjm/1250521161>
- [7] M. Matsumoto, *Foundation of Finsler geometry and special Finsler spaces*, Kaiseisha Press, Odsu, 520 Japan, 1986.
- [8] M. Matsumoto, Theory of Finsler spaces with (α, β) metric, *Report on Math. Physics*, **31** (1992), 43-83. [https://doi.org/10.1016/0034-4877\(92\)90005-1](https://doi.org/10.1016/0034-4877(92)90005-1)
- [9] U.P. Singh and Bindu Kumari, On a hypersurface of a Matsumoto space, *Indian J. Pure and Appl. Math.*, **32** (4) (2001), 521-531.

Received: January 3, 2026; Published: January 19, 2026