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Abstract
We construct explicit examples of bounded sequences {an}∞n=1 in R

with prescribed behaviors for their accumulation properties. Specifi-
cally, we present one sequence whose set of subsequential limits S =
{ lim
k→∞

ank
| {ank

} is a convergent subsequence of {an}} has cardinality
ℵ0, the smallest infinite cardinality. We also construct a different exam-
ple where the set of limit points T = {x ∈ R | x is a limit point of {an}}
has cardinality ℵ0 as well.

These examples illustrate that not only can S and T differ in struc-
ture, but that both sets can be countably infinite—a possibility not
often emphasized in introductory analysis. This work contributes to a
deeper understanding of the diversity of limiting behavior in sequences
and highlights the subtle distinctions between subsequential limits and
limit points.

Keywords: bounded sequence; subsequential limits; limit points; cardi-
nality; countable infinity

1 Introduction
Let {an}∞n=1 be a bounded sequence in R, and define the set of its subsequential
limits as

S =
{
lim
k→∞

ank

∣∣∣ ank
is a convergent subsequence of an

}
.
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Similarly, define the set of its limit points as

T = {x |x is a limit point of {an}∞n=1} .

For basic definitions such as sequence, boundedness, convergence, subse-
quence, and limit point, we refer the reader to [2]. For foundational set theory
definitions, see [1].

It is known that both S and T are bounded subsets of R and that S ⊇ T
by the definition of limit points. Furthermore, by the Bolzano-Weierstrass
Theorem, T 6= ∅ if |{an}| =∞, where |A| denotes the cardinality of the set A.
See Theorem 2.3.8 on page 78 of [2]. It is possible for S to properly contain T .
For example, when an = a is a constant sequence, then S = {a} while T = ∅.

The purpose of this article is to investigate the cardinalities of the sets S
and T for various sequences {an}∞n=1. Specifically, we aim to construct explicit
examples where both S and T have countably infinite cardinality.

Interestingly, while the question can be readily posed to AI systems, several
prominent large language models—including ChatGPT, Deepseek, and Grok—
consistently fail to provide correct answers. In most cases, their responses
do not yield a sequence with a countably infinite set of limit points, instead
producing constructions similar to those in Proposition 1.

It is worth noting that a countable set may indeed have an uncountable set
of limit points, as exemplified by the rational numbers in the real line. Conse-
quently, a rigorous analysis is essential to ensure correctness. However, none
of the LLMs tested were capable of delivering a rigorous argument comparable
to the proof in Proposition 2.

As subsets of R, both S and T have cardinalities at most c = 2ℵ0 . This
upper bound is sharp: for instance, if {an} is the enumeration of all rational
numbers in (0, 1), then S = T = [0, 1], and thus both sets have cardinality c.

It is also easy to construct examples where |S| and |T | are finite. For any
integer k ≥ 1, let {an,m}∞n=1 be a sequence in (m,m+ 1) converging to m, for
each 1 ≤ m ≤ k. Then, for the sequence

{a1,1, a1,2, . . . , a1,k, a2,1, a2,2, . . . , a2,k, . . . , an,1, an,2, . . . , an,k, . . . },

we have S = T = {1, 2, . . . , k} and |S| = |T | = k.
So far, we have seen examples where both |S| and |T | can take any finite

value or the uncountable cardinality c. But what about the countably infinite
case ℵ0?

2 Main results
In this article, we construct two explicit sequences: {xn} for which |S| = ℵ0,
and {yn} for which |T | = ℵ0.
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For an example involving an unbounded sequence, see [3].

Starting with the sequence { 1
n
}∞n=1 as our base, we construct a new sequence

{xn}∞n=1 such that its set of subsequential limits is exactly

S = {0} ∪
{
1

n

}∞
n=1

,

ensuring that S is countably infinite. The construction of {xn} is designed
so that each value 1

n
appears infinitely often in a controlled fashion while also

allowing accumulation at 0.
To achieve this, we define {xn} iteratively, as illustrated in Figure 1:
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Figure 1: A sequence with countably infinite subsequential limits

The essential idea behind the construction is that the countable product
of countable sets is still countable. The sequence {xn} is generated by creat-
ing infinitely many initial segments of

{
1
n

}∞
n=1

, then enumerating all elements
diagonally—an idea commonly used in texts. See, for example, the first picture
on page 76 of [1] or the illustration on page 19 of [2].

Proposition 1. Let {xn} be the sequence defined as:(
1

1

)
,

(
1

2
,
1

1

)
,

(
1

3
,
1

2
,
1

1

)
,

(
1

4
,
1

3
,
1

2
,
1

1

)
, . . .

as illustrated in Figure 1. Then the set of subsequential limits of {xn} is
countably infinite.

Proof. We aim to show that

S = {0} ∪
{
1

n

}∞
n=1

.
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From Figure 1, it is clear that each term 1
n
appears infinitely often in the

sequence. In fact, each vertical column in the figure corresponds to a constant
subsequence converging to 1

n
. Similarly, every horizontal row reproduces the

sequence
{

1
n

}
, whose limit is 0. Hence {0} ∪

{
1
n

}∞
n=1
⊆ S.

To prove the reverse inclusion, suppose by contradiction that there exists
x ∈ S − ({0} ∪

{
1
n

}∞
n=1

). Then some subsequence {xnk
} of {xn} converges to

x, and x ∈ (0, 1) since each xn ∈ (0, 1].

Because (0, 1) =
∞⋃
k=1

[
1

k + 1
,
1

k

)
, there exists k such that x ∈

[
1

k+1
, 1
k

)
. By

the property of x, we know 1
k+1

< x < 1
k
. This implies

δ := min

{
x− 1

k + 1
,
1

k
− x
}
> 0.

However, since {xnk
} converges to x, for any ε > 0 there exists N such that

for all k > N , |xnk
− x| < ε. But each xnk

equals 1
n
for some n, so the set

{
1
n

}
would have to contain points within ε of x.

Yet, by the choice of δ, no term in
{

1
n

}
lies within δ of x, which contradicts

the convergence of {xnk
}. Therefore, no such x exists, and we conclude S =

{0} ∪
{

1
n

}∞
n=1

, which is countably infinite.

The above example shows that |S| = ℵ0 is possible. However, in that
example, we have T = {0}, so |T | = 1. Indeed, suppose x ∈ T − {0} ⊆
S − {0} = { 1

n
}∞n=1. Then x = 1

n
for some n ≥ 1. Define

δ =

{
min

{
1
n
− 1

n+1
, 1
n−1 −

1
n

}
= 1

n(n+1)
if n ≥ 2,

1
2

if n = 1.

Then, there is no other term of the form 1
k
within the δ-neighborhood of 1

n

except for 1
n
itself. Therefore, x is not a limit point of the sequence {xn}∞n=1.

To construct a sequence such that |T | = ℵ0, we will apply a similar idea
to that in Figure 1, but with an appropriate shift to ensure accumulation at
infinitely many distinct points.

Proposition 2. Let {yn} be the sequence defined as{
(
1

1
), (

1

2
,
1

1
+

1

1
), (

1

3
,
1

2
+

1

1
,
1

1
+

1

2
), (

1

4
,
1

3
+

1

1
,
1

2
+

1

2
,
1

1
+

1

3
), . . .

}
,

as illustrated in Figure 2. Then the set of limit points of {yn} is countably
infinite.
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Figure 2: A sequence with countably infinite limit points

Proof. We aim to show that

T = {0} ∪
{
1

n

}∞
n=1

.

From Figure 2, it is clear that { 1
n
}∞n=1 ⊆ T . Indeed, for each n ≥ 1, the

n-th vertical column (or (n + 1)-th horizontal row) in the figure corresponds
to the sequence

{
1
n
+ 1

k

}∞
k=1

, which converges to 1
n
.

Similarly, 0 ∈ T since the first horizontal row is the sequence
{

1
k

}∞
k=1

, which
converges to 0.

Now suppose, for contradiction, that there exists y ∈ T −
(
{0} ∪

{
1
n

}∞
n=1

)
,

so that there is a subsequence {ynk
} of {yn} converging to y. Since {yn} ⊆

(0, 2], we have y ∈ (0, 2], and in particular y ∈ (0, 2]− {1}.
We first claim that y ≤ 1. Suppose instead that y > 1. Let ai,j denote the

(i, j)-entry in the infinite table of Figure 2. Observe that ai,j is decreasing in
both rows and columns. So,

ai,j ≤ a3,3 =
1

3
+

1

2
=

5

6
, ∀i, j ≥ 3.

Hence, any subsequence converging to y > 1 can only use finitely many entries
from ai,j with i, j ≥ 3. Therefore, it must have infinitely many terms in the
first two rows. But the values in those rows converge to 0 or 1, so they cannot
converge to y > 1.

So y ∈ (0, 1). Since (0, 1) =
∞⋃
k=1

[
1

k + 1
,
1

k

)
, assume y ∈

[
1

k+1
, 1
k

)
for some
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k ≥ 1. By the property of y, we have y > 1
k+1

. Note that

ai,j ≤ a2k+4,2k+5 =
1

2k + 4
+

1

2k + 4
=

1

k + 2
, ∀i, j ≥ 2k + 5.

So, a subsequence converging to y > 1
k+1

cannot contain infinitely many terms
from the entries ai,j with i, j ≥ 2k + 4, as those values are all bounded above
by 1

k+2
. Therefore, it must draw infinitely many terms from the first 2k + 4

columns. By the Pigeonhole Principle, at least one of these columns must
contain infinitely many terms of the subsequence. However, each i-th column
converges to 1

i
, for 1 ≤ i ≤ 2k + 4, which contradicts the assumption that

y /∈
{

1
n

}∞
n=1

.
Therefore, no such y exists, and we conclude T = {0} ∪

{
1
n

}∞
n=1

.

3 Discussions and Conclusion
In this article, we construct two bounded sequences:

• One with a subsequential limits set S that is countably infinite while its
set of limit points T is finite.

• Another with T countably infinite.

These results demonstrate that all cardinalities—finite, countably infinite,
and continuum—are possible for S and T under bounded sequences.

The constructions are specific to sequences in R and depend on careful enu-
meration and convergence design. Generalizing to broader topological spaces
or higher-dimensional settings is not addressed here. We also do not explore
the statistical or functional properties of such sequences beyond their limit
sets.
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