International Journal of Contemporary Mathematical Sciences Vol. 20, 2025, no. 1, 29 - 37 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2025.91981

Hypersurfaces of Z-Shen Square Metric

S. K. Tiwari

Professor and Head

Department of Mathematics

K.S. Saket P.G. College Ayodhya (India) – 224123

Brijesh Kumar Maurya

Research Scholar
K.S. Saket P.G.College Ayodhya (India) – 224123

C. P. Maurya

Adarsh Inter College Saltauwa Gopalpur Basti (India) – 272190

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2025 Hikari Ltd.

Abstract

We have considered the Z-Shen Square metric L given by $L^* = \frac{(L+\beta)^2}{L}$. We have obtained three types of hypersurfaces and hyperplanes of first, second and third kind invariant under certain condition.

Mathematics Subject Classification: 53B40, 53B60

Keywords: Z-Shen Square metric, hypersurfaces, hyperplane of first, second and third kind

1. Introduction

Let (M^n, L) be an n – dimensional Finsler Space on a differentiable Manifold M^n , equipped with the fundamental function L(x, y). In 1984 C. Shibta [4] introduced the transformation of Finsler metric

(1.1)
$$L^*(x,y) = f(L,\beta)$$
,

where $\beta(x,y) = b_i(x)y^i$ is a one form on M^n and f is a positively homogeneous function of degree one in L and β . This change of Finsler metric is called a β -change.

A particular β -change of Finsler metric is a Z-Shen square metric is defined as [7]

(1.2)
$$L^* = \frac{(L+\beta)^2}{L} .$$

If L(x, y) reduces to the metric function of Riemannian space then $L^*(x, y)$ reduces to the metric function of the space generated by Z-Shen square metric. Due to this reason this transformation (1.2) has been called the Z-Shen square metric.

On the other hand , in 1985 , M.Matsumoto investigated the theory of Finslerian hypersurface [6] . He was defined three types of hypersurfaces that were called a hyperplane of the first , second and third kind . In the year 2005 , Prasad and Tripathi [2] studied the Finslerian hypersurfaces and Kropina change of Finsler metric and obtained different results in this paper . Again in the year 2005 , Prasad , Chaubey and Patel [3] studied the Finsler hypersurfaces and Matsumoto change of a Finsler metric and obtained different results .

2. Induced Finsler connection of the hypersurface

The hypersurface F^{n-1} of the Finsler Space F^n may be represented parametrically by the equations $x^i=x^i(u^\alpha)$, $i=1,2,\ldots,n$; $\alpha=1,2,\ldots,n-1$; where u^α are Gaussian coordinates on F^{n-1} . We suppose that the matrix consisting of projection factors $B^i_\alpha=\frac{\partial x^i}{\partial u^\alpha}$ is of rank (n-1). Then B^i_α may be regarded as (n-1) linearly independent vectors tangent to F^{n-1} at a point u^α . The supporting element y^i at a point u^α of F^{n-1} is assumed to be tangential to F^{n-1} so that

$$(2.1) y^i = B^i_\alpha v^\alpha .$$

Thus v^{α} is the supporting element of F^{n-1} at a point u^{α} . The metric tensor $g_{\alpha\beta}$ of F^{n-1} is given by

$$g_{\alpha\beta} = g_{ij} B^i_\alpha B^j_\beta \quad , \quad$$

where g_{ij} are components of the fundamental metric tensor of F^n . The components $N^i(x,y)$ of unit normal vector at a point u^{α} of F^{n-1} are given by

(2.2) (a)
$$g_{ij}B^i_{\alpha}N^j = 0$$
,

(b)
$$g_{ij}N^{i}N^{j} = 1$$
.

If (B_i^{α}, N_i) be the inverse matrix of (B_{α}^i, N^i) , then we have

(2.3) (a)
$$B_i^{\alpha} B_{\beta}^i = \delta_{\beta}^{\alpha}$$
,

(b)
$$B_{\alpha}^{i} N_{i} = 0$$
,

(c)
$$B_i^{\alpha} N^i = 0$$
,

(d)
$$N^i N_i = 1$$
 ,

(e)
$$B^i_{\alpha}B^{\alpha}_j + N^iN_j = \delta^i_j$$
.

The induced Finsler connection IF $\Gamma = (F_{\beta\gamma}^{\alpha}, N_{\beta}^{\alpha}, C_{\beta\gamma}^{\alpha})$ on F^{n-1} , the second fundamental h-tensor $H_{\alpha\beta}$ and the normal curvature tensor H_{α} are respectively given by [1]:

(2.4) (a)
$$H_{\alpha\beta} = N_i \left(B_{\alpha\beta}^i + F_{ik}^i B_{\alpha}^j B_{\beta}^k \right) + M_{\alpha} H_{\beta}$$
,

(b)
$$H_{\beta} = N_i \left(B_{0\beta}^i + N_j^i B_{\beta}^j \right)$$
,

(c)
$$M_{\alpha} = C_{ijk}B_{\alpha}^{i}N^{j}N^{k}$$
,

where

$$B^i_{\alpha\beta} = \frac{\partial^2 x^i}{\partial u^\alpha \partial u^\beta}$$
, $B^i_{0\beta} = B^i_{\alpha\beta} v^\alpha$.

Contracting $H_{\alpha\beta}$ by v^{α} , we immediately get

$$H_{0\beta} = H_{\alpha\beta} \, v^\alpha = H_\beta \ .$$

Furthermore the second fundamental v –tensor $M_{\alpha\beta}$ is given by [5]

$$(2.5) \quad M_{\alpha\beta} = C_{ijk} B_{\alpha}^{i} B_{\beta}^{j} N^{k} .$$

3. Fundamental quantities of (M^n, L^*)

To find the relation between the fundamental quantities of (M^n, L) and (M^n, L^*) , we use the following results:

(3.1)
$$\dot{\partial}_i \beta = b_i$$
, $\dot{\partial}_i L = l_i$, $\dot{\partial}_j l_i = \frac{1}{L} h_{ij}$,

where $\dot{\partial}_i$ stands for $\frac{\partial}{\partial y^i}$ and h_{ij} are components of angular metric tensor of (M^n, L) given by

$$h_{ij} = g_{ij} - l_i l_j = L \dot{\partial}_i \dot{\partial}_j L .$$

The successive differentiation of (1.2) with respect to y^i and y^j gives:

(3.2)
$$l_i^* = \frac{(L+\beta)}{L^2} [(L-\beta)l_i + 2Lb_i]$$
.

$$(3.3) \ h_{ij}^* = \frac{(L+\beta)^2}{L^4} \left[(L^2 - \beta^2) h_{ij} + 2\beta^2 l_i l_j + 2L^2 b_i b_j - 2L\beta \left(l_i b_j + l_j b_i \right) \right] \ .$$

The quantities corresponding to (M^n, L^*) will be denoted by putting star on the top of that quantity.

From (3.2) and (3.3) we get the following relation between the metric tensors of (M^n, L) and (M^n, L^*) :

$$(3.4) g_{ij}^* = \frac{(L+\beta)^2}{L^4} \left[(L^2 - \beta^2) g_{ij} + 2\beta (2\beta - L) l_i l_j + 6L^2 b_i b_j - 2L (2\beta - L) (l_i b_j + l_j b_i) \right].$$

Differentiating (3.4) with respect to y^k and using (3.1), we get:

$$(3.5) \qquad C_{ijk}^* = \frac{(L+\beta)^2 \left(L^2-\beta^2\right)}{L^4} C_{ijk} - \frac{(L+\beta)^2 (2\beta-L)}{L^4} \left(h_{ij} m_k + h_{jk} m_i + h_{ki} m_j\right) + \frac{6(L+\beta)}{L^4} m_i m_j m_k \; ,$$

where $m_i = b_i - \frac{\beta}{l} l_i$.

It is to be noted that

(3.6)
$$m_i l^i = 0$$
, $m_i b^i = b^2 - \frac{\beta^2}{L^2}$, $h_{ij} l^j = 0$, $h_{ij} m^j = h_{ij} b^j = m_i$,

where

$$m^i = g^{ij}m_j = b^i - \frac{\beta}{L}l^i.$$

4. Hypersurface of (M^n, L^*)

Suppose a Finslerian hypersurface $F^{n-1} = (M^{n-1}, \overline{L}(u, v))$ of the $F^n = (M^n, L(x, y))$ and another Finslerian hypersurface

$$F^{*n-1} = (M^{n-1}, \bar{L}^*(u, v))$$
 of the $F^{*n} = (M^n, L^*(x, v))$

given by Z-Shen square metric. Let $N^i(x,y)$ be the unit normal vector at each point of F^{n-1} and (B_i^{α}, N_i) be the inverse matrix of (B_{α}^i, N^i) . The functions B_{α}^i may be considered components of (n-1) linearly independent tangent vectors of F^{n-1} and they are invariant under Z-Shen square metric.

Thus we shall show that a unit normal vector $N^{*i}(u, v)$ of F^{*n-1} is uniquely determined by

(4.1) (a)
$$g_{ij}^* B_{\alpha}^i N^{*j} = 0$$
,

(b)
$$g_{ij}^* N^{*i} N^{*j} = 1$$
.

On contracting (3.4) by $N^i N^j$ and using (2.1) (a) and $l_i N^i = 0$, we get:

$$g_{ij}^* N^i N^j = \frac{(L+\beta)^2}{L^4} \Big[(L^2 - \beta^2) + 6L^2 (b_i N^i)^2 \Big].$$

Thus, we write

$$g_{ij}^* \left(\pm \frac{L^2 N^i}{(L+\beta) \sqrt{(L^2-\beta^2) + 6L^2 \left(b_i N^i\right)^2}} \right) \left(\pm \frac{L^2 N^j}{(L+\beta) \sqrt{(L^2-\beta^2) + 6L^2 \left(b_i N^i\right)^2}} \right) = 1 \ .$$

Now, we can put

$$(4.2) N^{*i} = \frac{L^2 N^i}{(L+\beta) \sqrt{(L^2-\beta^2) + 6L^2 (b_i N^i)^2}} ,$$

where we have chosen the positive sign in order to fix an orientation.

From (3.4), (4.1) (a) and (4.2), we get

$$\left[6L^{2}b_{i}B_{\alpha}^{i}-2L(2\beta-L)l_{i}B_{\alpha}^{i}\right]\frac{(L+\beta)b_{j}N^{j}}{L^{2}\sqrt{(L^{2}-\beta^{2})+6L^{2}(b_{i}N^{i})^{2}}}=0.$$

If

$$6L^2b_iB^i_\alpha-2L(2\beta-L)l_iB^i_\alpha=0\;,$$

then contracting it by v^{α} , we get L=0,

which is a contradiction that L>0.

Hence $b_i N^i = 0$.

Therefore (4.2) is rewritten as

$$(4.3) N^{*i} = \frac{L^2 N^i}{(L+\beta)\sqrt{(L^2-\beta^2)}} .$$

Thus we have from (4.3):

Proposition(4.1):

For a field of linear frame $(B_1^i, B_2^i, \dots, B_{n-1}^i, N^i)$ of F^n there exists a field of linear frame

 $\left(B_1^i,B_2^i,\dots,B_{n-1}^i,N^{*i}=\frac{L^2N^i}{(L+\beta)\sqrt{(L^2-\beta^2)}}\right) \quad \text{such that (4.1) is satisfied along } F^{*n-1} \\ \text{and then } b_i \text{ is tangential to both the hypersurface } F^{n-1} \text{ and } F^{*n-1} \; .$

The quantities $B_i^{*\alpha}$ are uniquely defined along F^{n-1} by

$$B_i^{*\alpha} = g^{*\alpha\beta} g_{ij}^* B_\beta^j \quad ,$$

where $(g^{*\alpha\beta})$ is the inverse matrix of $(g^*_{\alpha\beta})$.

Let $(B_i^{*\alpha}, N_i^*)$ be the inverse of (B_α^i, N^{*i}) , then we have

$$B_{\alpha}^{i}B_{i}^{*\beta}=\delta_{\alpha}^{\beta} ,$$

$$B_{\alpha}^{i}N_{i}^{*}=0,$$

$$N^{*i}N_i^*=1,$$

and

$$B_{\alpha}^{i}B_{j}^{*\alpha}+N^{*i}N_{j}^{*}=\delta_{j}^{i}.$$

We also get

 $N_i^* = g_{ij}^* N^{*j}$, which in view of (3.4), (2.2) and (4.3) gives:

(4.4)
$$N_i^* = \frac{(L+\beta)\sqrt{(L^2-\beta^2)}}{L^2} N_i$$
.

We denote the Cartan's connection of F^n and F^{*n} by $(F_{jk}^i, N_j^i, C_{jk}^i)$ and $(F_{jk}^{*i}, N_j^{*i}, C_{jk}^{*i})$ respectively and put

 $D_{jk}^i = F_{jk}^{*i} - F_{jk}^i$, which will be called the difference tensor. We chose that the vector field b_i in F^n such that

$$(4.5) \quad D_{ik}^{i} = A_{jk}b^{i} - B_{jk}l^{i} ,$$

where A_{jk} and B_{jk} are components of a symmetric covariant tensor of second order.

Now $N_i b^i = 0$ and $N_i l^i = 0$, from (4.5), we get

(4.6)
$$N_i D_{jk}^i = 0$$
 , $N_i F_{jk}^{*i} = N_i F_{jk}^i$ and $N_i D_{ok}^i = 0$.

Thus from (2.4)(b) and (4.3), we get

(4.7)
$$H_{\alpha}^* = \frac{(L+\beta)\sqrt{(L^2-\beta^2)}}{L^2} H_{\alpha}$$
.

If each path of a hypersurface F^{n-1} with respect to the induced connection is also a path of enveloping space F^n , then F^{n-1} is called a hyperplane of the first kind [1]. A hyperplane of the first kind is characterized by $H_{\alpha}=0$.

Hence we have from (4.7)

Theorem (4.1):

If $b_i(x)$ be a vector field in F^n satisfying (4.5), then a hypersurface F^{n-1} is a hyperplane of the first kind iff the hypersurface F^{*n-1} is a hyperplane of the first kind.

Again contracting (3.5) by $B^i_\alpha N^{*k} N^{*j}$ and paying attention to (4.4), $m_i N^i = 0$, $h_{jk} N^j N^k = 1$, and $h_{ij} B^i_\alpha N^j = 0$, we get

(4.8)
$$M_{\alpha}^* = M_{\alpha} - \frac{(2\beta - L)}{(L^2 - \beta^2)} m_i B_{\alpha}^i$$
.

From (2.4)(a), (4.4) and (4.8), we have

(4.9)
$$H_{\alpha\beta}^* = \frac{(L+\beta)\sqrt{(L^2-\beta^2)}}{L^2} \left(H_{\alpha\beta} - \frac{(2\beta-L)}{(L^2-\beta^2)} m_i B_{\alpha}^i H_{\beta} \right) .$$

If each h-path of a hypersurface F^{n-1} with respect to the induced connection is also h-path of the enveloping space F^n , then F^{n-1} is called a hyperplane of the second kind [1] . A hyperplane of the second kind is characterized by $H_{\alpha\beta}=0$.

Also $H_{\alpha\beta} = 0$ implies that $H_{\alpha} = 0$,

Thus we have from (4.7) and (4.9):

Theorem (4.2):

If $b_i(x)$ be a vector field in F^n satisfying (4.5), then a hypersurface F^{n-1} is a hyperplane of the second kind iff the hypersurface F^{*n-1} is a hyperplane of the second kind.

Lastly contracting (3.5) by $B_{\alpha}^{i}B_{\beta}^{j}N^{*k}$ and using (4.3), we have

$$(4.10) \qquad M_{\alpha\beta}^* = \tfrac{(L+\beta)\sqrt{(L^2-\beta^2)}}{L^2}\,M_{\alpha\beta}\;.$$

If the unit normal vector of F^{n-1} is parallel along each curve of F^{n-1} , then F^{n-1} is called a hyperplane of the third kind [1]. A hyperplane of third kind is characterized by $H_{\alpha\beta}=0$, $M_{\alpha\beta}=0$.

Thus we have from (4.7), (4.9) and (4.10):

Theorem (4.3):

If $b_i(x)$ be a vector field in F^n satisfying (4.5), then a hypersurface F^{n-1} is a hyperplane of the third kind iff the hypersurface F^{*n-1} is a hyperplane of the third kind.

References

- [1] A. Rapesak, Eine neve characterisierung Finslershen Taume Konstanter Krummung and projectiveben Raume, *Acta Math. Acad. Sci. Hungar*, 8 (1957), 1-18. https://doi.org/10.1007/bf02025229
- [2] B.N.Prasad and B.K.Tripathi, Finslerian hypersurfaces and Kropina chane of Finsler metric, Journal of the Tensor Society of India, **23** (2005), 49 58.

- [3] B.N.Prasad, G.C.Chaubey and G.S.Patel, Finslerian hypersurfaces and Matsumoto change of Finsler metric, *Varahmihir Journal of Mathematical Sciences*, **5** (2005), np. 2, 337-342.
- [4] C.Shibata, On invariant tensors of β change of Finsler metrics, *J. Math. Kyoto Univ*, **24** (1984), 163-188. https://doi.org/10.1215/kjm/1250521391
- [5] C.Shibata, U.P.Singh and A.K.Singh, On induced and intrinsic theories of hypersurface of Kropina space, *Hokkaido Univ. of Education (II A)*, **34** (1983), 1-11.
- [6] M. Matsumoto, The induced and intrinsic connection of a hypersurface and Finslerian projective geometry, *J. Math. Kyoto Univ.*, **25** (1985), 107 -144. https://doi.org/10.1215/kjm/1250521161
- [7] Z.Shen, G.Civi Yildirim, On a class of projectively flat metrics with constant flag curvature, *Can. J. Math.*, **60** (2008), no. 2, 443-456. https://doi.org/10.4153/cjm-2008-021-1

Received: March 15, 2025; Published: March 28, 2025