

On the Nonexistence of Hermitian Circulant Butson Hadamard Matrices

Norichika Matsuki

11-26 B-201, Matsubara-cho, Gamagori-shi, Aichi 443-0033, Japan

This article is distributed under the Creative Commons by-nc-nd Attribution License.
Copyright © 2025 Hikari Ltd.

Abstract

We give another proof of our previous results stating the one-to-one correspondence between circulant Hadamard matrices and Hermitian circulant complex Hadamard matrices and the nonexistence of Hermitian circulant q -Butson Hadamard matrices of order $n > 4$. In addition, we prove the nonexistence of skew-Hermitian circulant q -Butson Hadamard matrices of order $n > 4$.

Mathematics Subject Classification: 05B20, 15B57, 15B34

Keywords: Hermitian circlant complex Hadamard matrix, skew-Hermitian circlant complex Hadamard matrix, Butson matrix

1 Introduction

A Hadamard matrix H_n of order n is an $n \times n$ matrix with entries ± 1 such that $H_n H_n^t = nI_n$, where H_n^t is the transpose of H_n and I_n is the identity matrix of order n . Moreover, if H_n is a circulant matrix, then H_n is called a circulant Hadamard matrix. A generalization of a Hadamard matrix is a complex Hadamard matrix, which is defined as an $n \times n$ matrix K_n with complex entries of absolute 1 such that $K_n K_n^* = nI_n$, where K_n^* is the conjugate transpose of K_n . In particular, a complex Hadamard matrix whose entries are q -th roots of unity is called a q -Butson Hadamard matrix [2].

In 1963, Ryser [6] conjectured that there is no circulant Hadamard matrix of order $n > 4$. Brualdi [1] proved Ryser's conjecture provided that circulant

Hadamard matrices are symmetric. This result was generalized by Craigen and Kharaghani [3] to Hermitian circulant 4-Butson Hadamard matrices and skew-Hermitian circulant 4-Butson Hadamard matrices. In [5] we established the one-to-one correspondence between circulant Hadamard matrices and Hermitian circulant complex Hadamard matrices and generalized the Craigen and Kharaghani's result to Hermitian circulant q -Butson Hadamard matrices.

In this paper we give a more systematic proof of the above one-to-one correspondence and the nonexistence of Hermitian circulant q -Butson Hadamard matrices. In addition, we prove the nonexistence of skew-Hermitian circulant q -Butson Hadamard matrices.

2 The one-to-one correspondence

We denote by $\text{circ}(a_0, \dots, a_{n-1})$ the circulant matrix whose first row is $(a_0 \dots a_{n-1})$, by $\text{diag}(b_0, \dots, b_{n-1})$ the diagonal matrix whose $j + 1$ -th diagonal element is b_j , and by F_n the $n \times n$ Fourier matrix whose $(j + 1, k + 1)$ -th entry is $n^{-1/2} \zeta_n^{jk}$, where $\zeta_n = e^{2\pi i/n}$. It is well-known that $A_n = \text{circ}(a_0, \dots, a_{n-1})$ can be expressed as $A_n = F_n \text{diag}(b_0, \dots, b_{n-1}) F_n^*$, where $b_j = \sum_{k=0}^{n-1} a_k \zeta_n^{jk}$ for $0 \leq j \leq n - 1$.

Let Γ_n be the set of circulant complex matrices of order n . For $C_n = n^{1/2} F_n \text{diag}(d_0, \dots, d_{n-1}) F_n^* \in \Gamma_n$, we define transformation $T : \Gamma_n \rightarrow \Gamma_n$ by $T(C_n) = \text{circ}(d_0, \dots, d_{n-1})$. Then T has the following properties.

Lemma 2.1. *Let $C_n = \text{circ}(c_0, \dots, c_{n-1}) = n^{1/2} F_n \text{diag}(d_0, \dots, d_{n-1}) F_n^*$. Then*

- (i) $T(C_n^t) = T(C_n)^t$,
- (ii) $T(\overline{C_n}) = T(C_n)^*$,
- (iii) $T(T(C_n)) = C_n^t$,
- (iv) $T(\alpha C_n) = \alpha C_n$ for $\alpha \in \mathbb{C}$.

Proof. We first note that $C_n^t = \text{circ}(c_0, c_{n-1}, \dots, c_1)$. (i) and (ii) follow from

$$\sum_{k=0}^{n-1} c_{n-k} \zeta_n^{jk} = n^{1/2} d_{n-k}, \quad \sum_{k=0}^{n-1} \overline{c_k} \zeta_n^{jk} = \sum_{k=0}^{n-1} \overline{c_k \zeta_n^{(n-j)k}} = n^{1/2} \overline{d_{n-j}},$$

where $c_n = c_0$ and $d_n = d_0$. (iii) can be derived as follows:

$$\begin{aligned}
T(T(C_n)) &= T(\text{circ}(d_0, \dots, d_{n-1})) \\
&= n^{-1/2} \text{circ} \left(\sum_{j=0}^{n-1} d_j \zeta_n^{0j}, \dots, \sum_{j=0}^{n-1} d_j \zeta_n^{(n-1)j} \right) \\
&= n^{-1} \text{circ} \left(\sum_{j=0}^{n-1} \sum_{k=0}^{n-1} c_k \zeta_n^{jk+0j}, \dots, \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} c_k \zeta_n^{jk+(n-1)j} \right) \\
&= \text{circ}(c_0, c_{n-1}, \dots, c_1) = C_n^t.
\end{aligned}$$

From the definition of T , (iv) is obvious. \square

Lemma 2.2. *$T : \Gamma_n \rightarrow \Gamma_n$ is a bijection.*

Proof. Let C_n and C'_n be circulant complex matrices. By the definition, it is obvious that $C_n = C'_n$ if $T(C_n) = T(C'_n)$. Hence T is injective. The surjectivity of T follows from Lemma 2.1 (iii). \square

Lemma 2.3. *If C_n is a circulant complex Hadamard matrix of order n , then $T(C_n)$ is a circulant complex Hadamard matrix of order n .*

Proof. Let $C_n = \text{circ}(c_0, \dots, c_{n-1}) = n^{1/2} F_n \text{diag}(d_0, \dots, d_{n-1}) F_n^*$ be a circulant complex Hadamard matrix. Since

$$C_n C_n^* = n F_n \text{diag}(d_0 \overline{d_0}, \dots, d_{n-1} \overline{d_{n-1}}) F_n^* = n I_n,$$

it holds that $|d_j| = 1$ for $0 \leq j \leq n-1$. Moreover, since

$$\begin{aligned}
T(C_n) &= \text{circ}(d_0, \dots, d_{n-1}) \\
&= F_n \text{diag} \left(\sum_{j=0}^{n-1} d_j \zeta_n^{0j}, \dots, \sum_{j=0}^{n-1} d_j \zeta_n^{(n-1)j} \right) F_n^* \\
&= n^{-1/2} F_n \text{diag} \left(\sum_{j=0}^{n-1} \sum_{k=0}^{n-1} c_k \zeta_n^{jk+0j}, \dots, \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} c_k \zeta_n^{jk+(n-1)j} \right) F_n^* \\
&= n^{1/2} F_n \text{diag}(c_0, c_{n-1}, \dots, c_1) F_n^*,
\end{aligned}$$

we have

$$T(C_n) T(C_n)^* = n F_n \text{diag}(c_0 \overline{c_0}, c_{n-1} \overline{c_{n-1}}, \dots, c_1 \overline{c_1}) F_n^* = n I_n.$$

Thus $T(C_n)$ is a circulant complex Hadamard matrix. \square

The following theorem is a modification of our previous results [5, Lemmas 2.2 and 2.3].

Theorem 2.4. *If H_n is a circulant Hadamard matrix of order n , then $T(H_n)$ is a Hermitian circulant complex Hadamard matrix of order n .*

If K_n is a Hermitian circulant complex Hadamard matrix of order n , then $T(K_n)$ is a circulant Hadamard matrix of order n .

Proof. By Lemmas 2.1 and 2.3, if H_n is a circulant Hadamard matrix, then $T(H_n)$ is a circulant complex Hadamard matrix satisfying $T(H_n) = T(\overline{H_n}) = T(H_n)^*$. Hence $T(H_n)$ is a Hermitian circulant complex Hadamard matrix.

Conversely, if K_n is a Hermitian circulant complex Hadamard matrix, then $T(K_n)$ is a circulant complex Hadamard matrix satisfying $T(K_n) = T(K_n^*) = T(K_n)$. Hence $T(K_n)$ is a circulant Hadamard matrix. \square

Similarly, the following theorem holds.

Theorem 2.5. *If H_n is a circulant complex Hadamard matrix with entries $\pm i$ of order n , then $T(H_n)$ is a skew-Hermitian circulant complex Hadamard matrix of order n .*

If K_n is a skew-Hermitian circulant complex Hadamard matrix of order n , then $T(K_n)$ is a circulant complex Hadamard matrix with entries $\pm i$ of order n .

Proof. If H_n is a circulant complex Hadamard matrix with entries $\pm i$, then $T(H_n)$ is a circulant complex Hadamard matrix satisfying $T(H_n) = T(-\overline{H_n}) = -T(H_n)^*$. Hence $T(H_n)$ is a skew-Hermitian circulant complex Hadamard matrix.

Conversely, if K_n is a skew-Hermitian circulant complex Hadamard matrix, then $T(K_n)$ is a circulant complex Hadamard matrix satisfying $T(K_n) = T(-K_n^*) = -T(K_n)$. Hence $T(K_n)$ is a circulant complex Hadamard matrix with entries $\pm i$. \square

3 The nonexistence

Craigen and Kharaghani derived the following lemma [3, Lemma 4] from Ma's theorem [4, Theorem 3.1]. This lemma is our key tool.

Lemma 3.1 (Craigen and Kharaghani). *Let $n > 4$. Then there is no circulant Hadamard matrix H_n of order n such that $H_n^m = n^{m/2}I_n$ for some $m > 0$.*

Using the notation in Section 2, we prove our previous result [5, Theorem 3.2].

Theorem 3.2. *Let $q \geq 2$ and $n > 4$. Then there is no Hermitian circulant q -Butson Hadamard matrix of order n .*

Proof. Suppose that

$$K_n = \text{circ}(k_0, \dots, k_{n-1}) = n^{1/2} F_n \text{diag}(h_0, \dots, h_{n-1}) F_n^*$$

is a Hermitian circulant q -Butson Hadamard matrix of order $n > 4$. By Theorem 2.4, $H_n = \text{circ}(h_0, \dots, h_{n-1})$ is a circulant Hadamard matrix. Since $T(T(K_n)) = T(H_n) = K_n^t$, we have $\sum_{j=0}^{n-1} h_j \zeta_n^{lj} = n^{1/2} k_{n-l}$, where $k_n = k_0$. Hence

$$F_n^* H_n^q F_n = n^{q/2} \text{diag}(k_0^q, k_{n-1}^q, \dots, k_1^q) = n^{q/2} I_n,$$

so that $H_n^q = n^{q/2} I_n$. However, this contradicts Lemma 3.1. \square

If K_n is a skew-Hermitian circulant complex Hadamard matrix, then iK_n is a Hermitian circulant complex Hadamard matrix. Hence Theorem 3.2 implies the following theorem.

Theorem 3.3. *Let $q \geq 2$ and $n > 4$. Then there is no skew-Hermitian circulant q -Butson Hadamard matrix of order n .*

References

- [1] R.A. Brualdi, A note on multipliers of difference sets, *J. Res. Nat. Bur. Standards Sect. B Math. and Math. Phys.*, **69** (1965), 87 - 89. <https://doi.org/10.6028/jres.069b.008>
- [2] A. T. Butson, Generalized Hadamard matrices, *Proc. Amer. Math. Soc.*, **13** (1962), 894 - 898. <https://doi.org/10.1090/s0002-9939-1962-0142557-0>
- [3] R. Craigen and H. Kharaghani, On the nonexistence of Hermitian circulant complex Hadamard matrices, *Australas. J. Combin.*, **7** (1993), 225 - 227.
- [4] S. L. Ma, On rational circulants satisfying $A^m = dI + \lambda J$, *Linear Algebra Appl.*, **62** (1984), 155 - 161. [https://doi.org/10.1016/0024-3795\(84\)90092-2](https://doi.org/10.1016/0024-3795(84)90092-2)
- [5] N. Matsuki, Circulant Hadamard matrices and Hermitian circulant complex Hadamard matrices, *Int. Math. Forum*, **16** (2021), 19 - 22. <https://doi.org/10.12988/imf.2021.912166>
- [6] H.R. Ryser, *Combinatorial mathematics*, Wiley, New York, 1963.

Received: December 3, 2025; Published: December 12, 2025