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Abstract

A decomposition of a graph G is a set consisting of edge-disjoint
subgraphs of G whose union is G. A Hamiltonian cycle in G, is a
cycle containing all of the vertices of G. A m-star is a star containing m
edges and denoted by Sm, which is isomorphic to the complete bipartite
graph K1,m. In this paper, the necessary and sufficient conditions for
decomposing the balanced complete bipartite graph Kn,n into p copies
of Hamiltonian cycles and q copies of 3-stars (4-stars) are given.
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1 Introduction

Let G and H be graphs. A decomposition of a graph G is a set consisting of
edge-disjoint subgraphs of G whose union is G. An H-decomposition of G is
a decomposition of G whose members are isomorphic to H. If there exists an
H-decomposition of G, then G is referred to as H-decomposable.

Let m and n be positive integers. The balanced complete bipartite graph,
denoted by Kn,n, is a complete bipartite graph with both parts of sizes n. A
m-star is a star containing m edges and denoted by Sm, which is isomorphic to
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the complete bipartite graph K1,m. A m-cycle, denoted by Cm, is a cycle with
m edges. A Hamiltonian cycle in a graph G, is a cycle containing all vertices
of G.

The problem of decomposing a graph into p copies of a graph G and q copies
of a graph H where G and H are different types has attracted a fair share of
interest. Jeevadoss and Muthusamy [1, 2] studied the decomposability of Km,n

and λKm,n into paths and cycles having k edges, and gave some necessary or
sufficient conditions of the decompositions. In [3], Jeevadoss and Muthusamy
obtained necessary and sufficient conditions for decomposing product graphs
of complete graphs into paths and cycles with four edges. Shyu investigated
problems of decomposing of Kn into paths and stars with 3 edges [5], paths
and cycles having k edges with k = 3 or 4) [6, 7], and cycles and stars having
4 edges [8], and gave necessary and sufficient conditions for such decomposi-
tions to exist. In [9], Shyu obtained necessary and sufficient conditions for
decomposing Km,n into paths and stars with 3 edges. Lee and Chen [4] con-
sidered the problem of decomposing Kn into p copies of Hamiltonian paths
(cycles) and q copies of 3-stars, giving necessary and sufficient conditions of
the decomposition.

In this paper, we investigate the problem of decomposing Kn,n into p copies
of Hamiltonian cycles and q copies of 3-stars (4-stars). The following results
are obtained.

1. The necessary and sufficient conditions for decomposing Kn,n into p
copies of Hamiltonian cycles and q copies of 3-stars.

2. The necessary and sufficient conditions for decomposing Kn,n into p
copies of Hamiltonian cycles and q copies of 4-stars.

2 Preliminaries

In this section, essential terminology and notation used in our analysis are
introduced. We also present some useful results for our discussions to follow.

Let H be a graph. The degree degH u of a vertex u in H is the number
of edges incident with u. For m ≥ 2, the vertex with degree m in the m-star
is the center of the m-star, and any vertex with degree 1 is an endvertex of
the m-star. We use (x; y1, . . . , ym) to denote the m-star with center x and
endvertices y1, y2, . . . , ym. Furthermore, (u1, u2, . . . , um) denotes the m-cycle
through vertices u1, u2, . . . , um, u1 in order. Suppose that H1, H2, . . . , Hr are
graphs, H1 ∪ H2 ∪ · · · ∪ Hr (or

⋃r
j=1Hj) is used to denoted the graph with

vertex set
⋃r

j=1 V (Hj) and edge set
⋃r

j=1E(Hj).
Let aibj be an edge in Kn,n. The label of aibj is j − i (mod n). For

example, in K8,8 the labels of a1b6 and a7b3 are 5 and 4, respectively. For
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i ∈ {0, 1, 2, . . . , n − 1}, there is exactly one edge with label i incident with
vertex u for each u in Kn,n.

A spanning subgraph H of a graph G is a subgraph of G with V (H) = V (G).
A 1-factor of G is a spanning subgraph of G in which degG u = 1 for each vertex
u in G.

Let A = {a0, a1, . . . , an−1} and B = {b0, b1, . . . , bn−1}. We use (A,B) to
denote the bipartition of Kn,n throughout the paper.

Lemma 2.1 Let n be an even integer. Then there exists a C2n-decomposition
{Q0, Q1, . . . , Qn/2−1} of Kn,n, where Qi = (b2i, a0, b2i+1, a1, . . . , b2i+n−2, an−2,
b2i+n−1, an−1) for i = 0, 1, . . . , n/2 − 1, where the subscripts of b’s are taken
modulo n.

Lemma 2.2 Let n be an odd integer. Then Kn,n can be decomposed into
(n−1)/2 copies of C2n, R1, R2, . . . , R(n−1)/2, and a 1-factorM , where E(M) =
{a0b0, a1b1, . . . , an−1bn−1} and Ri = (b2i−1, a0, b2i, a1, . . . , b2i+n−3, an−2, b2i+n−2,
an−1) for i = 1, 2, . . . , (n− 1)/2, where the subscripts of b’s are taken modulo
n.

The following result is trivial.

Lemma 2.3 Let r be a positive integer, and let H be a bipartite graph with
bipartition (A,B). If degH u ≡ 0 (mod r) for each u ∈ A or degH v ≡ 0
(mod r) for each v ∈ B, then H has an Sr-decomposition such that there are
degH u/r stars with center at u for each u ∈ A or degH v/r stars with center
at v for each v ∈ B, respectively.

Let |A| denote the cardinality of set A. By Lemma 2.3, we have the fol-
lowing result.

Lemma 2.4 Let d and r be positive integers. Suppose that H is a d-regular
bipartite graph with bipartition (A,B). If d ≡ 0 (mod r), then H can be
decomposed into |A|d/r copies of r-stars.

Let W1,W2, . . . ,Wt be edge-disjoint Hamiltonian cycles of Kn,n. Since⋃t
j=1Wj is a 2t-regular bipartite graph, the result bellow follows from Lemma 2.4

Lemma 2.5 Let n, r and t be positive integers. Suppose thatW1,W2, . . . ,Wt

are edge-disjoint Hamiltonian cycles of Kn,n. If 2t ≡ 0 (mod r), then
⋃t

j=1Wj

can be decomposed into 2nt/r copies of r-stars.
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3 Decomposing Kn,n into Hamiltonian cycles

and 3-stars

In this section, we investigate the problem of decomposing Kn,n into p copies
of Hamiltonian cycles and q copies of 3-stars, and give the complete solution
of the problem. Before plunging into the proof of the main result, we need the
following lemmas.

Lemma 3.1 Let n be a positive even integer, and let p be a nonnegative
integer. If n2 − 2np ≥ 0 and n2 − 2np ≡ 0 (mod 3), then

p ∈
{
{0, 1, . . . , n/2} if n ≡ 0 (mod 6),
{n/2− 3m|m = 0, 1, . . . , bn/6c} otherwise.

Proof. Since n2 − 2np ≥ 0 and n is even, p ≤ bn2/2nc = n/2. Let p =
n/2 − (3m + i) where m is a nonnegative integer and i ∈ {0, 1, 2}. Since
n2 − 2np = n2 − 2n(n/2− (3m+ i)) = 6mn+ 2ni, n2 − 2np ≡ 2ni (mod 3).
When n ≡ 0 (mod 6), the condition 2ni ≡ 0 (mod 3) holds for any i. Thus
p ∈ {0, 1, . . . , n/2}. When n ≡ 2, 4 (mod 6), the condition 2ni ≡ 0 (mod 3)
holds if and only if i = 0. Thus p = n/2− 3m for some integer m. Since p is
a nonnegative integer, we have m ≤ bn/6c. This completes the proof. 2

Lemma 3.2 Let n be a positive odd integer, and let p be a nonnegative
integer. If n2 − 2np ≥ 0 and n2 − 2np ≡ 0 (mod 3), then

p ∈
{
{0, 1, . . . , (n− 1)/2} if n ≡ 3 (mod 6),
{(n− 3)/2− 3m|m = 0, 1, . . . , b(n− 3)/6c} otherwise.

Proof. Since n2 − 2np ≥ 0 and n is odd, p ≤ bn2/2nc = (n − 1)/2. Let
p = (n−1)/2−(3m+i) wherem is a nonnegative integer and i ∈ {0, 1, 2}. Since
n2−2np = n2−2n((n−1)/2−(3m+i)) = 6mn+n(2i+1), n2−2np ≡ n(2i+1)
(mod 3). When n ≡ 3 (mod 6), the condition n(2i + 1) ≡ 0 (mod 3)
holds for any i. Thus p ∈ {0, 1, . . . , (n − 1)/2}. When n ≡ 1, 5 (mod 6),
the condition n(2i + 1) ≡ 0 (mod 3) holds if and only if i = 1. Thus
p = (n − 1)/2 − (3m + 1) = (n − 3)/2 − 3m for some integer m. Since p
is a nonnegative integer, we have m ≤ b(n− 3)/6c. This completes the proof.
2

Let r = n/2 − 1 for even n and r = (n − 1)/2 for odd n. Suppose that
W1,W2, . . . ,Wr are edge-disjoint Hamiltonian cycles in Kn,n, and H = Kn,n−⋃r

i=1E(Wi). Since degH u = n − 2r < 3 for each vertex u, H is not S3-
decomposable. Hence we have the following result.
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Lemma 3.3 For n ≡ 0 (mod 3), Kn,n cannot be decomposed into n/2− 1
copies of C2n and 2n/3 copies of S3 for even n, and cannot be decomposed into
(n− 1)/2 copies of C2n and n/3 copies of S3 for odd n.

Lemma 3.4 For even n, the following results hold:

(1) Kn,n can be decomposed into n/2 copies of C2n.

(2) Kn,n can be decomposed into n/2 − 2 copies of C2n and 4n/3 copies of
S3 if n ≡ 0 (mod 6) and n ≥ 6.

(3) Kn,n can be decomposed into n/2 − 4 copies of C2n and 8n/3 copies of
S3 if n ≡ 0 (mod 6) and n ≥ 12.

Proof. By Lemma 2.1, Kn,n can be decomposed into n/2 copies of C2n,
Q0, Q1, . . . , Qn/2−1 with Qi = (b2i, a0, b2i+1, a1, . . . , b2i+n−2, an−2, b2i+n−1, an−1)
for i = 0, 1, . . . , n/2− 1, where the subscripts of b’s are taken modulo n. Thus
we obtain (1).

(2) Let G = Q0 ∪ Q1. Trivially Kn,n − E(G) =
⋃n/2−1

i=2 Qi, which can be
decomposed into n/2−2 copies of C2n. IfG can be decomposed into 4n/3 copies
of S3, then we have the result. Note that G is a 4-regular spanning subgraphs of
Kn,n, which contains all edges with labels 0, 1, 2, 3. For i ∈ {0, 1, . . . , n/3− 1},
let S(i) = (b3i+2; a3i, a3i+1, a3i+2). Clearly S(i) is a 3-star in G containing
edges with labels 0, 1, 2, and deg⋃n/3−1

i=0 S(i)
aj = 1 for each aj ∈ A. Hence

deg
G−E(

⋃n/3−1
i=0 S(i))

aj = 4 − 1 = 3 for each aj ∈ A. Thus G − E(
⋃n/3−1

i=0 S(i))

can be decomposed in to n copies of S3. This implies that G can be decomposed
into n+ n/3 = 4n/3 copies of S3, and settles (2).

(3) Let H =
⋃3

i=0Qi. Trivially Kn,n − E(H) =
⋃n/2−1

i=4 Qi, which can be
decomposed into n/2 − 4 copies of C2n. If H can be decomposed into 8n/3
copies of S3, then we have the result. Note that Q2∪Q3 is a 4-regular spanning
subgraphs of Kn,n containing all edges with labels 4, 5, 6, 7, which is isomorphic
to Q0 ∪Q1 = G. Thus Q2 ∪Q3 can be decomposed into 4n/3 copies of S3, in
turn, H can be decomposed into 8n/3 copies of S3. This settles (3). 2

Lemma 3.5 For odd n with n ≥ 3, the following results hold:

(1) Kn,n can be decomposed into (n− 3)/2 copies of C2n and n copies of S3.

(2) Kn,n can be decomposed into (n− 5)/2− 2 copies of C2n and 5n/3 copies
of S3 if n ≡ 3 (mod 6) and n ≥ 9.

(3) Kn,n can be decomposed into (n− 7)/2− 4 copies of C2n and 7n/3 copies
of S3 if n ≡ 3 (mod 6) and n ≥ 15.
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Proof. By Lemma 2.2, Kn,n can be decomposed into (n−1)/2 copies of C2n,
R1, R2, . . . , R(n−1)/2, and a 1-factorM , where E(M) = {a0b0, a1b1, . . . , an−1bn−1}
and Ri = (b2i−1, a0, b2i, a1, . . . , b2i+n−3, an−2, b2i+n−2, an−1) for i = 1, 2, . . . , (n−
1)/2, the subscripts of b’s are taken modulo n.

(1) Let G = R1 ∪M . Trivially Kn,n − E(G) =
⋃(n−1)/2

i=2 Ri, which can be
decomposed into (n−3)/2 copies of C2n. If G can be decomposed into n copies
of S3, then we have the result. Note that G is a 3-regular spanning subgraphs
of Kn,n, which contains all edges with labels 0, 1, 2. By Lemma 2.4, G can be
decomposed into n(3/3) = n copies of S3. This settles (1).

(2) Let G = R1 ∪ R2 ∪M . Trivially Kn,n − E(G) =
⋃(n−1)/2

i=3 Ri, which
can be decomposed into (n − 5)/2 copies of C2n. If G can be decomposed
into 5n/3 copies of S3, then we have the result. Note that G is a 5-regular
spanning subgraphs of Kn,n, which contains all edges with labels 0, 1, 2, 3, 4.
For i ∈ {0, 1, . . . , n/3 − 1}, let S(i) = (b3i+2; a3i, a3i+1, a3i+2) and S ′(i) =
(b3i+3; a3i+1, a3i+2, a3i+3). It is easy to check that S(i) and S ′(i) are 3-stars in
G containing edges with labels 0, 1, 2, and deg⋃n/3−1

i=0 (S(i)∪S′(i)) aj = 2 for each

aj ∈ A. Hence deg
G−E(

⋃n/3−1
i=0 (S(i)∪S′(i))) aj = 5 − 2 = 3 for each aj ∈ A. Thus

G − E(
⋃n/3−1

i=0 (S(i) ∪ S ′(i)) can be decomposed in to n copies of S3. This
implies that G can be decomposed into n + 2n/3 = 5n/3 copies of S3, and
settles (2).

(3) Let H = (
⋃3

i=1Ri) ∪M . Trivially Kn,n − E(H) =
⋃(n−1)/2

i=4 Ri, which
can be decomposed into (n − 7)/2 copies of C2n. If H can be decomposed
into 7n/3 copies of S3, then we have the result. Note that H is a 7-regular
spanning subgraphs of Kn,n, which contains all edges with labels 0, 1, . . . , 6.
For i ∈ {0, 1, . . . , n/3 − 1}, let S(i) = (b3i+2; a3i, a3i+1, a3i+2). Obviously S(i)
is a 3-star in H containing edges with labels 0, 1, 2, and deg⋃n/3−1

i=0 S(i)
aj = 1

for each aj ∈ A. Note that deg
H−E(

⋃n/3−1
i=0 S(i))

aj = 7− 1 = 6 for each aj ∈ A.

Thus H − E(
⋃n/3−1

i=0 S(i)) can be decomposed in to 2n copies of S3. Hence H
can be decomposed into 2n+ n/3 = 7n/3 copies of S3. This settles (3). 2

By Lemma 2.5, the union of 3m copies of edge-disjoint C2n can be de-
composed into 2n(3m)/3 = 2mn copies of S3. Thus we have the following
result.

Theorem 3.6 Suppose that n, α and m are positive integers with α ≥ 3m,
and β is a nonnegative integer. If Kn,n can be decomposed into α copies of C2n

and β copies of S3, then Kn,n can be decomposed into α − 3m copies of C2n

and β + 2mn copies of S3.

Trivially, if Kn,n can be decomposed into p copies of C2n and q copies of
S3, then n2 = 2np + 3q. By Theorem 3.6 as well as Lemmas 3.1 to 3.5, the
main result of this section is obtained.
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Theorem 3.7 Let p and q be nonnegative integers, and let n be a positive
integer. There exists a decomposition of Kn,n into p copies of Hamiltonian
cycles and q copies of 3-stars if and only if 2np+ 3q = n2 and p 6= n/2− 1 for
n ≡ 0 (mod 6) and p 6= (n− 1)/2 for n ≡ 3 (mod 6).

4 Decomposing Kn,n into Hamiltonian cycles

and 4-stars

In this section, we investigate the problem of decomposing Kn,n into p copies
of Hamiltonian cycles and q copies of 4-stars, and give the complete solution
of the problem.

Lemma 4.1 Let n be a positive even integer, and let p be a nonnegative
integer. n2 − 2np ≥ 0 and n2 − 2np ≡ 0 (mod 4) if and only if n ≡ 0
(mod 2) and p ≤ n/2.

Proof. Note that n − 2p is even if and only if n is even. This implies that
n2 − 2np = n(n − 2p) ≡ 0 (mod 4) if and only if n ≡ 0 (mod 2). Since
n2 − 2np ≥ 0, p ≤ n2/(2n) = n/2. This completes the proof. 2

Let t = n/2−1 for even integer n with n ≥ 4. Suppose that W1,W2, . . . ,Wt

are edge-disjoint Hamiltonian cycles in Kn,n, and H = Kn,n −
⋃t

i=1E(Wi).
Since degH u = n − 2t = 2 < 4 for each vertex u, H is not S4-decomposable.
Hence we have the following result.

Lemma 4.2 For even n with n ≥ 4, Kn,n cannot be decomposed into n/2−1
copies of C2n and n/2 copies of S4.

Lemma 4.3 Let n be an even integer with n ≥ 6. Then Kn,n can be de-
composed into n/2− 3 copies of C2n and 3n/2 copies of S4.

Proof. Let G =
⋃2

i=0Qi. Trivially Kn,n − E(G) =
⋃n/2−1

i=3 Qi, which
can be decomposed into n/2 − 3 copies of C2n. If G can be decomposed into
3n/2 copies of S3, then we have the result. Note that G is a 6-regular span-
ning subgraphs of Kn,n, which contains all edges with labels 0, 1, . . . , 5. For
i ∈ {0, 1, . . . , n/2 − 1}, let S(i) = (a2i; b2i, b2i+1, b2i+2, b2i+3). It is not difficult
to check that S(i) is a 4-star in G containing edges with labels 0, 1, 2, 3, and
deg⋃n/2−1

i=0 S(i)
bj = 2 for each bj ∈ B. Hence deg

G−E(
⋃n/2−1

i=0 S(i))
bj = 6 − 2 = 4

for each bj ∈ B. Thus G − E(
⋃n/2−1

i=0 S(i)) can be decomposed in to n copies
of S4. This implies that G can be decomposed into n + n/2 = 3n/2 copies of
S4 and completes the proof. 2
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The union of 2m copies of edge-disjoint C2n is a 4m-regular bipartite graph,
which can be decomposed into 2n(2m)/4 = mn copies of S4 by Lemma 2.5.
Thus we have the following result.

Theorem 4.4 Suppose that n, α and m are positive integers with α ≥ 2m,
and β is a nonnegative integer. If Kn,n can be decomposed into α copies of C2n

and β copies of S4, then Kn,n can be decomposed into α − 2m copies of C2n

and β +mn copies of S4.

Trivially, if Kn,n can be decomposed into p copies of C2n and q copies of
S4, then n2 = 2np + 4q. By Theorem 4.4 as well as Lemmas 2.1, 4.1 to 4.3,
the main result of this section is obtained.

Theorem 4.5 Let p and q be nonnegative integers, and let n be a positive
integer. There exists a decomposition of Kn,n into p copies of Hamiltonian
cycles and q copies of 4-stars if and only if 2np+ 4q = n2 and p 6= n/2− 1.
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