International Journal of Contemporary Mathematical Sciences Vol. 20, 2025, no. 1, 89 - 97 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2025.92004

Decomposing $K_{n,n}$ into Hamiltonian Cycles and Small Stars

Hung-Chih Lee

Department of Information Technology Ling Tung University Taichung 40852, Taiwan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2025 Hikari Ltd.

Abstract

A decomposition of a graph G is a set consisting of edge-disjoint subgraphs of G whose union is G. A Hamiltonian cycle in G, is a cycle containing all of the vertices of G. A m-star is a star containing medges and denoted by S_m , which is isomorphic to the complete bipartite graph $K_{1,m}$. In this paper, the necessary and sufficient conditions for decomposing the balanced complete bipartite graph $K_{n,n}$ into p copies of Hamiltonian cycles and q copies of 3-stars (4-stars) are given.

Mathematics Subject Classification: 05C51

Keywords: decomposition, complete bipartite graph, Hamiltonian cycle, star

1 Introduction

Let G and H be graphs. A decomposition of a graph G is a set consisting of edge-disjoint subgraphs of G whose union is G. An H-decomposition of G is a decomposition of G whose members are isomorphic to H. If there exists an H-decomposition of G, then G is referred to as H-decomposable.

Let m and n be positive integers. The balanced complete bipartite graph, denoted by $K_{n,n}$, is a complete bipartite graph with both parts of sizes n. A m-star is a star containing m edges and denoted by S_m , which is isomorphic to

the complete bipartite graph $K_{1,m}$. A m-cycle, denoted by C_m , is a cycle with m edges. A Hamiltonian cycle in a graph G, is a cycle containing all vertices of G.

The problem of decomposing a graph into p copies of a graph G and q copies of a graph H where G and H are different types has attracted a fair share of interest. Jeevadoss and Muthusamy [1, 2] studied the decomposability of $K_{m,n}$ and $\lambda K_{m,n}$ into paths and cycles having k edges, and gave some necessary or sufficient conditions of the decompositions. In [3], Jeevadoss and Muthusamy obtained necessary and sufficient conditions for decomposing product graphs of complete graphs into paths and cycles with four edges. Shyu investigated problems of decomposing of K_n into paths and stars with 3 edges [5], paths and cycles having k edges with k=3 or k

In this paper, we investigate the problem of decomposing $K_{n,n}$ into p copies of Hamiltonian cycles and q copies of 3-stars (4-stars). The following results are obtained.

- 1. The necessary and sufficient conditions for decomposing $K_{n,n}$ into p copies of Hamiltonian cycles and q copies of 3-stars.
- 2. The necessary and sufficient conditions for decomposing $K_{n,n}$ into p copies of Hamiltonian cycles and q copies of 4-stars.

2 Preliminaries

In this section, essential terminology and notation used in our analysis are introduced. We also present some useful results for our discussions to follow.

Let H be a graph. The $degree \deg_H u$ of a vertex u in H is the number of edges incident with u. For $m \geq 2$, the vertex with degree m in the m-star is the center of the m-star, and any vertex with degree 1 is an endvertex of the m-star. We use $(x; y_1, \ldots, y_m)$ to denote the m-star with center x and endvertices y_1, y_2, \ldots, y_m . Furthermore, (u_1, u_2, \ldots, u_m) denotes the m-cycle through vertices $u_1, u_2, \ldots, u_m, u_1$ in order. Suppose that H_1, H_2, \ldots, H_r are graphs, $H_1 \cup H_2 \cup \cdots \cup H_r$ (or $\bigcup_{j=1}^r H_j$) is used to denoted the graph with vertex set $\bigcup_{j=1}^r V(H_j)$ and edge set $\bigcup_{j=1}^r E(H_j)$.

Let a_ib_j be an edge in $K_{n,n}$. The *label* of a_ib_j is $j-i \pmod{n}$. For example, in $K_{8,8}$ the labels of a_1b_6 and a_7b_3 are 5 and 4, respectively. For

 $i \in \{0, 1, 2, ..., n-1\}$, there is exactly one edge with label i incident with vertex u for each u in $K_{n,n}$.

A spanning subgraph H of a graph G is a subgraph of G with V(H) = V(G). A 1-factor of G is a spanning subgraph of G in which $\deg_G u = 1$ for each vertex u in G.

Let $A = \{a_0, a_1, \dots, a_{n-1}\}$ and $B = \{b_0, b_1, \dots, b_{n-1}\}$. We use (A, B) to denote the bipartition of $K_{n,n}$ throughout the paper.

Lemma 2.1 Let n be an even integer. Then there exists a C_{2n} -decomposition $\{Q_0, Q_1, \ldots, Q_{n/2-1}\}$ of $K_{n,n}$, where $Q_i = (b_{2i}, a_0, b_{2i+1}, a_1, \ldots, b_{2i+n-2}, a_{n-2}, b_{2i+n-1}, a_{n-1})$ for $i = 0, 1, \ldots, n/2 - 1$, where the subscripts of b's are taken modulo n.

Lemma 2.2 Let n be an odd integer. Then $K_{n,n}$ can be decomposed into (n-1)/2 copies of C_{2n} , R_1 , R_2 ,..., $R_{(n-1)/2}$, and a 1-factor M, where $E(M) = \{a_0b_0, a_1b_1, \ldots, a_{n-1}b_{n-1}\}$ and $R_i = (b_{2i-1}, a_0, b_{2i}, a_1, \ldots, b_{2i+n-3}, a_{n-2}, b_{2i+n-2}, a_{n-1})$ for $i = 1, 2, \ldots, (n-1)/2$, where the subscripts of b's are taken modulo n.

The following result is trivial.

Lemma 2.3 Let r be a positive integer, and let H be a bipartite graph with bipartition (A, B). If $\deg_H u \equiv 0 \pmod{r}$ for each $u \in A$ or $\deg_H v \equiv 0 \pmod{r}$ for each $v \in B$, then H has an S_r -decomposition such that there are $\deg_H u/r$ stars with center at u for each $u \in A$ or $\deg_H v/r$ stars with center at v for each $v \in B$, respectively.

Let |A| denote the cardinality of set A. By Lemma 2.3, we have the following result.

Lemma 2.4 Let d and r be positive integers. Suppose that H is a d-regular bipartite graph with bipartition (A, B). If $d \equiv 0 \pmod{r}$, then H can be decomposed into |A|d/r copies of r-stars.

Let W_1, W_2, \ldots, W_t be edge-disjoint Hamiltonian cycles of $K_{n,n}$. Since $\bigcup_{j=1}^t W_j$ is a 2t-regular bipartite graph, the result bellow follows from Lemma 2.4

Lemma 2.5 Let n, r and t be positive integers. Suppose that W_1, W_2, \ldots, W_t are edge-disjoint Hamiltonian cycles of $K_{n,n}$. If $2t \equiv 0 \pmod{r}$, then $\bigcup_{j=1}^t W_j$ can be decomposed into 2nt/r copies of r-stars.

3 Decomposing $K_{n,n}$ into Hamiltonian cycles and 3-stars

In this section, we investigate the problem of decomposing $K_{n,n}$ into p copies of Hamiltonian cycles and q copies of 3-stars, and give the complete solution of the problem. Before plunging into the proof of the main result, we need the following lemmas.

Lemma 3.1 Let n be a positive even integer, and let p be a nonnegative integer. If $n^2 - 2np \ge 0$ and $n^2 - 2np \equiv 0 \pmod{3}$, then

$$p \in \left\{ \begin{array}{ll} \{0,1,\ldots,n/2\} & \text{if } n \equiv 0 \pmod{6}, \\ \{n/2-3m|m=0,1,\ldots,\lfloor n/6\rfloor\} & \text{otherwise.} \end{array} \right.$$

Proof. Since $n^2 - 2np \ge 0$ and n is even, $p \le \lfloor n^2/2n \rfloor = n/2$. Let p = n/2 - (3m+i) where m is a nonnegative integer and $i \in \{0,1,2\}$. Since $n^2 - 2np = n^2 - 2n(n/2 - (3m+i)) = 6mn + 2ni$, $n^2 - 2np \equiv 2ni \pmod 3$. When $n \equiv 0 \pmod 6$, the condition $2ni \equiv 0 \pmod 3$ holds for any i. Thus $p \in \{0,1,\ldots,n/2\}$. When $n \equiv 2,4 \pmod 6$, the condition $2ni \equiv 0 \pmod 3$ holds if and only if i=0. Thus p=n/2-3m for some integer m. Since p is a nonnegative integer, we have $m \le \lfloor n/6 \rfloor$. This completes the proof. \square

Lemma 3.2 Let n be a positive odd integer, and let p be a nonnegative integer. If $n^2 - 2np \ge 0$ and $n^2 - 2np \equiv 0 \pmod{3}$, then

$$p \in \begin{cases} \{0, 1, \dots, (n-1)/2\} & \text{if } n \equiv 3 \pmod{6}, \\ \{(n-3)/2 - 3m | m = 0, 1, \dots, \lfloor (n-3)/6 \rfloor \} & \text{otherwise.} \end{cases}$$

Proof. Since $n^2 - 2np \ge 0$ and n is odd, $p \le \lfloor n^2/2n \rfloor = (n-1)/2$. Let p = (n-1)/2 - (3m+i) where m is a nonnegative integer and $i \in \{0,1,2\}$. Since $n^2 - 2np = n^2 - 2n((n-1)/2 - (3m+i)) = 6mn + n(2i+1), n^2 - 2np \equiv n(2i+1)$ (mod 3). When $n \equiv 3 \pmod 6$, the condition $n(2i+1) \equiv 0 \pmod 3$ holds for any i. Thus $p \in \{0,1,\ldots,(n-1)/2\}$. When $n \equiv 1,5 \pmod 6$, the condition $n(2i+1) \equiv 0 \pmod 3$ holds if and only if i=1. Thus p = (n-1)/2 - (3m+1) = (n-3)/2 - 3m for some integer m. Since p is a nonnegative integer, we have $m \le \lfloor (n-3)/6 \rfloor$. This completes the proof. \square

Let r = n/2 - 1 for even n and r = (n-1)/2 for odd n. Suppose that W_1, W_2, \ldots, W_r are edge-disjoint Hamiltonian cycles in $K_{n,n}$, and $H = K_{n,n} - \bigcup_{i=1}^r E(W_i)$. Since $\deg_H u = n - 2r < 3$ for each vertex u, H is not S_3 -decomposable. Hence we have the following result.

Lemma 3.3 For $n \equiv 0 \pmod{3}$, $K_{n,n}$ cannot be decomposed into n/2-1 copies of C_{2n} and 2n/3 copies of S_3 for even n, and cannot be decomposed into (n-1)/2 copies of C_{2n} and n/3 copies of S_3 for odd n.

Lemma 3.4 For even n, the following results hold:

- (1) $K_{n,n}$ can be decomposed into n/2 copies of C_{2n} .
- (2) $K_{n,n}$ can be decomposed into n/2 2 copies of C_{2n} and 4n/3 copies of S_3 if $n \equiv 0 \pmod{6}$ and $n \geq 6$.
- (3) $K_{n,n}$ can be decomposed into n/2 4 copies of C_{2n} and 8n/3 copies of S_3 if $n \equiv 0 \pmod{6}$ and $n \geq 12$.

Proof. By Lemma 2.1, $K_{n,n}$ can be decomposed into n/2 copies of C_{2n} , $Q_0, Q_1, \ldots, Q_{n/2-1}$ with $Q_i = (b_{2i}, a_0, b_{2i+1}, a_1, \ldots, b_{2i+n-2}, a_{n-2}, b_{2i+n-1}, a_{n-1})$ for $i = 0, 1, \ldots, n/2 - 1$, where the subscripts of b's are taken modulo n. Thus we obtain (1).

- (2) Let $G = Q_0 \cup Q_1$. Trivially $K_{n,n} E(G) = \bigcup_{i=2}^{n/2-1} Q_i$, which can be decomposed into n/2-2 copies of C_{2n} . If G can be decomposed into 4n/3 copies of S_3 , then we have the result. Note that G is a 4-regular spanning subgraphs of $K_{n,n}$, which contains all edges with labels 0, 1, 2, 3. For $i \in \{0, 1, \ldots, n/3 1\}$, let $S(i) = (b_{3i+2}; a_{3i}, a_{3i+1}, a_{3i+2})$. Clearly S(i) is a 3-star in G containing edges with labels 0, 1, 2, and $\deg_{\bigcup_{i=0}^{n/3-1} S(i)} a_j = 1$ for each $a_j \in A$. Hence $\deg_{G-E(\bigcup_{i=0}^{n/3-1} S(i))} a_j = 4 1 = 3$ for each $a_j \in A$. Thus $G E(\bigcup_{i=0}^{n/3-1} S(i))$ can be decomposed in to n copies of S_3 . This implies that G can be decomposed into n + n/3 = 4n/3 copies of S_3 , and settles (2).
- (3) Let $H = \bigcup_{i=0}^{3} Q_i$. Trivially $K_{n,n} E(H) = \bigcup_{i=4}^{n/2-1} Q_i$, which can be decomposed into n/2 4 copies of C_{2n} . If H can be decomposed into 8n/3 copies of S_3 , then we have the result. Note that $Q_2 \cup Q_3$ is a 4-regular spanning subgraphs of $K_{n,n}$ containing all edges with labels 4, 5, 6, 7, which is isomorphic to $Q_0 \cup Q_1 = G$. Thus $Q_2 \cup Q_3$ can be decomposed into 4n/3 copies of S_3 , in turn, H can be decomposed into 8n/3 copies of S_3 . This settles (3). \square

Lemma 3.5 For odd n with $n \ge 3$, the following results hold:

- (1) $K_{n,n}$ can be decomposed into (n-3)/2 copies of C_{2n} and n copies of S_3 .
- (2) $K_{n,n}$ can be decomposed into (n-5)/2-2 copies of C_{2n} and 5n/3 copies of S_3 if $n \equiv 3 \pmod{6}$ and $n \geq 9$.
- (3) $K_{n,n}$ can be decomposed into (n-7)/2-4 copies of C_{2n} and 7n/3 copies of S_3 if $n \equiv 3 \pmod{6}$ and $n \ge 15$.

Proof. By Lemma 2.2, $K_{n,n}$ can be decomposed into (n-1)/2 copies of C_{2n} , $R_1, R_2, \ldots, R_{(n-1)/2}$, and a 1-factor M, where $E(M) = \{a_0b_0, a_1b_1, \ldots, a_{n-1}b_{n-1}\}$ and $R_i = (b_{2i-1}, a_0, b_{2i}, a_1, \ldots, b_{2i+n-3}, a_{n-2}, b_{2i+n-2}, a_{n-1})$ for $i = 1, 2, \ldots, (n-1)/2$, the subscripts of b's are taken modulo n.

- (1) Let $G = R_1 \cup M$. Trivially $K_{n,n} E(G) = \bigcup_{i=2}^{(n-1)/2} R_i$, which can be decomposed into (n-3)/2 copies of C_{2n} . If G can be decomposed into n copies of S_3 , then we have the result. Note that G is a 3-regular spanning subgraphs of $K_{n,n}$, which contains all edges with labels 0, 1, 2. By Lemma 2.4, G can be decomposed into n(3/3) = n copies of S_3 . This settles (1).
- (2) Let $G = R_1 \cup R_2 \cup M$. Trivially $K_{n,n} E(G) = \bigcup_{i=3}^{(n-1)/2} R_i$, which can be decomposed into (n-5)/2 copies of C_{2n} . If G can be decomposed into 5n/3 copies of S_3 , then we have the result. Note that G is a 5-regular spanning subgraphs of $K_{n,n}$, which contains all edges with labels 0, 1, 2, 3, 4. For $i \in \{0, 1, \ldots, n/3 1\}$, let $S(i) = (b_{3i+2}; a_{3i}, a_{3i+1}, a_{3i+2})$ and $S'(i) = (b_{3i+3}; a_{3i+1}, a_{3i+2}, a_{3i+3})$. It is easy to check that S(i) and S'(i) are 3-stars in G containing edges with labels 0, 1, 2, and $\deg_{\bigcup_{i=0}^{n/3-1}(S(i)\cup S'(i))} a_j = 2$ for each $a_j \in A$. Hence $\deg_{G-E(\bigcup_{i=0}^{n/3-1}(S(i)\cup S'(i)))} a_j = 5 2 = 3$ for each $a_j \in A$. Thus $G E(\bigcup_{i=0}^{n/3-1}(S(i)\cup S'(i)))$ can be decomposed in to n copies of S_3 . This implies that G can be decomposed into n + 2n/3 = 5n/3 copies of S_3 , and settles (2).
- (3) Let $H = (\bigcup_{i=1}^{3} R_i) \cup M$. Trivially $K_{n,n} E(H) = \bigcup_{i=4}^{(n-1)/2} R_i$, which can be decomposed into (n-7)/2 copies of C_{2n} . If H can be decomposed into 7n/3 copies of S_3 , then we have the result. Note that H is a 7-regular spanning subgraphs of $K_{n,n}$, which contains all edges with labels $0, 1, \ldots, 6$. For $i \in \{0, 1, \ldots, n/3 1\}$, let $S(i) = (b_{3i+2}; a_{3i}, a_{3i+1}, a_{3i+2})$. Obviously S(i) is a 3-star in H containing edges with labels 0, 1, 2, and $\deg_{\bigcup_{i=0}^{n/3-1} S(i)} a_j = 1$ for each $a_j \in A$. Note that $\deg_{H-E(\bigcup_{i=0}^{n/3-1} S(i))} a_j = 7 1 = 6$ for each $a_j \in A$. Thus $H E(\bigcup_{i=0}^{n/3-1} S(i))$ can be decomposed in to 2n copies of S_3 . Hence H can be decomposed into 2n + n/3 = 7n/3 copies of S_3 . This settles (3). \square

By Lemma 2.5, the union of 3m copies of edge-disjoint C_{2n} can be decomposed into 2n(3m)/3 = 2mn copies of S_3 . Thus we have the following result.

Theorem 3.6 Suppose that n, α and m are positive integers with $\alpha \geq 3m$, and β is a nonnegative integer. If $K_{n,n}$ can be decomposed into α copies of C_{2n} and β copies of S_3 , then $K_{n,n}$ can be decomposed into $\alpha - 3m$ copies of C_{2n} and $\beta + 2mn$ copies of S_3 .

Trivially, if $K_{n,n}$ can be decomposed into p copies of C_{2n} and q copies of S_3 , then $n^2 = 2np + 3q$. By Theorem 3.6 as well as Lemmas 3.1 to 3.5, the main result of this section is obtained.

Theorem 3.7 Let p and q be nonnegative integers, and let n be a positive integer. There exists a decomposition of $K_{n,n}$ into p copies of Hamiltonian cycles and q copies of 3-stars if and only if $2np + 3q = n^2$ and $p \neq n/2 - 1$ for $n \equiv 0 \pmod{6}$ and $p \neq (n-1)/2$ for $n \equiv 3 \pmod{6}$.

4 Decomposing $K_{n,n}$ into Hamiltonian cycles and 4-stars

In this section, we investigate the problem of decomposing $K_{n,n}$ into p copies of Hamiltonian cycles and q copies of 4-stars, and give the complete solution of the problem.

Lemma 4.1 Let n be a positive even integer, and let p be a nonnegative integer. $n^2 - 2np \ge 0$ and $n^2 - 2np \equiv 0 \pmod{4}$ if and only if $n \equiv 0 \pmod{2}$ and $p \le n/2$.

Proof. Note that n-2p is even if and only if n is even. This implies that $n^2-2np=n(n-2p)\equiv 0\pmod 4$ if and only if $n\equiv 0\pmod 2$. Since $n^2-2np\geq 0,\ p\leq n^2/(2n)=n/2$. This completes the proof. \square

Let t = n/2-1 for even integer n with $n \ge 4$. Suppose that W_1, W_2, \ldots, W_t are edge-disjoint Hamiltonian cycles in $K_{n,n}$, and $H = K_{n,n} - \bigcup_{i=1}^t E(W_i)$. Since $\deg_H u = n - 2t = 2 < 4$ for each vertex u, H is not S_4 -decomposable. Hence we have the following result.

Lemma 4.2 For even n with $n \ge 4$, $K_{n,n}$ cannot be decomposed into n/2-1 copies of C_{2n} and n/2 copies of S_4 .

Lemma 4.3 Let n be an even integer with $n \geq 6$. Then $K_{n,n}$ can be decomposed into n/2 - 3 copies of C_{2n} and 3n/2 copies of S_4 .

Proof. Let $G = \bigcup_{i=0}^2 Q_i$. Trivially $K_{n,n} - E(G) = \bigcup_{i=3}^{n/2-1} Q_i$, which can be decomposed into n/2-3 copies of C_{2n} . If G can be decomposed into 3n/2 copies of S_3 , then we have the result. Note that G is a 6-regular spanning subgraphs of $K_{n,n}$, which contains all edges with labels $0, 1, \ldots, 5$. For $i \in \{0, 1, \ldots, n/2-1\}$, let $S(i) = (a_{2i}; b_{2i}, b_{2i+1}, b_{2i+2}, b_{2i+3})$. It is not difficult to check that S(i) is a 4-star in G containing edges with labels 0, 1, 2, 3, and $\deg_{\bigcup_{i=0}^{n/2-1} S(i)} b_j = 2$ for each $b_j \in B$. Hence $\deg_{G-E(\bigcup_{i=0}^{n/2-1} S(i))} b_j = 6-2=4$ for each $b_j \in B$. Thus $G - E(\bigcup_{i=0}^{n/2-1} S(i))$ can be decomposed in to n copies of S_4 . This implies that G can be decomposed into n + n/2 = 3n/2 copies of S_4 and completes the proof. \square

The union of 2m copies of edge-disjoint C_{2n} is a 4m-regular bipartite graph, which can be decomposed into 2n(2m)/4 = mn copies of S_4 by Lemma 2.5. Thus we have the following result.

Theorem 4.4 Suppose that n, α and m are positive integers with $\alpha \geq 2m$, and β is a nonnegative integer. If $K_{n,n}$ can be decomposed into α copies of C_{2n} and β copies of S_4 , then $K_{n,n}$ can be decomposed into $\alpha - 2m$ copies of C_{2n} and $\beta + mn$ copies of S_4 .

Trivially, if $K_{n,n}$ can be decomposed into p copies of C_{2n} and q copies of S_4 , then $n^2 = 2np + 4q$. By Theorem 4.4 as well as Lemmas 2.1, 4.1 to 4.3, the main result of this section is obtained.

Theorem 4.5 Let p and q be nonnegative integers, and let n be a positive integer. There exists a decomposition of $K_{n,n}$ into p copies of Hamiltonian cycles and q copies of 4-stars if and only if $2np + 4q = n^2$ and $p \neq n/2 - 1$.

References

- [1] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, *Discrete Math.*, **331** (2014), 98 108. https://doi.org/10.1016/j.disc.2014.05.009
- [2] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite multigraphs into paths and cycles having k edges, Discuss. Math. Graph Theory, **35** (2015), 715 731. https://doi.org/10.7151/dmgt.1830
- [3] S. Jeevadoss and A. Muthusamy, Decomposition of product graphs into paths and cycles of length four, *Graphs and Combin.*, **32** (2016), 199 223. https://doi.org/10.1007/s00373-015-1564-z
- [4] H.-C. Lee and Z.-C. Chen, Decomposing the complete graph into Hamiltonian paths (cycles) and 3-stars, *Discuss. Math. Graph Theory*, **40** (2020), 823 839. https://doi.org/10.7151/dmgt.2153
- [5] T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math., 310 (2010), 2164 2169.
 https://doi.org/10.1016/j.disc.2010.04.009
- [6] T.-W. Shyu, Decompositions of complete graphs into paths and cycles, *Ars Combin.*, **97** (2010), 257 270.
- [7] T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles, *Ars Combin.*, **107** (2012), 209 224.

- [8] T.-W. Shyu, Decomposition of complete graphs into cycles and stars, $Graphs\ Combin.$, **29** (2013), 301 313. https://doi.org/10.1007/s00373-011-1105-3
- [9] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, *Discrete Math.*, **313** (2013), 865 871. https://doi.org/10.1016/j.disc.2012.12.020

Received: July 9, 2025; Published: July 25, 2025