International Journal of Contemporary Mathematical Sciences Vol. 20, 2025, no. 1, 19 - 28 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2025.91978

Weak Module Amenability of Module Extension Banach Algebras

M. Ghorbani and D. Ebrahimi Bagha

Department of Mathematics, Faculty of Science Islamic Azad University, Central Tehran Branch P. O. Box 13185/768, Tehran, Iran

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2025 Hikari Ltd.

Abstract

In this paper we study module and weak module amenability of the module extension Banach algebra $A \oplus X$ of a Banach algebra A by a Banach A-module X. As an example we show that for an inverse semigroup S with set of idempotents E, the module extension $\ell^1(E) \oplus \ell^1(S)$ is amenable as an $\ell^1(E)$ -module iff S is amenable. We also study module biflatness and module biprojectivity of module extensions.

1 Introduction

The notion of amenability for Banach algebras was first introduced by B.E. Johnson in [19]. A linear map $D: \mathcal{B} \longrightarrow \varepsilon$ is a derivation if

$$D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in \mathcal{B}).$$

A Banach algebra $\mathcal B$ is amenable if every continuous derivation D from $\mathcal B$ into any dual Banach $\mathcal B$ -bimodule ε' is inner, namely there exists $f\epsilon\ \varepsilon'$ such that

$$D(a) = a \cdot f - f \cdot a \quad (a \in \mathcal{B}),$$

where the module actions on ε' are defined by

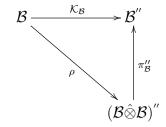
$$\langle f \cdot a, x \rangle = \langle f, a \cdot x \rangle$$
 and $\langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle$ $(a \in \mathcal{B}, x \in \varepsilon, f \in \varepsilon')$.

In [20], B. E. Johnson proved that a Banach algebra \mathcal{B} is amenable if and only if it has a bounded approximate diagonal, that is, a bounded net $(m_a) \subseteq \mathcal{B} \widehat{\otimes} \mathcal{B}$ such that

$$a \cdot \mathbf{m}_a - \mathbf{m}_a \cdot a \longrightarrow 0 \ and \ \Pi_{\mathcal{B}}(\mathbf{m}_a)a \longrightarrow a \ (a \epsilon \mathcal{B})$$

where $\Pi_{\mathcal{B}}: \mathcal{B} \widehat{\otimes} \mathcal{B} \longrightarrow \mathcal{B}$ is the multiplication map defined by $\Pi_{\mathcal{B}}: (a \otimes b) = ab$.

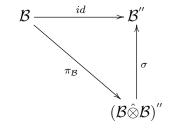
The notions of biflatness and biprojectivity for Banach algebras were introduced by A. YA. Helemskii in [17]. A Banach algebra \mathcal{B} is biflat if there is a bounded \mathcal{B} -bimodule homomorphism $\rho: \mathcal{B} \longrightarrow (\mathcal{B} \widehat{\otimes} \mathcal{B})''$ such that the following diagram commutes:



where $k_{\mathcal{B}}: \mathcal{B} \longrightarrow \mathcal{B}''$ is the natural embedding of \mathcal{B} into its second dual, and we regard $\mathcal{B} \widehat{\otimes} \mathcal{B}$ as a Banach \mathcal{B} -bimodule with module actions:

$$a \cdot (b \otimes c) = ab \otimes c, \ (b \otimes c) \cdot a = b \otimes ca \ (a, b, c \in \mathcal{B})$$

Similarly, \mathcal{B} is biprojective if there is a bounded \mathcal{B} -bimodule homomorphism $\sigma: \mathcal{B} \longrightarrow (\mathcal{B} \widehat{\otimes} \mathcal{B})$ such that the following diagram commutes:



It is known that \mathcal{B} is amenable if and only if \mathcal{B} is biflat and has a bounded approximate identity [16]. Biflatness and bprojectivity are studied for various classes of Banach algebras, including C^* -algebras, group algebras and Segal algebras [16, 32]. Consider the situation where \mathcal{B} has an extra module structure as a Banach module over another Banach algebra \mathcal{B} with compatible actions. The second author introduced and studied module amenability of \mathcal{B} in [1]. The module versions of weak amenability [2] permanent amenability [8] super amenability [28] contractibility [5, 6] biflatness and biprojectivity [7] topological center [3] and Arens regularity [30] are studied by several authors.

The main motivating example in most of the works cited above was $\mathcal{B} = \ell^1(S)$ and $\mathcal{B} = \ell^1(E)$, where S is an inverse semigroup with set of idempotents E. In this paper we consider another class of examples coming from module extensions of Banach algebras, in which $\mathcal{B} = A \oplus X$ and $\mathcal{B} = A$, where A is a Banach algebra, X is a Banach A-module, and $A \oplus X$ is the module extension of A by X, considered as a Banach algebra and Banach A-module (compare with [27]). This class of Banach algebras first appeared in [11, 4] and contains the class of triangular Banach algebras [21]. The amenability and weak amenability of these algebras are studied in general in [23, 24] and in the special case of triangular Banach algebras in [13, 14, 21]. The biflatness and biprojectivity of these algebras are studied in [22].

2 Module Amenability

Through out this paper, \mathcal{A} and \mathfrak{A} are Banach algebras such that \mathcal{A} is Banach \mathfrak{A} -bimodule with compatible actions, that is

$$\alpha \cdot (ab) = (\alpha \cdot a)b, \ (ab) \cdot \alpha = a(b \cdot \alpha) \qquad (a, b \in \mathcal{A}, \ \alpha \in \mathfrak{A}).$$

We say that \mathfrak{A} acts trivially on \mathcal{A} from left if $\alpha \cdot a = f(\alpha)a$, for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$, where $f \in \Phi_{\mathfrak{A}}$ is a character on \mathfrak{A} .

Let X be a Banach A-bimodule and a Banach \mathfrak{A} -bimodule with compatible actions, that is

$$\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, \ a \cdot (\alpha \cdot x) = (a \cdot \alpha) \cdot x, \ (\alpha \cdot x) \cdot a = \alpha \cdot (x \cdot a) \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in \mathfrak{X}),$$

and the same for the right or two-sided actions. Then we say that X is a Banach A- \mathfrak{A} -module. If moreover

$$\alpha \cdot x = x \cdot \alpha \qquad (\alpha \in \mathfrak{A}, x \in \mathfrak{X})$$

 \mathfrak{X} is called a commutative \mathcal{A} - \mathfrak{A} -module.

If \mathcal{X} is a commutative Banach \mathcal{A} - \mathfrak{A} -module, then so is \mathcal{X}^* , where the actions of \mathcal{A} and \mathfrak{A} and \mathcal{X}^* are defined by

$$\left\langle \alpha \cdot f, x \right\rangle = \left\langle f, x \cdot \alpha \right\rangle, \left\langle a \cdot f, x \right\rangle = \left\langle f, x \cdot a \right\rangle \qquad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in \mathfrak{X}, f \in \mathfrak{X}^*),$$

and the same for the right actions. Let be another \mathcal{A} - \mathfrak{A} -module then a \mathcal{A} - \mathfrak{A} -module morphism from \mathfrak{X} to \mathfrak{Y} is a norm-continuous map $\phi:\mathfrak{X}\longrightarrow$ with $\phi(x\pm y)=\phi(x)\pm\phi(y)$ and

$$\varphi(\alpha \cdot x) = \alpha \cdot \varphi(x), \varphi(x \cdot \alpha) = \varphi(x) \cdot \alpha, \varphi(a \cdot x) = a \cdot \varphi(x), \varphi(x \cdot a) = \varphi(x) \cdot a$$

for $x, y \in \mathcal{X}, a \in mathcal A$ and \mathfrak{A} . Consider the projective tensor product $\mathcal{A} \hat{\otimes} \mathcal{A}$, which is a Banach algebra with respect to the canonical multiplication

$$(a \otimes b)(c \otimes d) = ac \otimes bd,$$

and extended by linearity and continuity [10]. Also $\mathcal{A} \hat{\otimes} \mathcal{A}$ is a Banach \mathcal{A} - \mathfrak{A} -module with canonical actions. Let I be the closed ideal of $\mathcal{A} \hat{\otimes} \mathcal{A}$ generated by elements of the form $(a \cdot \alpha) \otimes b - a \otimes (\alpha \cdot b)$ for $\alpha \in \mathfrak{A}$, $a, b \in \mathcal{A}$. Consider the multiplication map $\pi_{\mathcal{A}} : \mathcal{A} \hat{\otimes} \mathcal{A} \to \mathcal{A}$ defined by $\pi_{\mathcal{A}}(a \otimes b) = ab$, extended by linearity and continuity. Let $J_{\mathcal{A}}$ be the closed ideal of \mathcal{A} generated by $\pi_{\mathcal{A}}(I)$. Then the module projective tensor product $\mathcal{A} \hat{\otimes}_{\mathfrak{A}} \mathcal{A} \cong \frac{\mathcal{A} \hat{\otimes} \mathcal{A}}{I}$ and the quotient Banach algebra $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ are Banach \mathfrak{A} -modules with compatible actions. Also the map $\tilde{\pi}_{\mathcal{A}} : \mathcal{A} \hat{\otimes}_{\mathfrak{A}} \mathcal{A} \to \frac{\mathcal{A}}{J_{\mathcal{A}}}$ defined by $\tilde{\pi}_{\mathcal{A}}(a \otimes b + I) = ab + I$ extends to an \mathfrak{A} -module morphism. Let \mathcal{A} and \mathfrak{A} be as above and \mathcal{X} be a Banach \mathcal{A} - \mathfrak{A} -module. A bounded \mathcal{A} - \mathfrak{A} -module morphism $D: \mathcal{A} \longrightarrow \mathcal{X}$ is called a module derivation if

$$D(a \pm b) = D(a) \pm D(b) \ (a \in \mathcal{A}, \alpha \in \mathfrak{A})$$

When \mathcal{X} is commutative, each $x \in \mathcal{X}$ defines a module derivation

$$D_x(a) = a.x - x.a \ (a \in \mathcal{A}).$$

These are called inner module derivations. The Banach algebra \mathcal{A} is called module amenable (as an \mathfrak{A} -module) if for any commutative Banach \mathcal{A} - \mathfrak{A} -module \mathcal{X} , each module derivation $D: \mathcal{A} \longrightarrow \mathcal{X}^*$ is inner [1]. The Banach algebra \mathcal{A} is called weakly module amenable (as an \mathfrak{A} -module) if $(\frac{\mathcal{A}}{J_{\mathcal{A}}})^* = J_A^1$ is commutative Banach \mathfrak{A} -module and each module derivation from \mathcal{A} to $(\frac{\mathcal{A}}{J_{\mathcal{A}}})^* = J$ is inner [2]. For a Banach module \mathcal{X} over \mathcal{A} , a net (a_{α}) in \mathcal{A} is called a bounded approximate identity for \mathcal{X} if

$$\parallel a_{\alpha}.X - X \parallel + \parallel X.a_{\alpha} \parallel \longrightarrow 0 \ (x \in \mathcal{X}).$$

The following results are proved in [3].

Theorem 2.1. If \mathfrak{A} has bounded approximate identity for \mathcal{A} , then amenability of $\frac{\mathcal{A}}{J_A}$ implies module amenability of \mathcal{A} . Conversely if \mathcal{A} is module amenable as an \mathfrak{A} -module with trivial left action, J_0 is a closed ideal of \mathcal{A} such that $J_A \subseteq J_0$ and $\frac{\mathcal{A}}{J_0}$ has a left bounded approximate identity, then $\frac{\mathcal{A}}{J_0}$ is amenable.

Theorem 2.2. Let \mathfrak{A} acts trivially on \mathcal{A} from left and $\frac{\mathcal{A}}{J_A}$ has a left or right bounded approxima identity, then weak module amenability of \mathcal{A} implies weak amenability of $\frac{\mathcal{A}}{J_A}$. The converse is true if \mathcal{A} is a right essential \mathfrak{A} – module.

3 Module Extension Banach Algebras

In this section we study module extensions of a Banach algebra \mathcal{A} by a Banach \mathcal{A} -bimodule \mathcal{X} . This is the Banach algebra $A \oplus \mathcal{X}$, the l^1 -direct sum of \mathcal{A} and \mathcal{X} , with the algebra product

$$(a,x).(b,y) = (ab, a.y + x.b)(a, b \epsilon A, x, y \epsilon X).$$

We obtain the necessary and sufficient conditions for a module extension Banach algebra to be module amenable, weakly module amenable, module biflat, or module biprojective, as an A-module.

We consider the Banach algebra $\mathcal A$ as an $\mathcal A$ -bimodule with the following compatible module actions

$$b.a = ba, \ a.b = f(a,b)$$
 $(a, b \in \mathcal{A}, f \in \Phi_A),$

where Φ_A is the character space of \mathcal{A} . Then J_A is the closed ideal of \mathcal{A} generated by the set $\{bac - f(a)bc : a, b, c \in \mathcal{A}\}$. Consider the module extension $\mathcal{B} := \mathcal{A} \oplus \mathcal{X}$ as an \mathcal{A} -bimodule with the following compatible module actions

$$(b,x).a = (ba,xa), a.(b,x) = (f(a)b,f(a)x)$$
 $(a,b \in \mathcal{A}, x \in X, f \in \Phi_{\mathcal{A}}),$

then

$$J_{\mathcal{B}} = \langle \{ [(b, x).a](c, y) - (bx)[a.(c, y)] : a, b, c \in \mathcal{A}, x, y \in \mathcal{X} \} \rangle$$

$$= \langle \{ (ba, xa)(c, y) - (b, x)(f(a)c, f(a)y) : a, b, c \in A, x, y \in \mathcal{X} \} \rangle$$

$$= \langle \{ (bac - bf(a)c, (ba - f(a)b)y + x(ac - f(a)c)) : a, b, c \in A, x, y \in \mathcal{X} \} \rangle$$

$$= J_{\mathcal{A}} \oplus (\mathcal{A}\mathcal{X} + \mathcal{X}\mathcal{A}) = J_{\mathcal{A}} \oplus \mathcal{X}$$

when \mathcal{X} is an essential \mathcal{A} -bimodule.

Proposition 3.1. If $\{e_{\lambda}\}$ is a bounded approximate identity for \mathcal{A} then $\{e_{\alpha}\}$ is a bounded approximate identity for the module extension $\mathcal{A} \oplus \mathcal{X}$ when \mathcal{X} is an essential \mathcal{A} -bimodule.

Proof. For $(a, x) \in \mathcal{A} \oplus \mathcal{X}$,

$$||e_{\alpha}.(a,x) - (a,x)|| = ||f(e_{\alpha}a, f(e_{\alpha})x)(a.x)||$$

= $|f(e_{\alpha}) - 1|||(a,x)|| \longrightarrow 0$,

and if x = y.b, for some $b \in A$ and $y \in \mathcal{X}$, then

$$\begin{aligned} \|(a,x).e_{\alpha} - (a,x)\| &= \|(ae_{\alpha}, x.e_{\alpha})(a,x)\| \\ &= \|ae_{\alpha} - a\| + \|x.e_{\alpha} - x\| \\ &= \|ae_{\alpha} - a\| + \|(y.b).e_{\alpha} - (y.b)\| \\ &\leq \|ae_{\alpha} - a\| + \leq \|y\| \|be_{\alpha} - b\| \longrightarrow 0. \end{aligned}$$

Theorem 3.2. Let \mathcal{A} has a bounded approximate identity and \mathcal{X} is an essential \mathcal{A} -bimodule. Then module extension Banach algebra $\mathcal{A} \oplus \mathcal{X}$ is module amenable as \mathcal{A} -bimodule if and only if the Banach algebra $\frac{\mathcal{A}}{\mathcal{A}_A}$ is amenable.

Proof. We define the map $\varphi := \mathcal{A} \oplus \mathcal{X} \longrightarrow \frac{\mathcal{A}}{J_A}$ by $\varphi((a,x)) = a + J_A$. It is easy to see that φ is a well-defined \mathcal{A} -module morphism and an algebra homomorphism and

$$\ker \varphi = \{(a, x) : a \in J_A, x \in X = J_A \oplus X\}$$

and we have $\frac{\mathcal{A} \oplus \mathcal{X}}{J_A \oplus \mathcal{X}} \simeq \frac{\mathcal{A}}{J_A}$, that is $\frac{\mathcal{A} \oplus \mathcal{X}}{J_B} \simeq \frac{\mathcal{A}}{J_A}$. Therefore, by Theorem 2.1 we get the result.

Theorem 3.3. Let A has a bounded approximate identity for itself and for X. Then the module extension Banach algebra $A \oplus X$ is weakly module amenable as an A-bimodule if and only if the Banach algebra $\frac{A}{J_A}$ is weakly amenable.

Proof. This follows from Theorem 2.3 and the fact that $\frac{A \oplus \mathcal{X}}{J_{\mathcal{B}}} \simeq \frac{A}{J_{A}}$.

As an example, let S is an inverse semigroup with an upward directed set of idempotents E, then E satisfies condition D_1 of Duncan and Namoika [12], hence $l^1(E)$ has a bounded approximate identity. If $\{g_j\}$ is a bounded approximate identity of $l^1(E)$, then

$$g_i * \delta_s = g_i * \delta_{ss^*s} = g_i * \delta_{ss^*} * \delta_s \longrightarrow \delta_s \ (s \in S),$$

and similarly for the right multiplication. Therefore $l^1(E)$ has a bounded approximate identity for $l^1(S)$. Consider $A = l^1(E)$, $X = l^1(S)$ and let $l^1(E)$ act on $l^1(S)$ by multiplication from right and trivially from left, that is

$$\delta_e.\delta_s = \delta_s, \delta_s.\delta_e = \delta_{se} = \delta_s * \delta_e \ (s\epsilon S, e\epsilon E).$$

It is easy to show that $l^1(S)$ is a Banach $l^1(E)$ -module with compatible actions. Define an equivalence relation on E as follows:

$$e_1 \approx e_2 \Longleftrightarrow \delta_{e_1} - \delta_{e_2} \epsilon J_{l^1(E)} \ (e_1, e_2 \epsilon E).$$

Then the quotient $\frac{E}{\approx}$ is discrete group (see [1, 2]). As in [2], one may observe that $\frac{l^1(E)}{J_A} \cong l^1(\frac{E}{\approx})$. Thus by Theorems 3.2 and 3.3, the module extension $\mathcal{B} = l^1(E) \oplus l^1(S)$ is module amenable as an $l^1(E)$ -bimodule if and only if the discrete group $\frac{E}{\approx}$ is amenable. Also it is always weakly module amenable as an $l^1(E)$ -bimodule, since the group algebra $l^1(\frac{E}{\approx})$ is always weakly amenable.

As a negative result, consider the case $\mathcal{A} = \widetilde{\mathcal{C}}$, $\mathcal{X} = \mathcal{C}$ and let \mathcal{A} act on \mathcal{X} by multiplication from both sides. Then the module extension $\mathcal{B} = \mathcal{C} \oplus \mathcal{C}$ is module amenable as an \mathcal{C} -bimodule by Theorem 3.2 (since $\frac{\mathcal{C}}{J_A} \simeq \mathcal{C}$ is amenable), but it is not even weak amenable [34].

Next we turn to module biflatness and module biprojectivity of module extension Banach algebras. First let us recall some definition and results from [7].

Definition 3.4. The Banach algebra \mathcal{A} is called module biprojective (as an A-module) if $\overrightarrow{\Pi}_{\mathcal{A}}: \mathcal{A} \widehat{\otimes}_{\mathcal{A}} \longrightarrow \frac{\mathcal{A}}{J_{\mathcal{A}}}$ has a bounded right inverse which is an $\frac{\mathcal{A}}{J_{\mathcal{A}}} - \mathfrak{A} = 0$ module morphism. It is called module biflat (as an \mathfrak{A} -module) if $\widetilde{\Pi}_{\mathcal{A}}^*: (\frac{\mathcal{A}}{J_{\mathcal{A}}})^* \longrightarrow (\mathcal{A} \widehat{\otimes}_{\mathfrak{A}} \mathcal{A})^*$ has a bounded left inverse which is an $\frac{\mathcal{A}}{J_{\mathcal{A}}} - \mathfrak{A}$ -module morphism.

Proposition 3.5. Assume that \mathfrak{A} acts on \mathcal{A} trivially form left and $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ has a left identity and \mathfrak{A} has a bounded approximate identity for \mathcal{A} . If \mathcal{A} is module (biflat) biprojective, then $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ is (biflat) biprojective.

Now let \mathcal{X} be an essential \mathcal{A} -bimodule and consider $\mathcal{B} = \mathcal{A} \oplus \mathcal{X}$ as an \mathcal{A} -bimodule with trivially left action and canonical right action.

Similar to the proof of Theorem 3.2, and using the above proposition, we get the following result.

Corollary 3.6. Let \mathcal{A} has a bounded approximate identity and $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ has a left identity. If the module extension $\mathcal{A} = \mathcal{A} \oplus \mathcal{X}$ is module (biflat) biprojective then $\frac{\mathcal{A}}{J_{\mathcal{A}}}$ is (biflat) biprojective.

Acknowledgments. The authors would like to thank Prof. Massoud Amini for careful reading the paper and for comments which greatly improved the paper.

References

- [1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum, **69** (2004), 243-254. https://doi.org/10.1007/s00233-004-0107-3
- M. Amini, D. Ebrahimi Bagha, Weak module amenability for semigroup algebras, Semigroup Forum, 71 (2005), 18-26.
 https://doi.org/10.1007/s00233-004-0166-5
- [3] M. Amini, A. Bodaghi and D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum, 80 (2010), 302-312. https://doi.org/10.1007/s00233-010-9211-8
- [4] W. G. Bade, H. G. Dales and Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc., 137 (1999), no. 656. https://doi.org/10.1090/memo/0656
- [5] A. Bodaghi, Module contractibility for semigroup algebras, *Math. Sci. Journal*, **7** (2012), no. 2, 5-18.

- [6] A. Bodaghi, The structure of module contractible Banach algebras, *Int. J. Nonlinear Anal. Appl.*, **1** (2010), no. 1, 6-11.
- [7] A. Bodaghi and M. Amini, Module biprojective and module biflat Banach algebras, U. P. B. Sci. Bull., Series A, 75 (2013), no. 3, 25-36.
- [8] A. Bodaghi, M. Amini and R. Babaee, Module derivations into iterated duals of Banach algebras, *Proc. Rom. Aca., Series A*, **12** (2011), no. 4, 277-284.
- [9] Y. Choi, Biflatness of '1-semilattice algebras, Semigroup Forum, **75** (2007), 253-271. https://doi.org/10.1007/s00233-007-0730-x
- [10] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford, 2000. 8 D. E. BAGHA, M. AMINI
- [11] H. G. Dales, F. Ghahramani and N. Grnbk, Derivations into iterated duals of Banach algebras, *Studia Math.*, **128** (1998), 19-54.
- [12] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh: Section A Mathematics, 80A (1988), 309-321. https://doi.org/10.1017/s0308210500010313
- [13] B.E. Forrest, and L.W. Marcoux, Derivations of triangular Banach algebras, *Indiana Univ. Math. J.*, **45** (1996), 441-462. https://doi.org/10.1512/iumj.1996.45.1147
- [14] B.E. Forrest, and L.W. Marcoux, Weak amenability of triangular Banach algebras, *Trans. Amer.Math. Soc.*, **354** (2002), 1435-1452. https://doi.org/10.1090/s0002-9947-01-02957-9
- [15] A. Ya. Helemskii, Flat Banach module and amenable algebras, *Trans. Moscow Math. Soc.*, **47** (1985), 199- 244.
- [16] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer Academic Publishers, Dordrecht, 1989 (translated from Russian). https://doi.org/10.1007/978-94-009-2354-6
- [17] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.
- [18] F. Ghahramani and A. T. Lau, Weak amenability of certain classes of Banach algebra without boundedapproximate identity, Math. Proc. Cambridge Philos. Soc., 133 (2002), 357-371. https://doi.org/10.1017/s0305004102005960

- [19] B. E. Johnson, Cohomology in Banach algebras, *Mem. Amer. Math. Soc.*, **127** (1972).
- [20] B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math., 94 (1972), 685-698. https://doi.org/10.2307/2373751
- [21] A.R. Medghalchi, M.H. Sattari, T. Yazdanpanah, Amenability and Weak Amenability of Triangular Banach Algebras, *Bulletin of the Iranian Mathematical Society*, **31** (2005), no. 2, 57-69.
- [22] A. R. Medghalchi and M. H. Sattari, Biflatness and biprojectity of triangular Banach algebras, *Bulletin of the Iranian Mathematical Society*, **34** (2008), no. 2, 118-120.
- [23] A.R. Medghalchi and H. Pourmahmood-Aghababa, On module extension Banach algebras, Bulletin of the Iranian Mathematical Society, 37 (2011), no. 4, 171-183.
- [24] A. R. Medghalchi and H. Pourmahmood-Aghababa, The first cohomology group of module extension Banach algebras, *Rocky Mountain J. Math.*, 5 (2011). https://doi.org/10.1216/rmj-2011-41-5-1639
- [25] W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, *Proc. Glasgow Math. Assoc.*, **5** (1961), 41-48. https://doi.org/10.1017/s2040618500034286
- [26] A. L. T. Paterson, Groupoids, Inverse Semigroups, and Their Operator Algebras, Birkh auser, Boston, 1999. https://doi.org/10.1007/978-1-4612-1774-9
- [27] A. Pourabbas, E. Nasrabadi, Weak module amenability of triangular Banach algebras, *Math. Slovaca*, **61** (2011), 949-958. https://doi.org/10.2478/s12175-011-0061-y
- [28] H. Pourmahmood-Aghababa, (Super) module amenability, module topological centre and semigroup algebras, *Semigroup Forum*, **81** (2010), 344-356. https://doi.org/10.1007/s00233-010-9231-4
- [29] P. Ramsden, Biflatness of semigroup algebras, *Semigroup Forum* **79** (2009), 515-530. https://doi.org/10.1007/s00233-009-9169-6
- [30] R. Rezavand, M. Amini, M. H. Sattari and D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, *Semigroup Forum*, **77** (2008), 300-305. https://doi.org/10.1007/s00233-008-9075-3

- [31] H. Reiter, *L1-Algebras and Segal Algebras*, "Lecture Notes in Mathematics", no 231, Springer-Verlag, Berlin, 1971. https://doi.org/10.1007/bfb0060759
- [32] E. Samei, N. Spronk, R. Stokke, Biflatness and pseudo-amenability of Segal algebras, Canad. J. Math., 62 (2010), 845-869. https://doi.org/10.4153/cjm-2010-044-4
- [33] Y. V. Selivanov, Cohomological characterizations of biprojective and biflat Banach algebras, *Mh. Math.*, **128** (1999), 35-60. https://doi.org/10.1007/pl00010082
- [34] Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc., **354** (2002), 4131-4151. https://doi.org/10.1090/s0002-9947-02-03039-8

Received: January 25, 2025; Published: March 23, 2025