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Abstract

In this paper we study module and weak module amenability of
the module extension Banach algebra A ⊕ X of a Banach algebra A
by a Banach A-module X. As an example we show that for an inverse
semigroup S with set of idempotents E, the module extension `1(E) ⊕
`1(S) is amenable as an `1(E)-module iff S is amenable. We also study
module biflatness and module biprojectivity of module extensions.

1 Introduction

The notion of amenability for Banach algebras was first introduced by B.E.
Johnson in [19]. A linear map D : B −→ ε is a derivation if

D(ab) = D(a) · b+ a ·D(b) (a, b εB).

A Banach algebra B is amenable if every continuous derivation D from B
into any dual Banach B-bimodule ε

′
is inner, namely there exists fε ε

′
such

that

D(a) = a · f − f · a (aεB),

where the module actions on ε
′

are defined by

〈f · a, x〉 = 〈f, a · x〉 and 〈a · f, x〉 = 〈f, x · a〉 (a εB, x ε ε, f ε ε′).
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In [20], B. E. Johnson proved that a Banach algebra B is amenable if
and only if it has a bounded approximate diagonal, that is, a bounded net
(ma) ⊆ B⊗̂B such that

a ·ma −ma · a −→ 0 and ΠB(ma)a −→ a (aεB)

where ΠB : B⊗̂B −→ B is the multiplication map defined by ΠB : (a⊗b) =
ab.

The notions of biflatness and biprojectivity for Banach algebras were in-
troduced by A. YA. Helemskii in [17]. A Banach algebra B is biflat if there
is a bounded B-bimodule homomorphism ρ : B −→ (B⊗̂B)

′′
such that the

following diagram commutes:

B

ρ

!!

KB // B′′

(B⊗̂B)
′′

π′′B

OO

where kB : B −→ B′′ is the natural embedding of B into its second dual, and
we regard B⊗̂B as a Banach B-bimodule with module actions:

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c εB)

Similarly, B is biprojective if there is a bounded B -bimodule homomorphism
σ : B −→ (B⊗̂B) such that the following diagram commutes:

B

πB

!!

id // B′′

(B⊗̂B)
′′

σ

OO

It is known that B is amenable if and only if B is biflat and has a bounded
approximate identity [16]. Biflatness and bprojectivity are studied for various
classes of Banach algebras, including C∗-algebras, group algebras and Segal
algebras [16, 32]. Consider the situation where B has an extra module struc-
ture as a Banach module over another Banach algebra B with compatible
actions. The second author introduced and studied module amenability of B
in [1]. The module versions of weak amenability [2] permanent amenability
[8] super amenability [28] contractibility [5, 6] biflatness and biprojectivity [7]
topological center [3] and Arens regularity [30] are studied by several authors.
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The main motivating example in most of the works cited above was B =
`1(S) and B = `1(E), where S is an inverse semigroup with set of idempotents
E. In this paper we consider another class of examples coming from module
extensions of Banach algebras, in which B = A ⊕ X and B = A, where A
is a Banach algebra, X is a Banach A-module, and A ⊕ X is the module
extension of A by X, considered as a Banach algebra and Banach A-module
(compare with [27]). This class of Banach algebras first appeared in [11, 4]
and contains the class of triangular Banach algebras [21]. The amenability and
weak amenability of these algebras are studied in general in [23, 24] and in the
special case of triangular Banach algebras in [13, 14, 21]. The biflatness and
biprojectivity of these algebras are studied in [22].

2 Module Amenability

Through out this paper, A and A are Banach algebras such that A is Banach
A-bimodule with compatible actions, that is

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

We say that A acts trivially on A from left if α · a = f(α)a, for each α ∈ A
and a ∈ A, where f ∈ ΦA is a character on A.

Let X be a Banach A-bimodule and a Banach A-bimodule with compatible
actions, that is

α·(a·x) = (α·a)·x, a·(α·x) = (a·α)·x, (α·x).a = α·(x·a) (a ∈ A, α ∈ A, x ∈ X),

and the same for the right or two-sided actions. Then we say that X is a
Banach A-A-module. If moreover

α · x = x · α (α ∈ A, x ∈ X)

X is called a commutative A-A-module.
If X is a commutative Banach A-A-module, then so is X∗, where the actions

of A and A and X∗ are defined by〈
α · f, x

〉
=
〈
f, x · α

〉
,
〈
a · f, x

〉
=
〈
f, x · a

〉
(a ∈ A, α ∈ A, x ∈ X, f ∈ X∗),

and the same for the right actions. Let be another A-A-module then a A-
A-module morphism from X to Y is a norm-continuous map φ : X −→ with
φ(x± y) = φ(x)± φ(y) and

ϕ(α · x) = α · ϕ(x), ϕ(x · α) = ϕ(x) · α, ϕ(a · x) = a · ϕ(x), ϕ(x · a) = ϕ(x) · a

for x, y ∈ X, a ∈ mathcalA and A. Consider the projective tensor product
A⊗̂A, which is a Banach algebra with respect to the canonical multiplication

(a⊗ b)(c⊗ d) = ac⊗ bd,
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and extended by linearity and continuity [10]. Also A⊗̂A is a Banach A-A-
module with canonical actions. Let I be the closed ideal of A⊗̂A generated
by elements of the form (a ·α)⊗b−a⊗ (α ·b) for α ∈ A, a, b ∈ A. Consider the
multiplication map πA : A⊗̂A → A defined by πA(a ⊗ b) = ab, extended by
linearity and continuity. Let JA be the closed ideal of A generated by πA(I).

Then the module projective tensor product A⊗̂AA ∼= A⊗̂A
I

and the quotient
Banach algebra A

JA
are Banach A-modules with compatible actions. Also the

map π̃A : A⊗̂AA → A
JA

defined by π̃A(a ⊗ b + I) = ab + I extends to an A-
module morphism. Let A and A be as above and X be a Banach A-A-module.
A bounded A-A-module morphism D : A −→ X is called a module derivation
if

D(a± b) = D(a)±D(b) (a εA, αεA)

When X is commutative, each xεX defines a module derivation

Dx(a) = a.x− x.a (a εA).

These are called inner module derivations. The Banach algebra A is called
module amenable (as an A-module) if for any commutative Banach A-A-
module X , each module derivation D : A −→ X ∗ is inner [1]. The Banach alge-
braA is called weakly module amenable (as an A-module) if ( A

JA
)∗ = J1

A is com-

mutative Banach A-module and each module derivation from A to ( A
JA

)∗ = J
1
A

is inner [2]. For a Banach module X over A, a net (aα) in A is called a
bounded approximate identity for X if

‖ aα.X −X ‖ + ‖ X.aα ‖−→ 0 (xεX ).

The following results are proved in [3].

Theorem 2.1. If A has bounded approximate identity for A, then amenability
of A

JA
implies module amenability of A. Conversely if A is module amenable as

an A-module with trivial left action, J0 is a closed ideal of A such that JA ⊆ J0
and A

J0
has a left bounded approximate identity, then A

J0
is amenable.

Theorem 2.2. Let A acts trivially on A from left and A
JA

has a left or right
bounded approxima identity, then weak module amenability of A implies weak
amenability of A

JA
. The converse is true if A is a right essential A−module.

3 Module Extension Banach Algebras

In this section we study module extensions of a Banach algebra A by a Banach
A-bimodule X . This is the Banach algebra A⊕ X , the l1-direct sum of A and
X , with the algebra product

(a, x).(b, y) = (ab, a.y + x.b)(a, b εA, x, y εX).
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We obtain the necessary and sufficient conditions for a module extension Ba-
nach algebra to be module amenable, weakly module amenable, module biflat,
or module biprojective, as an A-module.

We consider the Banach algebra A as an A -bimodule with the following
compatible module actions

b.a = ba, a.b = f(a, b) (a, b εA, fεΦA),

where ΦA is the character space of A. Then JA is the closed ideal of A
generated by the set {bac−f(a)bc : a, b, c εA}. Consider the module extension
B :=A⊕X as an A -bimodule with the following compatible module actions

(b, x).a = (ba, xa), a.(b, x) = (f(a)b, f(a)x) (a, b εA, xεX, fεΦA),

then

JB = 〈{[(b, x).a](c, y)− (bx)[a.(c, y)] : a, b, c εA, x, y εX}〉
= 〈{(ba, xa)(c, y)− (b, x)(f(a)c, f(a)y) : a, b, c εA, x, y εX}〉
= 〈{(bac− bf(a)c, (ba− f(a)b)y + x(ac− f(a)c)) : a, b, c εA, x, y εX}〉
= JA ⊕ (AX + XA) = JA ⊕X

when X is an essential A -bimodule.

Proposition 3.1. If {eλ} is a bounded approximate identity for A then {eα}
is a bounded approximate identity for the module extension A⊕X when X is
an essential A-bimodule.

Proof. For (a, x) εA⊕X ,

‖eα.(a, x)− (a, x)‖ = ‖f(eαa, f(eα)x)(a.x)‖
= |f(eα)− 1|‖(a, x)‖ −→ 0,

and if x = y.b, for some b εA and y εX , then

‖(a, x).eα − (a, x)‖ = ‖(aeα, x.eα)(a, x)‖
= ‖aeα − a‖+ ‖x.eα − x‖
= ‖aeα − a‖+ ‖(y.b).eα − (y.b)‖
≤ ‖aeα − a‖+ ≤ ‖y‖‖beα − b‖ −→ 0.

Theorem 3.2. Let A has a bounded approximate identity and X is an essential
A-bimodule. Then module extension Banach algebra A⊕X is module amenable
as A-bimodule if and only if the Banach algebra A

JA
is amenable.
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Proof. We define the map ϕ := A ⊕ X −→ A
JA

by ϕ((a, x)) = a + JA. It
is easy to see that ϕ is a well-defined A-module morphism and an algebra
homomorphism and

kerϕ = {(a, x) : a ε JA, x εX = JA ⊕X}

and we have A⊕X
JA⊕X

' A
JA

, that is A⊕X
JB
' A

JA
. Therefore, by Theorem 2.1 we

get the result.

Theorem 3.3. Let A has a bounded approximate identity for itself and for X .
Then the module extension Banach algebra A⊕X is weakly module amenable
as an A-bimodule if and only if the Banach algebra A

JA
is weakly amenable.

Proof. This follows from Theorem 2.3 and the fact that A⊕X
JB
' A

JA
.

As an example, let S is an inverse semigroup with an upward directed
set of idempotents E, then E satisfies condition D1 of Duncan and Namoika
[12], hence l1(E) has a bounded approximate identity. If {gj} is a bounded
approximate identity of l1(E), then

gj ∗ δs = gj ∗ δss∗s = gj ∗ δss∗ ∗ δs −→ δs (sεS),

and similarly for the right multiplication. Therefore l1(E) has a bounded
approximate identity for l1(S). Consider A = l1(E), X = l1(S) and let l1(E)
act on l1(S) by multiplication from right and trivially from left, that is

δe.δs = δs, δs.δe = δse = δs ∗ δe (sεS, eεE).

It is easy to show that l1(S) is a Banach l1(E)-module with compatible actions.
Define an equivalence relation on E as follows:

e1 ≈ e2 ⇐⇒ δe1 − δe2εJl1(E) (e1, e2 εE).

Then the quotient E
≈ is discrete group (see [1, 2]). As in [2], one may observe

that l1(E)
JA
∼= l1(E≈). Thus by Theorems 3.2 and 3.3, the module extension

B = l1(E)⊕ l1(S) is module amenable as an l1(E)-bimodule if and only if the
discrete group E

≈ is amenable. Also it is always weakly module amenable as
an l1(E)-bimodule, since the group algebra l1(E≈) is always weakly amenable.

As a negative result, consider the case A = C,X = C and let A act on X by
multiplication from both sides. Then the module extension B = C⊕C is module
amenable as an C-bimodule by Theorem 3.2 (since C

JA
' C is amenable), but

it is not even weak amenable [34].
Next we turn to module biflatness and module biprojectivity of module

extension Banach algebras. First let us recall some definition and results from
[7].
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Definition 3.4. The Banach algebra A is called module biprojective (as an

A-module) if
−→
ΠA : A⊗̂A −→ A

JA
has a bounded right inverse which is an

A
JA
− A − module morphism. It is called module biflat (as an A-module) if

Π̃∗A : ( A
JA

)∗ −→ (A⊗̂AA)∗ has a bounded left inverse which is an A
JA
−A-module

morphism.

Proposition 3.5. Assume that A acts on A trivially form left and A
JA

has a
left identity and A has a bounded approximate identity for A. If A is module
(biflat) biprojective, then A

JA
is (biflat) biprojective.

Now let X be an essential A-bimodule and consider B = A ⊕ X as an
A-bimodule with trivially left action and canonical right action.

Similar to the proof of Theorem 3.2, and using the above proposition, we
get the following result.

Corollary 3.6. Let A has a bounded approximate identity and A
JA

has a left
identity. If the module extension A = A ⊕ X is module (biflat) biprojective
then A

JA
is (biflat) biprojective.
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