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Abstract

Maillet conjecture states that any even integer is the difference of
two primes. In this paper, based on the characteristic function of odd
primes, we construct an extreme value problem subject to constraints
and use the method of Lagrange multipliers to prove Maillet conjecture.
Here Bertrand postulate, the technique of ”adding a new variable” and
the infinitude of odd primes are used. Also the result for the existence
of primes between 2n and 3n by El Bachraoui is applied.
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1 Introduction

An important and interesting problem in the number theory is Maillet
conjecture proposed in 1905 (see [4]), which states that any even integer is the
difference of two primes. We will confirm the conjecture.
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Let δ(i) be the characteristic function of odd primes, i.e.,

δ(i) = 1, if i is an odd prime;

δ(i) = 0, if i = 1, 2 or composite number.

For example, δ(1) = 0, δ(2) = 0, δ(3) = 1, δ(4) = 0, δ(5) = 1, δ(6) = 0,
δ(7) = 1, δ(8) = 0, and δ(9) = 0, · · · . It sees easily

δ(i)2 = δ(i).

The main result of the paper is

Theorem 1.1. Any even integer is the difference of two primes.

To prove Theorem 1.1, on the basis of the characteristic function of odd
primes, we construct a conditional extreme values problem and solve it by using
the method of Lagrange multipliers to obtain the conclusion. In the process,
Bertrand postulate ([1,3]), the result for the existence of primes between 2n
and 3n by El Bachraoui ([2]), the technique of ”adding a new variable” and
the infinitude of odd primes are used.

The proof of Theorem 1.1 is in Section 2.

2 Proof of Theorem 1.1

Let us first relate the method of Lagrange multipliers (e.g., refer to [5])
which will be used. For seeking the maximum and minimum values of f(x)(x ∈
Rn) subject to constraints

gi(x) = 0 (i = 1, 2, · · · , k, k < n)

(assuming that these extreme values exist and the rank of Jacobian matrix

∂(g1, · · · , gk)

∂(x1, · · · , xn)

of gi(x) (i = 1, 2, · · · , k) is k):
(a) find all x ∈ Rn, λ1, · · · , λk ∈ R such that

∂f

∂xi
+ λ1

∂g1
∂xi

+ · · ·+ λk
∂gk
∂xi

= 0, i = 1, · · · , n,

gi(x) = 0, i = 1, 2, · · · , k,
where x is the stationary point and λ1, · · · , λk are multipliers;
(b) evaluate f at all the points x that result from (a). The largest of these
values is the maximum value of f and the smallest is the minimum value of f .
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Proof of Theorem 1.1 For any even integers 2n > 6 (for even integers
2n ≤ 6, one can see 2 = 5 − 3, 4 = 11 − 7, 5 = 11 − 5), denote odd primes
between 1 and n by

p1, p2, · · · , pl,
where l ≥ 1. Denote odd primes between n and 2n by

q1, q2, · · · , ql1 ,

where l1 ≥ 1 by Bertrand postulate ([1,3]). Note that odd integers between 2n
and 3n allow two forms. One form is

2n+ pi, i = 1, 2, · · · , l,

which satisfy

δ(2n+ pi) = 0 or 1;

another form is 2n+ k (k 6= pi), in which odd primes are denoted by

r1, r2, · · · , rl2(l2 ≥ 0).

Following to [2], there exist primes between 2n and 3n, then if l2 = 0, so there
exists an odd prime of the type 2n+ pi, and we obtain by combining pi being
a prime that

2n = (2n+ pi)− pi,
the conclusion is proved. Now we let l2 > 0 and prove that there exists a prime
pi such that 2n+ pi is an odd prime.

To do so, take a large odd prime N > 3n, i.e., δ(N) = 1 (such N can be
chosen from the infinitude of odd primes). Denote the point with components

δ(pi)(i = 1, · · · , l), δ(qj)(j = 1, · · · , l1), δ(2n+pi)(i = 1, · · · , l), δ(rs)(s = 1, · · · , l2), δ(N)

by P ∈ R2l+l1+l2+1(R2l+l1+l2+1 is the 2l + l1 + l2 + 1 dimensional Euclidean
space). Then

(2.1)
l∑

i=1

δ(pi) +

l1∑
j=1

δ(qj) +
l∑

i=1

δ(2n+ pi) +

l2∑
s=1

δ(rs) = π(3n).

Denoting

x = (x1, · · · , xl), y = (y1, · · · , yl1), u = (u1, · · · , ul), v = (v1, · · · , vl2), z = z.

we introduce an objective function on R2l+l1+l2+1

(2.2) f(x, y, u, v, z) =
l∑

i=1

(
u2i + ui

)
.
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Using (2.1), the property δ(i)2 = δ(i) and the fact of P satisfying

l∑
i=1

δ(pi)
2 +

l1∑
j=1

δ(qj)
2 +

l∑
i=1

δ(2n+ pi)
2 +

l2∑
s=1

δ(rs)
2 = π(3n)δ(N)

and

l∑
i=1

(
δ(pi)

2 + δ(pi) + δ(2n+ pi)
2)+

l1∑
j=1

(
δ(qj)

2 + δ(qj)
)

+

l2∑
s=1

(
δ(rs)

2 + δ(rs)
)

= π(3n) + l + l1 + l2,

we let two functions on R2l+l1+l2+1

(2.3) g(x, y, , u, v, z) =
l∑

i=1

(x2i + u2i ) +

l1∑
j=1

y2j +

l2∑
s=1

v2s − π(3n)z

and
(2.4)

h(x, y, , u, v, z) =

l∑
i=1

(
x2i + xi + u2i

)
+

l1∑
j=1

(
y2j + yj

)
+

l2∑
s=1

(
v2s + vs

)
− (π(3n) + l + l1 + l2) .

Let us investigate the extreme values of f(x, y, u, v, z) subject to constraints

g(x, y, u, v, z) = 0 and h(x, y, u, v, z) = 0.

Denote

(2.5) A = {(x, y, u, v, z) ∈ R2l+l1+l2+1|g(x, y, u, v, z) = 0, h(x, y, u, v, z) = 0}.

Clearly,
P ∈ A.

Since g(x, y, u, v, z) = 0 is the rotating paraboloid in R2l+l1+l2+1 and h(x, y, u, v,
z) = 0 is the ellipse cylinder in R2l+l1+l2+1, we see that A is a bounded closed
set in R2l+l1+l2+1 and the rank of Jacobian matrix on A of g(x, y, u, v, z) and
h(x, y, u, v, z) is 2. Then f(x, y, u, v, z) allows the maximum value and mini-
mum value on A.

Define the Lagrange function

(2.6) Q(x, y, u, v, z, λ, µ) = f(x, y, u, v, z) + λg(x, y, u, v, z) + µh(x, y, u, v, z).

We will use the method of Lagrange multipliers to solve all stationary points
of f(x, y, u, v, z) on A.
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Because of
Qz = −π(3n)λ = 0,

so
λ = 0.

From 
Qxi

= 2λxi + 2µxi + µ = 0,
Qyj = 2λyj + 2µyj + µ = 0,

Qui
= 2ui + 1 + 2λui + 2µui = 0,
Qvs = 2λvs + 2µvs + µ = 0,

it follows by combining λ = 0 that

(2.7)


µ(2xi + 1) = 0,
µ(yj + 1) = 0,

(2 + 2µ)ui = −1,
µ(2vs + 1) = 0.

If µ = 0, then we have from (2.7) that

xi, yj, vs are arbitrary, ui = −1
2
,

then

f =

(
1

4
− 1

2

)
l < 0,

and

fmax =

(
1

4
− 1

2

)
l < 0,

hence f(P ) ≤ fmax < 0, but it contradicts to f(P ) ≥ 0.
If µ 6= 0 (noting µ 6= −1, otherwise, it has 0 ·ui = −1 from (2+2µ)ui = −1

in (2.7), a contradiction), then

xi = −1

2
, yj = −1

2
, ui = − 1

2 + 2µ
, vs = −1

2
.

Using

0 = h(x, y, u, v, z) = − l
4

+
l

(2 + 2µ)2
− l1

4
− l2

4
− (π(3n) + l + l1 + l2) ,

we see
l

(2 + 2µ)2
=

5(l + l1 + l2)

4
+ π(3n),

and then
1

2 + 2µ
= ±

√
π(3n)

l
+

5(l + l1 + l2)

4l
,
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so

ui = ∓
√
π(3n)

l
+

5(l + l1 + l2)

4l
.

Since π(3n) > l, we have

fmin = l

(
π(3n)

l
+

5(l + l1 + l2)

4l
−
√
π(3n)

l
+

5(l + l1 + l2)

4l

)
> 0.

Then for P ∈ A, it yields

f(P ) =

l1∑
i=1

(
δ(2n− pi)2 + δ(2n− pi)

)
≥ fmin > 0,

so there exists pi, such that

δ(2n+ pi) = 1,

namely, 2n+ pi is an odd prime between 2n and 3n. Theorem 1.1 is proved.
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