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Abstract

The concept of a locally n-open set is introduced. The basic prop-
erties of these sets are established. Relationships between this class
of sets and other classes of generalized open sets are developed. It is
shown that the class of locally n-open sets properly contains the class
of n-open sets and is closely related to the class of generalized n-closed
sets. The notion of a locally n-continuous function is developed. The
basic properties of these functions are investigated.
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1 Introduction

The concept of a Q-set (a subset of a topological space on which the closure and
interior operators commute) was investigated by Levine [5] in 1961. Recently
the notion of a locally Q-set was studied by Gowri [4] in 2019. The concept of
an n-open set (a set on which the closure and interior operators are not equal)
was introduced by Baker [1] in 2021. It follows from the definitions that, if a
set is not a Q-set, then the set is n-open. However, the converse implication
does not hold. In this note we continue this line of inquiry by introducing the
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notion of a locally n-open set. Since the space itself is not locally n-open, the
locally n-open sets do not form a minimal structure. The basic properties and
relationships of these sets are investigated. For example, it is shown that this
collection of sets is closed under intersection but not union. Additionally it is
established that the locally n-open sets are closely related to the generalized
n-closed sets and coincide with the union-n-closed sets. The notion of a locally
n-continuous function is defined. It is established that local n-continuity is not
necessarily preserved under either composition or restriction. Additionally it
is shown that, if the domain is not discrete, then local-n continuity is strictly
between n-continuity and contra generalized n-continuity.

2 Preliminaries

Unless otherwise stated, the symbols X, Y , and Z represent topological spaces
(briefly spaces) with no separation properties assumed. All topological spaces
are assumed to be nonempty. The closure and interior of a set A are signified
by Cl(A) and Int(A), respectively.

Definition 2.1 Let X be a nonempty set and P(X) the power set of X. A
subfamily mX of P(X) is called a minimal structure (briefly an m-structure)
on X [6], if ∅ ∈ mX and X ∈ mX .

Definition 2.2 A subset A of a space X is said to be n-open [1] if Int(A) 6=
Cl(A). A subset of X is called n-closed if its complement is n-open.

Theorem 2.3 [1] If A is a subset of a space X, then

(a) A is n-open if and only if A is not clopen.

(b) A is n-open if and only if X − A is n-open.

Thus the n-open sets coincide with the n-closed sets.

Remark 2.4 Nether X nor ∅ is n-open. Therefore the collection of n-open
sets does not form a minimal structure.

Theorem 2.5 [1] If a space X is not discrete, then for every x ∈ X there
exists an n-open set containing x.

Remark 2.6 A space is discrete if and only if there are no n-open sets.

Definition 2.7 Let A be a subset of a space X. The n-interior of A [1] is
denoted by nInt(A) and given by nInt(A) = ∪{U ⊆ X : U ⊆ A and U is n-open}.
The n-closure of A [1] is denoted by nCl(A) and given by nCl(A) = ∩{F ⊆
X : A ⊆ F and F is n-closed}.
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Theorem 2.8 [1] If A is a subset of a space X, then

(a) nInt(X − A) = X − nCl(A).

(b) nCl(X − A) = X − nInt(A).

(c) x ∈ nCl(A) if and only if U ∩ A 6= ∅ for every n-open set U containing
x.

Theorem 2.9 [1] If X is a space, then

(a) nCl(X) = X.

(b) nInt(∅) = ∅.

Theorem 2.10 [1] If a space X is not discrete, then

(a) nInt(X) = X.

(b) nCl(∅) = ∅.

Theorem 2.11 [1] If a space X is discrete, then

(a) nInt(A) = ∅ for every set A ⊆ X.

(b) nCl(A) = X for every set A ⊆ X.

Theorem 2.12 [2] If A is a subset of a space X, then

(a) nCl(A) = A or nCl(A) = X.

(b) nInt(A) = A or nInt(A) = ∅.

Definition 2.13 A subset A of a space X is said to be generalized n-closed
(briefly gn-closed) [2], if whenever A ⊆ U and U is open, then nCl(A) ⊆ U .
A subset of X is called generalized n-open (briefly gn-open) if its complement
is gn-closed.

Theorem 2.14 [2] If A is a subset of a space X, then

(a) A is gn-closed if and only if nCl(A) = A.

(b) A is gn-open if and only if nInt(A) = A.

(c) nCl(A) is gn-closed.

(d) nInt(A) is gn-open.
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Definition 2.15 A function f : X → Y is said to be n-continuous [1] if
f−1(V ) is n-open in X for every proper nonempty open set V ⊆ Y .

Definition 2.16 A function f : X → Y is said to be generalized n-continuous
(briefly gn-continuous) [2] if f−1(F ) is gn-closed in X for every closed set
F ⊆ Y .

Definition 2.17 A subset A of a space X is said to be union-n-open (briefly
un-open) [3], if A is the union of a nonempty collection of n-open sets.

3 Locally n-open sets

Definition 3.1 A subset A of a space X is said to be locally n-open if there
exist an n-open set B and a open set U such that A = B ∩ U .

Theorem 3.2 Every n-open set is locally n-open.

Proof. Let A be an n-open subset of a space X. Since A = A ∩ X, A is
locally n-open.

Example 3.3 Let X = {a, b, c} have the topology τ = {X, ∅, {a, b}, {c}}.
The n-open sets are {a}, {b}, {a, c}, and {b, c}. Since {c} = {a, c} ∩ {c} and
{a, c} is n-open, {c} is locally n-open. However {c} is clopen and hence not
n-open. Also {a, b} is open but not locally n-open, since it is not contained in
an n-open set, and {a} is n-open hence locally n-open but not open. Therefore
locally n-open does not imply n-open and locally n-open is independent of open.
Also {a} and {b} are locally n-open, but their union is not locally n-open.

If X is discrete, there are no n-open sets and hence no locally n-open sets.
If X is not discrete, then by Theorem 2.5 there exist an n-open set A. Since
∅ = A ∩ ∅, the ∅ is locally n-open.

Theorem 3.4 If A is a subset of a space X, then A is locally n-open if and
only if there exists an n-open set B such that A ⊆ B.

Proof. If A is locally n-open, then it follows from the definition that A is
contained an n-open set.

Assume there exist an n-open set B such that A ⊆ B. If A is open, then,
since A = B ∩ A, A is locally n-open. If A is not open then A is not clopen
and hence A is n-open and therefore also locally n-open.

Corollary 3.5 Every subset of a locally n-open set is locally n-open.
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Corollary 3.6 The locally n-open sets are closed under intersection.

Corollary 3.7 Let A be a subset of a space X. The set A is locally n-open
if and only if nCl(A) 6= X.

Proof. Recall that the n-open sets coincide with the n-closed sets. Therefore
nCl(A) 6= X if and only if there exists an n-closed set B such that A ⊆ B if
and only if there exists an n-open set B such that A ⊆ B if and only if A is
locally n-open.

The following result is a consequence if Theorem 2.12(a).

Corollary 3.8 Let A be a subset of a space X. The set A is locally n-open
if and only if A 6= X and nCl(A) = A.

The next corollary is follows from Theorem 2.14(a).

Corollary 3.9 Let A be a subset of a space X. The set A is locally n-open
if and only if A 6= X and A is gn-closed.

Lemma 3.10 Let A be a subset of space X. Then A is un-closed if and
only if A is the intersection of a nonempty collection of n-closed sets.

Theorem 3.11 A set is locally n-open if and only if it is un-closed.

Proof. Assume A is un-closed. Since A is the intersection of a collection
of n-closed sets, A is also the intersection of a collection of locally n-open sets
and hence A is locally n-open.

Assume A is locally n-open. By Corollary 3.8 A 6= X and nCl(A) = A.
Thus it follows from the definition of the n-closure of a set that A is the
intersection of a nonempty collection of n-closed sets and hence by Lemma
3.10 A is un-closed.

4 Locally n-continuous functions

Definition 4.1 A function f : X → Y is said to be locally n-continuous if
f−1(V ) is locally n-open for every proper open set V ⊆ Y .

Definition 4.2 A function f : X → Y is said to be contra gn-continuous
if f−1(V ) is gn-closed for every open set V ⊆ Y .

Theorem 4.3 If X is not discrete and f : X → Y is n-continuous, then f
is locally n-continuous.
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Proof. Assume f : X → Y is n-continuous. Let V ⊆ Y be a proper
open set. If V = ∅, then f−1(V ) = ∅, which, since X is not discrete, is
locally n-open. If V 6= ∅, then V is a proper nonempty set and, since f is
n-continuous, then f−1(V ) is n-open and hence locally n-open. Therefore f is
locally n-continuous.

Theorem 4.4 If f : X → Y is locally n-continuous, then f is contra gn-
continuous.

Proof. Assume f : X → Y is locally n-continuous. Let V ⊆ Y be an
open set. If V = Y , then f−1(V ) = X which is gn-closed. If V 6= Y , then
V is a proper set and, since f is locally n-continuous, then f−1(V ) is locally
n-open and hence by Corollary 3.9 f−1(V ) is gn-closed. Thus f is contra
gn-continuous.

Example 4.5 Let X = {a, b, c} have the topologies τ = {X, ∅, {a, b}, {c}}
and σ = {X, ∅, {c}} and let f : (X, τ) → (Y, σ) be the identity mapping.
Since f−1({c}) is locally n-open but not n-open (see Example 3.3), f is locally
n-continuous but not n-continuous.

Example 4.6 Let X = {a, b, c} have the topology τ = {X, ∅, {c}} and let
f : (X, τ) → (Y, τ) be the constant mapping given by f(x) = c for every
x ∈ X. Since f−1({c}) = X which is gn-closed but not locally n-open, f is
contra gn-continuous but not locally n-continuous.

As the following example shows, the restriction of a locally n-continuous
function is not necessarily locally n-continuous, even when restricted to an
n-open set.

Example 4.7 If X = {a, b, c} has the topologies τ = {X, ∅, {a, b}, {c}}
and σ = {X, ∅, {a, c}}, then the identity map f : (X, τ) → (X, σ) is locally
n-continuous, but, if S = {b, c}, then f |S : (S, τS) → (X, σ) is not locally
n-continuous. Note that, since the subspace topology τS is discrete, there is no
locally n-continuous function from (S, τS) to (X, σ).

From the following example, we see that the composition of locally n-
continuous functions is not necessarily locally n-continuous.

Example 4.8 Let X = {a, b, c} have the topologies τ = {X, ∅, {a, b}, {c}},
σ = {X, ∅, {a}}, and δ = {X, ∅, {a, b}}. Then the identity mappings f :
(X, τ) → (X, σ) and g : (X, σ) → (X, δ) are locally n-continuous, but g ◦ f is
not locally n-continuous. Note that (g ◦ f)−1({a, b}) is not locally n-open in
(X, τ).
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Theorem 4.9 If f : X → Y is locally n-continuous and g : Y → Z is
continuous and g−1(V ) 6= Y for every proper open set V ⊆ Z, then g ◦ f is
locally n-continuous.

Corollary 4.10 Let fα : X → Yα be a function for every α ∈ Λ. If the
product function f : X → ∏

α∈Λ Yα, given by f(x) = (fα(x))α, is locally n-
continuous, then fα is locally n-continuous for every α ∈ Λ.

Proof. Since fα = pα ◦ f for every α ∈ Λ, where pα is the projection onto
Yα, the desired result follows from Theorem 4.9.

Definition 4.11 A function f : X → Y is said to be locally n-open if f(U)
is open for every locally n-open set U ⊆ X.

Theorem 4.12 Let f : X → Y and g : Y → Z be functions. If f is
locally n-continuous and locally n-open and surjective and g−1(V ) 6= Y for
every proper open set V ⊆ Z, then g ◦ f is locally n-continuous if and only if
g is continuous.

Proof. The necessity follows from Theorem 4.9. For the sufficiency assume
g ◦ f is locally n-continuous and let V be a proper open subset of Y. Then
f−1(g−1(V )) is locally n-open and, since f is surjective and locally n-open,
g−1(V ) = f(f−1(g−1(V ))) is open. Therefore g is continuous.

References

[1] C.W. Baker, n-open sets and n-continuous functions, Int. J. Contemp.
Math. Sci., 16 (2021), 13–20. https://doi.org/10.12988/ijcms.2021.91466

[2] C.W. Baker, Generalized n-closed sets and generalized n-continuous func-
tions, Int. J. Contemp. Math. Sci., 16 (2021), 149–155.
https://doi.org/10.12988/ijcms.2021.91611

[3] C.W. Baker, Union n-continuous functions, Int. J. Contemp. Math. Sci.,
18 (2023), 9–17. https://doi.org/10.12988/ijcms.2023.91865

[4] A. Gowri, On locally Q-sets in topology, JETIR 6 (2019), 18–20.

[5] N. Levine, On the commutativity of the closure and interior operators in
topological spaces, Amer. Math. Monthly, 68 (1961), 474–477.
https://doi.org/10.2307/2311105

[6] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. ”Dunarea
de Jos” Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18 (2000), 31–41.

Received: July 25, 2024; Published: August 8, 2024


