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Abstract

The concept of a union-n-continuous function is introduced. The ba-
sic properties of these functions are developed. It is established that, if
the domain is not discrete, then this class of functions is strictly between
the classes of n-continuous functions and generalized n-continuous func-
tions. A useful characterization of generalized n-open sets is obtained.
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1 Introduction

Reilly and Vamanamurthy [5] introduced the class of clopen continuous func-
tions characterized by the property that inverse images of open sets are unions
of clopen sets. In [6] Singh continued the development of these functions under
the name cl-supercontinuous. In this note we investigate the class of functions
characterized by the property that inverse images of open sets are unions of
non-clopen sets. Non-clopen sets have been developed in the literature un-
der the name n-open [1]. The functions introduced in this note are called
union-n-continuous (briefly un-continuous). It is established that, if the do-
main is not discrete, then this class of functions is strictly between the classes
of n-continuous functions and generalized n-continuous (briefly gn-continuous)
functions. It is shown that a function f : X → Y is un-continuous if and only
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if f−1(V ) 6= ∅ for every nonempty open set V ⊆ Y and f is gn-continuous.
Additionally the basic properties of these functions are developed.

2 Preliminaries

Unless otherwise stated, the symbols X, Y , and Z represent topological spaces
(briefly spaces) with no separation properties assumed. All topological spaces
are assumed to be nonempty. The closure and interior of a set A are signified
by Cl(A) and Int(A), respectively.

Definition 2.1 Let X be a nonempty set and P(X) the power set of X. A
subfamily mX of P(X) is called a minimal structure (briefly an m-structure)
on X [4], if ∅ ∈ mX and X ∈ mX .

Definition 2.2 A subset A of a space X is said to be n-open [1] if Int(A) 6=
Cl(A). A subset of X is called n-closed if its complement is n-open.

Theorem 2.3 [1] If A is a subset of a space X, then

(a) A is n-open if and only if A is not clopen.

(b) A is n-open if and only if X − A is n-open.

Thus the n-open sets coincide with the n-closed sets.

Remark 2.4 Nether X nor the ∅ is n-open. Therefore the collection of
n-open sets does not form a minimal structure.

Theorem 2.5 [1] If X is not discrete, then for every x ∈ X there exists an
n-open set containing x.

Remark 2.6 A space is discrete if and only if there are no n-open sets.

Definition 2.7 Let A be a subset of a space X. The n-interior of A [1] is
denoted by nInt(A) and given by nInt(A) = ∪{U ⊆ X : U ⊆ A and U is n-open}.
The n-closure of A [1] is denoted by nCl(A) and given by nCl(A) = ∩{F ⊆
X : A ⊆ F and F is n-closed}.

Theorem 2.8 [1] The following statements hold for every set A ⊆ X:

(a) nInt(X − A) = X − nCl(A).

(b) nCl(X − A) = X − nInt(A).

(c) x ∈ nCl(A) if and only if U ∩ A 6= ∅ for every n-open set U containing
x.
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Theorem 2.9 [1] If X is a space, then

(a) nCl(X) = X.

(b) nInt(∅) = ∅.

Theorem 2.10 [1] If X is not discrete, then

(a) nInt(X) = X.

(b) nCl(∅) = ∅.

Theorem 2.11 [1] If X is a discrete space, then

(a) nInt(A) = ∅ for every set A ⊆ X.

(b) nCl(A) = X for every set A ⊆ X.

Theorem 2.12 [1] If A is a subset of a space X, then

(a) nCl(A) = A or nCl(A) = X.

(b) nInt(A) = A or nInt(A) = ∅.

Definition 2.13 A subset A of a space X is said to be generalized n-closed
(briefly gn-closed) [2], if whenever A ⊆ U and U is open, then nCl(A) ⊆ U .
A subset of X is called generalized n-open (briefly gn-open) if its complement
is gn-closed.

Theorem 2.14 [1] If A is a subset of a space X, then

(a) A is gn-closed if and only if nCl(A) = A.

(b) A is gn-open if and only if nInt(A) = A.

(c) nCl(A) is gn-closed.

(d) nInt(A) is gn-open.

Definition 2.15 [1] A function f : X → Y is said to be n-continuous [1]
if f−1(V ) is n-open in X for every proper nonempty open set V ⊆ Y .

Definition 2.16 A function f : X → Y is said to be generalized n-continuous
(briefly gn-continuous) [2] if f−1(F ) is gn-closed in X for every closed set
F ⊆ Y .

Theorem 2.17 [2] The following conditions are equivalent for a function
f : X → Y :
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(a) f is gn-continuous.

(b) f−1(V ) is gn-open for every open set V ⊆ Y .

(c) f−1(Int(B)) ⊆ nInt(f−1(B)) for every set B ⊆ Y .

(d) nCl(f−1(B)) ⊆ f−1(Cl(B)) for every set B ⊆ Y .

See [1], [2], or [3] for additional properties and notation concerning n-open
sets.

3 un-Continuous Functions

Definition 3.1 A function f : X → Y is said to be union-n-continuous
(briefly un-continuous) if for every nonempty open set V ⊆ Y , f−1(V ) is a
union of a nonempty collection of n-open sets.

If U is a union of a nonempty collection of n-open sets, we will call U
un-open. Since the ∅ is not un-open, the un-open sets do not form a minimal
structure. The un-open sets are obviously closed under union but, as we see
in the following example, not closed under intersection.

Example 3.2 Let X = {a, b, c} have the topology τ = {X, ∅, {a, b}, {c}}.
The sets {a, c} and {b, c} are un-open, but their intersection is not un-open.

If X is a discrete space, then there are no n-open sets and hence there is
no un-continuous function defined on X. If the domain is not discrete, then
obviously n-continuity implies un-continuity. The following example shows
that the converse implication does not hold.

Example 3.3 Let X = {a, b, c} have the topologies τ = {X, ∅, {a, b}, {c}}
and σ = {X, ∅, {a, b}}. The identity mapping f : (X, τ) → (Y, σ) is un-
continuous but not n-continuous. Note that f−1({a, b}) is un-open but not
n-open.

Theorem 3.4 Let A be subset of a space X.

(a) If A is un-open, then A is gn-open.

(b) The set A is un-open if and only if A 6= ∅ and A is gn-open.
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Proof. (a) Since A is un-open, A is a union of a nonempty collection of
n-open sets. Therefore A ⊆ nInt(A). Hence A = nInt(A) and thus A is
gn-open (Theorem 2.14(b)).

(b) Assume A is un-open. Then A is union of a nonempty collection of
n-open sets, which are nonempty. Therefore A 6= ∅. It follows from (a) that A
is gn-open.

Assume that A 6= ∅ and that A is gn-open. By Theorem 2.14(b) A =
nInt(A). Since A 6= ∅, nInt(A) 6= ∅. Thus A is the union of a collection of
n-open sets and is therefore un-open.

Corollary 3.5 A nonempty set is gn-open if and only if it is a union of
n-open sets.

Theorem 3.6 The following statements are equivalent for a function f :
X → Y :

(a) f is un-continuous.

(b) For every nonempty open set V ⊆ Y , f−1(V ) 6= ∅ and for every x ∈
f−1(V ) there exists an n-open set A such that x ∈ A ⊆ f−1(V ).

Theorem 3.7 The following statements are equivalent for a function f :
X → Y :

(a) f is un-continuous.

(b) For every nonempty open set V ⊆ Y , f−1(V ) 6= ∅ and f is gn-continuous.

(c) For every nonempty open set V ⊆ Y , f−1(V ) 6= ∅ and for every B ⊆ Y ,
nCl(f−1(B)) ⊆ f−1(Cl(B)).

(d) For every nonempty open set V ⊆ Y , f−1(V ) 6= ∅ and for every B ⊆ Y ,
f−1(Int(B)) ⊆ nInt(f−1(B)).

Proof. (a) ⇔ (b) follows from Theorem 3.4(b).
(b) ⇔ (c) ⇔ (d) follows from Theorem 2.17.

Definition 3.8 A function f : X → Y is said to be weakly gn-continuous
if nCl(f−1(V )) ⊆ f−1(Cl(V )) for every open set V ⊆ Y .

It follows immediately from Theorem 2.17(d) that gn-continuity implies
weak gn-continuity and hence un-continuity implies weak gn-continuity. The
following example shows that the converse implication does not hold.
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Example 3.9 Let X = {a, b, c} have the topologies τ = {X, ∅, {a, b}, {c}}
and σ = {X, ∅, {c}}. The identity mapping f : (X, τ) → (X, σ) is weakly gn-
continuous since f−1(Cl({c})) = X but not gn-continuous because f−1({a, b})
is not gn-closed.

Assuming the domains are not discrete, the following implications, none of
which are reversible, hold:

n-continuity ⇒ un-continuity ⇒ gn-continuity. ⇒ weak gn-continuity

4 Properties of un-Continuous Functions

As we see in the following example, the composition of un-continuous functions
is not necessarily un-continuous.

Example 4.1 Let X = {a, b, c} have the topologies τ = {X, ∅, {a, b}, {c}},
σ = {X, ∅, {a}}, and δ = {X, ∅, {c}}. The identity mappings f : (X, τ) →
(X, σ) and g : (X, σ) → (X, δ) are un-continuous, but g ◦ f is not un-
continuous. Note that (g ◦ f)−1({c}) is not un-open in (X, τ).

Theorem 4.2 If f : X → Y is un-continuous and g : Y → Z is con-
tinuous and g−1(V ) 6= ∅ for every nonempty open set V ⊆ Z, then g ◦ f is
un-continuous.

Corollary 4.3 Let fα : X → Yα be a function for every α ∈ Λ. If the prod-
uct function f : X → ∏

α∈Λ Yα, given by f(x) = (fα(x))α, is un-continuous,
then fα is un-continuous for every α ∈ Λ.

Proof. Since fα = pα ◦ f for every α ∈ Λ, where pα is the projection onto
Yα, the desired result follows from Theorem 4.2.

Definition 4.4 A space X is said to be n-0-dimensional if every nonempty
open set is a union of n-open sets or equivalently every nonempty open set is
un-open.

Corollary 4.5 Let f : X → Y be a function and let g : X → X × Y be
the graph function of f given by g(x) = (x, f(x)) for every x ∈ X. If g is
un-continuous, then f is un-continuous and X is n-0-dimensional.

Proof. Assume g is un-continuous and let pY : X×Y → Y be the projection
onto Y . Since f = pY ◦g, it follows from Theorem 4.2 that f is un-continuous.
To see that X is n-0-dimensional, let U be a nonempty open set in X. Then
U × Y is a nonempty open set in X × Y . Since g is un-continuous, U =
g−1(U × Y ) is un-open. Therefore U is a union of n-open sets and hence X is
n-0-dimensional.



Union-n-continuous functions 15

Definition 4.6 A function f : X → Y is said to be un-open if f(U) is open
for every un-open set U ⊆ X.

Theorem 4.7 Let f : X → Y and g : Y → Z be functions. If f is un-
open, un-continuous, and surjective and g−1(V ) 6= ∅ for every nonempty open
set V ⊆ Z, then g ◦ f is un-continuous if and only if g is continuous.

Proof. If g : Y → Z is continuous, then g ◦ f is un-continuous by Theorem
4.2. Assume g ◦ f is un-continuous and let V ⊆ Z be an open set. Then
f−1(g−1(V )) is un-open and hence g−1(V ) = f(f−1(g−1(V ))) is open. There-
fore g is continuous.

The restriction of a un-continuous function, even to an n-open set, is not
necessarily un-continuous.

Example 4.8 If X = {a, b, c} has the topologies τ = {X, ∅, {a, b}, {c}} and
σ = {X, ∅, {a, c}}, then the identity map f : (X, τ)→ (X, σ) is un-continuous,
but, if S = {b, c}, then f |S : (S, τS)→ (X, σ) is not un-continuous. Note that,
since the subspace topology τS is discrete, there is no un-continuous function
defined on (S, τS).

Lemma 4.9 Assume U ⊆ A ⊆ X. If U is n-open as a subset of A, then U
is n-open as a subset of X.

Remark 4.10 The converse of Lemma 4.9 does not hold.

Theorem 4.11 Let f : X → Y be a function. If C = {Cα : α ∈ Λ} is a
cover of X by n-open sets such that f |Cα : Cα → Y is un-continuous for every
α ∈ Λ, then f : X → Y is un-continuous.

Proof. Let V ⊆ Y be a nonempty open set. Since for every α ∈ Λ,
f |Cα : Cα → Y is un-continuous, f |−1

Cα
(V ) is the union of a nonempty collection

of sets that are n-open as subsets of Cα for every α ∈ Λ. By Lemma 4.9 for
every α ∈ Λ, f |−1

Cα
(V ) is the union of a nonempty collection of sets that are

n-open as subsets of X. Since f−1(V ) =
⋃
α∈Λ f |−1

Cα
(V ), f−1(V ) is the union of

a nonempty collection of sets that are n-open in X. Hence f is un-continuous.

Definition 4.12 A function f : X → Y is said to be a un-homeomorphism
if f is bijective and both f and f−1 are un-continuous.

Theorem 4.13 If f : X → Y is a homeomorphism, then X is n-0-dimen-
sional if and only if f is a un-homeomorphism.
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Proof. Assume f : X → Y is a homeomorphism.
Suppose X is n-0-dimensional. Since n-0-dimensional is a topological prop-

erty, Y is also n-0-dimensional. Thus all nonempty open sets in either space
are un-open. Since f and f−1are continuous, f and f−1 are also un-continuous
and therefore f is a un-homeomorphism.

Suppose f : X → Y is a un-homeomorphism. Let U be a nonempty
open set in X. Since f is a homeomorphism and a un-homeomorphism,
U = f−1(f(U)) is un-open. Hence X is n-0-dimensional.

The following example shows that the converse of Theorem 4.13 does not
hold.

Example 4.14 Let X and Y be non-homeomorphic connected spaces with
the same cardinality. Since there are no proper, nonempty clopen sets in
ether space, all proper nonempty sets in either space are n-open and hence
un-open. Since neither X nor Y is discrete, it follows from Theorem 2.5 that
both X and Y are un-open. Therefore any bijection from X onto Y is a un-
homeomorphism. Also X is n-0-dimensional.

Corollary 4.15 If X is n-0-dimensional and f : X → Y is a homeomor-
phism, then f is a un-homeomorphism.

Remark 4.16 Being a homeomorphism is independent of being a un-homeo-
morphism.
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