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Abstract

The objective is to study a spectral problem which arises from physics
by using results from functional analysis. Spectral properties for the
principle operators are studied. It is shown how the spectral properties
of physically important operators such as the energy operator which
define the problem can be obtained. Spectral decomposition for the
Hamiltonian is constructed and an application to coherent states is pre-
sented.
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1 Introduction

The creation of quantum mechanics has led to the development of a great deal
of new mathematics and techniques to employ it. It is the intention here to
employ some of these concepts and methods that have arisen in this area to
study a spectral problem in nonrelativistic quantum mechanics, in particular,
functional analysis [1-3].

Suppose (X, || · ||) is a Banach space over C and Ω ⊂ C is a non-empty
open set. A function f : Ω → X is called analytic if for any z0 ∈ Ω, there
exists a δ > 0 such that f(z) =

∑∞
n=0 an(z − z0)n for every z ∈ Bδ(z0), where

Bδ(z0) ⊂ Ω and an ∈ X for any integer n ≥ 0, the series converges in norm.
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Let X be a vector space, then A an operator on X signifies A : D(A)→ X,
where the domain D(A) ⊂ X is a subspace, usually not closed in X. The
resolvent set ρ(A) of numbers λ ∈ C satisfies (i) Ran(A − λI) = X (ii)
(A − λI) : D(A) → X is injective (iii) (A − λI)−1 : Ran(A − λI) → X is
bounded. The spectrum of operator A is the set σ(A) = C \ ρ(A) and is made
up of the disjoint union of the point spectrum σp(A), λ ∈ C for which A−λI is
not injective, the continuous spectrum σc(A) such that A−λI is injective and
Ran(A − λI) = X but (A − λI)−1 is not bounded, and finally, σr(A), λ ∈ C
for which A− λI is injective but ¯Ran(A− λI) 6= X [4-6].

Let A be an operator on the Hilbert space H, then a vector ψ ∈ D(A) such
that Anψ ∈ D(A) for any n ∈ N is called a C∞ vector for A, and C∞(A) is
the subspace of C∞ vectors for A. A vector ψ ∈ C∞(A) is an analytic vector
for A if for aome t > 0

∞∑
n=0

||Anψ||
n!

tn < +∞. (1.1)

A vector ψ ∈ C∞(A) is a vector of uniqueness for A if A|Dψ is an essentially

self-adjoint operator on the Hilbert space Hψ = Dψ, where Dψ ⊂ H is the
span of Anψ, for n = 0, 1, 2, . . .. If ψ is an analytic vector for A, the series

∞∑
n=0

||Anψ||
n!

xn

converges for some x > 0. Convergence of power series results guarantee the
complex series

∞∑
n=0

||Anψ||n

n!
zn

converges absolutley for any z ∈ C, |z| < x and uniformly on {z ∈ C||z| < r}
for every r < x. Also the series of derivatives of any order

∞∑
n=0

||An+pψ||
n!

zn,

converges for any given p = 1, 2, 3, . . . [7-9].

Theorem 1.1 Let A be a symmetric operator on the Hilbert space H. If
D(A) has a set of vectors of uniqueness whose linear span is dense in H, A is
essentially self-adjoint.

Proof: It suffices to prove that the spaces Ran(A±iI) are dense, Ran(A+ iI) =
H. Given φ ∈ H and ε > 0, there is a finite linear combination of vectors of
uniqueness ψi such that ||φ −

∑n
i=1 αiψi|| < ε/2. Since ψi ∈ Hψ and A|Dψ

is essentially self-adjoint on this space Ran(A± iI) = H implies there exists
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ηi ∈ Hψ with (A|ψ + iI)ηi − ψi|| < (ε/2)(
∑∞

j=1 |αj|)−1. Setting η =
∑N

i=1 αiηi

and ψ =
∑N

i=1 αiψi, we have η ∈ D(A) and

||(A+ iI)η − φ|| ≤ ||(A|Dψ + iI)η − ψ||+ ||φ− ψ|| < ε.

As ε > 0 is arbitrary, Ran(A + iI) is dense. The similar claim concerning
Ran(A− iI) is similar, so A is essentially self-adjoint since Ran(A+ iI) = H.
�

Theiorem 1.1 is used to prove Nelson’s analytic vector theorem: Let A be a
symmetric operator on the Hilbert space H. If D(A) contains a set of analytic
vectors for A whose span is dense in H, A is essentially self-adjoint.

Introduce the Schwarz space S(R) of R which is the space of smooth com-
plex functions that vanish at infinity along with any derivative, faster than any
negative power of x. This acts as the domain of the operator to be defined. Let
the complex Hilbert space L2(R, dµ) be given where dµ is Lebesgue measure
on R. The main object of interest is to consider the problem posed by the
following operator H0 defined on the space S(R) = D(H0) and given by

H0 =
1

2m
P 2 +

1

2
mω2X2. (1.2)

The operators X and P are related to the physical variables of position and
momentum and can be interpreted as position and momentum for a particle
moving in one-dimension.

A typical quantization scheme identifies P with the operator −i~∂x and X
with multiplication by the coordinate x. This puts H0 in the form [3]

H0 = − ~2

2m
∂2x +

1

2
mω2 x2, (1.3)

where x2 is multiplication by R 3 x→ x2 and ~, m and ω are real constants.
In fact, H0 is not an observable since it is not self-adjoint. It has closure H̄0

which is self-adjoint and can be considered the energy observable of the system.
Denote by (|) the inner product throughout, such as the L2 used below, but

other Borel measures can be considered. If X is a locally compact Hausdorff
space, a Borel measure on X is a positive σ-additive measure on the Borel sets
of X. If u, v ∈ C2

0 are C2 functions with compact support, it follows that

(H0u|v)− (u|H0v) =∫ ∞
−∞

[− ~2

2m
u′′(x) +

1

2
mω2u(x)]v̄(x)− u(x)[− ~2

2m
v̄′′(x) +

1

2
mω2v̄(x)] dx

=

∫ ∞
−∞

[−u′′(x)v̄(x) + u(x)v̄′′(x)] dx = 0.
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Thus, the operator H0 is symmetric as it is Hermitian and the Schwarz space
is dense in L2(R, dµ). As it commutes with anti-unitary complex conjugates
of L2, it admits self-adjoint extensions by Von Neumann’s criterion: Let A be
a symmetric operator on the Hilbert space H. If there exists a conjugation
C : H → H such that CA ⊂ AC, then A admits self-adjoint extensions.
One of the objectives is to show H0 is essentially self-adjoint and to obtain
the spectrum and provide an explicit expression for it in terms of the spectral
expansion of its unique self-adjoint extension H̄0. The Hamiltonian can be
written in terms of of two operators which are usually called creation and
annihilation operators. These operators are studied in detail. It is shown
that the spectrum of the Hamiltonian is a discrete point spectrum, and an
application of these operators to construct coherent states is given [10-11].

2 Basic Operators and Their Properties

Introduce the following pair of operators which are defined as [4-5]

a∗ =

√
mω

2~
(
x− ~

mω
∂x
)
, a =

√
mω

2~
(
x+

~
mω

∂x
)
, N = a∗ a. (2.1)

In the context of a physical model, these operators are called creation, an-
nihilation operators and N the number operator. respectively. It can be
assumed the operators are densely defined on the Schwarz space S(R), so
D(a) = D(a∗) = D(N ) = S(R), where S(R) is dense and invariant under H0,
a and a∗. A basis for the space L2(R, dµ) can be constructed from eigenvectors
of N and H0 by using a and a∗. These will all be analytic vectors by Nelson’s
criterion: Let A be a symmetric operator on the Hilbert space H, If D(A)
contains a set of analytic vectors for A where their span is dense in H, then A
is essentially self-adjoint. Thus H0 and N are essentially self-adjoint on S(R).
By (2.1), the commutation relation

[a, a∗] = I, (2.2)

holds, where each side acts on the dense, invariant space S(R). Clearly, it
holds that

a∗a =
mω

2~
(
x2 − ~

mω
− x ~

mω
∂x + x

~
mω

∂x +
~2

(mω)2
∂2x
)

and

~ωN = − ~2

2m
∂2x +

1

2
mω2 x2 − 1

2
~ωI. (2.3)

Consequently, H0 can be expressed in terms of the operator N as follows

H0 = ~ω (a∗a+
1

2
I) = ~ω(N +

1

2
I). (2.4)
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Consider the equation defined on S(R) given by

aψ0 = 0. (2.5)

Using (2.1) for a, this can be interpreted as a first order differential equation.
A solution can be obtained for it,

ψ0(x) =
1

π1/4
√
σ
e−x

2/2σ2

, σ =

√
~
mω

. (2.6)

The constant in this solution enforces the constraint ||ψ0|| = 1. The function
ψ0 is a Hermite function in terms of the variable y = x/σ. A sequence of
vectors can be constructed by applying the operator a∗ repeatedly to ψ0. The
the functions which result are denoted ψn

ψn =
1√
n!

(a∗)n ψ0, n = 1, 2, . . . . (2.7)

Theorem 2.1:

aψn =
√
nψn−1, a∗ψn =

√
n+ 1ψn+1, (ψn|ψm) = δnm. (2.8)

Proof: With (2.5) and the commutation relation (2.2), (2.8) can be proved
by induction on n. Consider the first of these in (2.8).

aψn =
1√
n!
a(a∗)nψ0 =

1√
n!

[a, (a∗)n]ψ0 +
1√
n!

(a∗)naψ0. =
1√
n!

[a, (a∗)n]ψ0.

(2.9)
The bracket at the end of (2.9) is

[a, (a∗)n] = a(a∗)n − (a∗)na− aa∗(a∗)n−1 + a∗a(a∗)n−1 − a∗a(a∗)n−1 − (a∗)na.
(2.10)

Putting (2.10) into (2.9), we get

aψn =
1√
n!
n(a∗)n−1ψn =

n√
n

1√
(n− 1)!

(a∗)n−1 ψ0 =
√
nψn−1. (2.11)

The second identity proceeds the same way. The third follows from

(ψm|ψn) =
1

n!m
(ψm−1|a(a∗)nψ0)

=
1√
n!m

(ψm−1|[a, (a∗)n]|ψ0) =
n√
n!m

(ψm−1|(a∗)n−1ψ0)

=

√
n

m
(ψm−1|ψn−1) = · · · =

√
n!

m!(n−m)!
(ψ0|ψn−m). (2.12)
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If m = n, the result is one and zero otherwise, since (ψ0|ψn−m) = (n −
m)1/2(ψ0|a∗ψn−m−1) = (n−m)−1/2(aψ0|ψn−m−1) = 0, using (2.5).

�
Since the ψn up to a constant and change of variable are Hermite functions,

they form a basis of the Hilbert space. The inner product result in Theorem
2.1 implies that the set {ψn}n≥0 forms an orthonormal system in L2(R, dµ)
such that, by the first two results in (2.8),

N ψn = nψn. (2.13)

Hence from (2.4) where H0 is expressed in terms of N , the {ψn} are a Hilbert
basis of eigenvectors of H0 which satisfy the eigenvalue equation

H0ψn = ~ω(n+
1

2
)ψn. (2.14)

Since the set {||H0ψ|| |ψ ∈ D(H0), ||ψ0|| = 1} consists of all numbers ~ω(n +
1/2), both the operator H0 and by (2.4) N are unbounded. By Nelson’s
theorem, the symmetric operators H0 and N are both essentially self-adjoint,
since their domains contain a set {ψn} of analytic vectors spanning a dense
subset in L2(R, dµ).

3 The Spectral Problem

The spectral decomposition of the operator H̄0 is determined. To obtain this,
let us construct a spectral measure on R which has support on n with n ∈ N
such that if B(X) = B(X,X) is the subset of continuous operators,

πF = s−
∑

n∈F∩N

ψn (ψn|·), F ∈ B(R). (3.1)

The topology induced by the seminorms px with px(T ) = ||T (x)||Y for T ∈
L(X, Y ) or B(X, Y ) is the strong topology on these spaces. To distinguish
strong limits from weak limits in operator spaces, it is customary to write
s, for example T = s − lim Tn. Observables can be introduced by means of
projector-valued measures (PVM). This concept resides at the heart of the
mathematical foundation of quantum mechanics. The PMV obtained here cen
be reinterpreted as a PVM defined on N identified with the collection {ψn}.
Thus for any measurable map f : R→ C, it holds that∫

R
f(x) dπ(x) =

∫
N
f(φ(x)) dπ(x) = s−

∑
n≥0

f(~ω(n+
1

2
))ψn(ψn|·). (3.2)
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The last equality follows from the definition that is, if
∑

z∈N |f(z)|2|(z|ψ)|2 <
+∞, ∫

N

f(x) dπ(x) = s−
∑
z∈N

f(z)z(z|·),

on a basis N of a separable Hilbert space H. If the function f in (3.2) is taken
to be R 3 x→ x, so the following self-adjoint operator results

H =

∫
R
x dπ(x) = s−

∑
n≥0

~ω(n+
1

2
)ψn(ψn|·). (3.3)

At this point, it can be shown that H = H0. Thus, let 〈N〉 be the dense
subspace spanned by finite linear combinations of the ψn. By Nelson’s theorem,
H0|〈N〉 is still essentially self-adjoint, so

H0 = H0|〈N〉. (3.4)

It may be concluded that H0 and H0|〈N〉 have the same unique self-adjoint
extension, their closure. However, H is certainly a self-adjoint extension of
H0|〈N〉 because (3.3) implies that

H ψn = (n+
1

2
)ωψn = H0 ψn, (3.5)

for any n, so H|〈N〉 = H0|〈N〉. This means H must be the unique self-adjoint
extension of H0|〈N〉, hence of H0, which means that H = H0.

By the spectral theorem, decomposition of unbounded self-adjoint opera-
tors, if T is a self-adjoint, possibly unbounded, operator on the Hilbert space
H, there exists a unique projector-valued measure such that T =

∫
λdπ(T )(λ).

Thus, the spectral measure associated to H̄0 is B(R) 3 F → πF , and there
exists the spectral decomposition of H0 given by

H0 = s−
∑
n≥0

~ω(n+
1

2
)ψn(ψn|·). (3.6)

Moreover, the spectrum σ(H̄0) is obtained as

σ(H0) = σp(H0) = {~ω(n+
1

2
)|n ≥ 0}. (3.7)

The spectrum of H0 is therefore a point spectrum and the eigenspaces are
all finite-dimensional, even though the operator is not compact, as it is un-
bounded, although the first and second inverse powers of H0 are compact.

Theorem 3.1. The operators a and a∗ are closable and have the spectral
properties σp(a) = C, σ(a) = C and σc(a) = σr(a) = ∅.
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Proof: The operators are closable because they admit closed extensions,
as each is defined on a dense set and a ⊂ (A∗)∗, a∗ ⊂ a∗. The Hilbert basis {ψ}
which was obtained in (2.7) can be used to construct explicitly an eigenvector
ψ of a which satisifes the eigenvalue equation

aψ = λψ, (3.8)

for every λ ∈ C. To carry this out, define the expansion over {ψn} to be

ψ =
∞∑
n=0

bn ψn. (3.9)

Apply the operator a to both sides of (3.9) and substitute (2.8) so eigenvalue
equation (3.8) becomes

∞∑
n=1

√
n bnψn−1 = λ

∞∑
n=0

bnψn.

The sum can be reindexed and we obtain

∞∑
n=0

√
n+ 1 bn+1 ψn = λ

∞∑
n=0

bnψn. (3.10)

The following recursion relation for the bn can be extracted from (3.10)

bn+1 =
λ√
n+ 1

bn. (3.11)

The recursion in (3.11) can be solved by iteration

bn =
λ√
n
bn−1 =

λ2√
n(n− 1)

bn−2 = · · · = λn√
n!
b0. (3.12)

For real constant b0 6= 0, solution (3.9) takes the form,

ψ = b0

∞∑
n=0

λn√
n!
ψn. (3.13)

To verify that this satisfies the eigenvalue problem substitute (3.13) into (3.8)

aψ = b0

∞∑
n=1

λn√
n!

√
nψn−1 = b0

∞∑
n=1

λn+1

√
n!
ψn = λψ. (3.14)

The series converges to a non-zero element of H which resides in D(a) for
b0 6= 0 and satisfies the eigenvalue equation. The fact that āψ0 = 0 has been
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used, and 0 ∈ σp(a) as well. Thus the resolvent set is empty. The conclusion
is then: σc(ā) = σr(ā) = ∅ and so σ(ā) = C. �

Theorem 3.2. With respect to the operators a, a∗, let {ψn} be the Hilbert
basis constructed in (2.7). Then the following system of equalities holds: a∗ =
ā∗ = ā∗ = a∗∗∗. In particular, the identities are true when a symmetric.
Morever,

ā
( ∞∑
n=0

bnψn
)

=
∞∑
n=0

√
n+ 1 bn+1 ψn, a∗

( ∞∑
n=0

bnψn
)

=
∞∑
n=1

√
n bn+1 ψn.

(3.15)
The domains of the two operators ā and a∗ are given by

D(a) = {ψ ∈ H|
∞∑
n=0

(n+ 1)|(ψ|ψn+1)|2 < +∞},

D(a∗) = {ψ ∈ H|
∞∑
n=1

n|(ψ|ψn−1)|2 < +∞}. (3.16)

and D(a) = D(a∗).
Proof: These results follow from the definition of adjoint and the following

theorem: If (H, (, )) is a Hilbert space, c an operator on H, then if D(c) and
D(c∗) are dense, it follows that c∗ = c̄∗ = c̄∗ = c∗∗∗. If D(c) and D(c∗) are
dense, the operators c∗, c∗∗, c∗∗∗ exist and in particular, D(c) ⊂ D(c∗∗) is
dense. Since c∗ is closed, c̄∗ = c∗. Take c to be operator a in these statements.
Since it has been shown that a dense basis for H exists, for any ψ ∈ H, write
the expansion ψ =

∑∞
0 cnψn respect to basis {ψn} from (2.7). It follows that

ā
∞∑
n=0

cnψn =
∞∑
n=1

cn
√
nψn−1 =

∞∑
n=0

√
n+ 1 cn+1ψn. (3.17)

This series converges if and only if the sum
∑∞

0 (n + 1)|(ψn|ψn+1)|2 < +∞,
which characterizes D(ā). Using the definition of adjoint, with η = (a∗)∗

(ηψ|ψ) = ((a∗)∗ ψ|ψ) = (ψ|a∗ψ). (3.18)

the operator a∗ can be identified

a∗ ψ =
∞∑
n=1

√
ncn ψn−1. (3.19)

Moreover, this converges provided that
∑∞

n=1 n |(ψ|ψn−1)|2 < +∞. The re-
lation D(ā) = D(a∗) is also evident if one simply rearranges the expansions
D(ā) and D(a∗) for ψ ∈ H.
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�
Corollary 3.1. For the operator N defined in terms of a and a∗ by (2.1),

it holds that
N = a∗ a = a∗a, (3.20)

is the unique self-adjoint extension of the symmetric operator N defined on
the space of vectors {ψn} which satisfy the eigenvalue problem Nψn = nψn
for n ∈ N.

Proof: The operator a∗a is the same as (2.1) on S(R) and extends to all
of the Hilbert space in the same way as in the proof of theorem 2. Moreover,
a∗ = a∗, so it is the case that a∗a = a∗a.

�

4 Relationship of the Basic Operators to Co-

herent States

Applications of harmonic oscillators deal with the concept of coherent states.
Coherent states are over-complete and non-orthogonal system of Hilbert space
vectors. Thus at least one vector exists in the set which may be removed,
leaving the system to remain complete.

An important subset of such wave functions was considered, related to the
regular cell partition of the phase plane of a one-dimensional dynamical system
and was given by von Neumann [8-9]. States which are eigenfunctions of the
annihilation operator have been determined in (3.13).

Suppose an initial wavefunction of the form (3.13) called ψ(x, 0) here is
considered. The wave function at time t is obtained by using the time-evolution
operator on ψ(x, 0)

ψ(x, t) = b0

∞∑
n=0

λn√
n!
ψn e

−i(n+1/2)ωt = b0e
−iωt/2

∞∑
n=0

(λe−iωt)n√
n!

ψn. (4.1)

Up to the inessential phase factor, ψ(x, t) and ψ(x, 0) have the same func-
tional form. This leads to the statement that ψ(x, t) is an eigenfunction of the
annihilation operator with eigenvalue λe−iωt.

Let us now use (2.1) for the annihilation operator in terms of the position
and momentum operators. Set µ =

√
~/2mω, then

a =
1

2µ
x+ µ

∂

∂x
. (4.2)

The eigenvalue equation for such an operator has been studied at t = 0, and
so at t,

āψ(x, t) = γ ψ(x, t). (4.3)
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The complex eigenvalue γ is λ e−iωt and writing λ = ρeiϕ, where ρ is real ,
γ becomes ρeiϑ where ϑ = k − ωt. Given (4.2), (4.3) can be written in a
separated form,

ψ(x, t) = C exp
(
− x2

4µ
+
γ

µ
x
)
. (4.4)

The square of the modulus of ψ(x, t) is given by

|ψ(x, t)|2 = |C|2e−Q, (4.5)

where Q is upon completing the square

Q =
x2

2µ2
− x

µ
(γ + γ∗) =

1

2µ2
(x− 2µρ cosϑ)2 − 2ρ2 cos2 ϑ. (4.6)

This produces the result for (4.5),

|ψ(x, t)|2 = |C|2 · e2ρ2 cos2 ϑe−(x−x0)2/2µ2 , x0 = 2µρ cos ϑ. (4.7)

As usual, the constant C which appears here can be evaluated by means of
the normalization condition. The eigenfunction ψ(x, t) is usually called a co-
herent state. The annihilation operator does not correspond to any physical
observable, is not self-adjoint, hence its eigenvalues are in general complex.
The eigenfunctions of the creation operator does not have L2 eigenfunctions
because solutions of the eigenvalue equation increase exponentially for large x,
unlike this previous case. Coherent states are minimum-uncertainty states.

5 Conclusions

A variety of concepts from modern functional analysis have been introduced
and applied to analyze a particular problem in quantum mechanics. A particu-
lar example appeared in the previous section, and further investigations of this
type related to other systems can also be carried out along similar lines. The
process demonstrates the influence and concurrent development of these two
areas on each other. This is a process which often takes place in mathematical
physics.
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