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Abstract

The n-closure operator (nCl) and the n-interior operator (nInt) are
used to develop several new classes of sets related to the n-open sets.
These operators are used to prove a new characterization of discrete
spaces. Additionally a new property of these operators is proved. Also
the algebraic properties of these operators are investigated.
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1 Introduction

The concept of an n-open subset of a topological space was introduced in [1]
and developed further in [2] and [3]. In this note the n-closure operator (nCl)
and the n-interior operator (nInt) are used to define the semi-n-open sets, the
pre-n-open sets, the regular n-open sets, and the regular n-closed sets. The
basic properties of these sets are developed. A new characterization of discrete
spaces is developed in terms of these operators. Specifically it is proved that
a space X is discrete if and only if it has a subset A such that nCl(A) = X
and nInt(A) = ∅. A new property of these operators is proved. It is shown
that for a subset A of a non-discrete space X, nCl(nInt(A)) = nInt(nCl(A)).
Finally, these operators are considered from an algebraic viewpoint.
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2 Preliminaries

Unless otherwise stated the symbol X represents a topological space (briefly a
space). All topological spaces are nonempty with no separation properties as-
sumed unless explicitly stated. The closure and interior of a set A are signified
by Cl(A) and Int(A), respectively.

Definition 2.1 Let X be a nonempty set and P(X) the power set of X. A
subfamily mX of P(X) is called a minimal structure (briefly an m-structure)
on X [4], if ∅ ∈ mX and X ∈ mX .

Definition 2.2 A subset A of a space X is said to be n-open [1] if Int(A) 6=
Cl(A). A subset of X is called n-closed if its complement is n-open.

Theorem 2.3 [1] The following statements are equivalent for every set A ⊆
X:

(a) A is n-open.

(b) A is not clopen.

(c) X − A is n-open.

Thus the n-open sets coincide with the n-closed sets.

Remark 2.4 Nether X nor ∅ is n-open. Therefore the collection of n-open
sets does not form a minimal structure.

Definition 2.5 Let A be a subset of a space X. The n-interior of A [1] is
denoted by nInt(A) and given by nInt(A) = ∪{U ⊆ X : U ⊆ A and U is n-open}.
The n-closure of A [1] is denoted by nCl(A) and given by nCl(A) = ∩{F ⊆
X : A ⊆ F and F is n-closed}.

Theorem 2.6 [1] The following statements hold for every set A ⊆ X:

(a) nInt(X − A) = X − nCl(A).

(b) nCl(X − A) = X − nInt(A).

(c) x ∈ nCl(A) if and only if U ∩ A 6= ∅ for every n-open set U containing
x.

Theorem 2.7 [1] If X is a space, then

(a) nCl(X) = X.

(b) nInt(∅) = ∅.
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Theorem 2.8 [1] If X is not discrete, then

(a) nInt(X) = X.

(b) nCl(∅) = ∅.

Theorem 2.9 [1] If X is a discrete space, then

(a) nInt(A) = ∅ for every set A ⊆ X.

(b) nCl(A) = X for every set A ⊆ X.

Theorem 2.10 [2] Let A be a subset of a space X. The following state-
ments hold:

(a) nCl(A) = A or nCl(A) = X.

(b) nInt(A) = A or nInt(A) = ∅.

(c) nCl(nCl(A)) = nCl(A).

(d) nInt(nInt(A)) = nInt(A).

Definition 2.11 A subset A of a space X is said to be generalized n-closed
(briefly gn-closed) [2], if whenever A ⊆ U and U is open, then nCl(A) ⊆ U .
A subset of X is called generalized n-open (briefly gn-open) if its complement
is gn-closed.

Theorem 2.12 [2] Let A be a subset of a space X. The following state-
ments hold:

(a) A is gn-closed if and only if nCl(A) = A.

(b) A is gn-open if and only if nInt(A) = A.

(c) nCl(A) is gn-closed.

(d) nInt(A) is gn-open.

3 Semi-n-Open Sets and Pre-n-Open Sets

Definition 3.1 A subset A of a space X is said to be semi-n-open if there
exists a gn-open set Usuch that U ⊆ A ⊆ nCl(U).

Theorem 3.2 Let A be a subset of a space X. Then A is semi-n-open if
and only if A ⊆ nCl(nInt(A)).
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Proof. Assume A ⊆ nCl(nInt(A)). Then nInt(A) ⊆ A ⊆ nCl(nInt(A))
and by Theorem 2.12(d) nInt(A) is gn-open. Therefore A is semi-n-open.

Assume A is semi-n-open and let U be a gn-open set such that U ⊆ A ⊆
nCl(U). Therefore U = nInt(U) ⊆ nInt(A) and hence A ⊆ nCl(U) ⊆
nCl(nInt(A)).

Theorem 3.3 Let A be a subset of a space X. If A is gn-open, then A is
semi-n-open.

Proof. Since A is gn-open, by Theorem 2.12(b) A = nInt(A). Then
A ⊆ nCl(A) = nCl(nInt(A)). Thus A is semi-n-open.

Theorem 3.4 Assume X is not discrete and let A ⊆ X. If A is semi-n-
open, then A is gn-open.

Proof. Assume A is semi-n-open. Then by Theorem 3.2 A ⊆ nCl(nInt(A)).
It follows from Theorem 2.10(b) that nInt(A) = A or nInt(A) = ∅. If
nInt(A) = A, A is gn-open. If nInt(A) = ∅, then, since X is not discrete,
nCl(nInt(A)) = nCl(∅) = ∅. Since A ⊆ nCl(nInt(A)), A = ∅, which is
gn-open. Therefore A is gn-open.

Corollary 3.5 Assume X is not discrete and let A ⊆ X. Then A is semi-
n-open if and only if A is gn-open.

Remark 3.6 If X is discrete, then nCl(nInt(A)) = nCl(∅) = X for every
set A ⊆ X. Therefore every set is semi-n-open. However, ∅ is the only gn-
open set. Thus, if X is discrete, gn-open ⇒ semi-n-open, but semi-n-open 6⇒
gn-open.

Definition 3.7 A subset A of a space X is said to be pre-n-open if A ⊆
nInt(nCl(A)).

Theorem 3.8 Let A be a subset of a space X. If A is gn-open, then A is
pre-n-open.

Proof. Since A is gn-open, A = nInt(A) ⊆ nInt(nCl(A)). Thus A is
pre-n-open.

Lemma 3.9 A space X is discrete if and only if there exists a subset A of
X such that nInt(A) = ∅ and nCl(A) = X.

Proof. Let A ⊆ X such that nInt(A) = ∅ and nCl(A) = X. Since
nInt(A) = ∅, for every x ∈ A {x} is not n-open and hence must be clopen.
Since nCl(A) = X, nInt(X − A) = ∅. Therefore for every x ∈ X − A {x} is
not n-open and hence must be clopen. It follows that X is discrete.

If X is discrete, then every subset A of X satisfies the conditions that
nInt(A) = ∅ and nCl(A) = X.
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Theorem 3.10 Let A be a subset of a space X. If A is pre-n-open, then A
is gn-open.

Proof. Assume A is pre-n-open. Then A ⊆ nInt(nCl(A)). If X is discrete,
then nInt(nCl(A)) = ∅ and hence A = ∅, which is gn-open. Assume X is not
discrete. By Theorem 2.10(a) nCl(A) = A or nCl(A) = X. If nCl(A) = A,
then A ⊆ nInt(A) and hence A = nInt(A). Therefore by Theorem 2.12(b)
A is gn-open. If nCl(A) = X, then, since X is not discrete, it follows from
Lemma 3.9 that nInt(A) 6= ∅. Thus A = nInt(A) and hence A is gn-open.
Therefore in either case A is gn-open.

Corollary 3.11 Let A be a subset of a space X. Then A is pre-n-open if
and only if A is gn-open.

Corollary 3.12 Assume X is not discrete and let A ⊆ X. Then A is
pre-n-open if and only if A is semi-n-open.

Remark 3.13 If X is discrete, the only pre-n-open set is ∅ and every every
set is semi-n-open. Therefore, if X is discrete, then pre-n-open ⇒ semi-n-
open, but semi-n-open 6⇒ pre-n-open.

Theorem 3.14 Assume X is not discrete. Let A ⊆ X. If A is not gn-
closed, then A is gn-open.

Proof. Assume A is not gn-closed. Then nCl(A) 6= A and therefore
nCl(A) = X. It follows from Lemma 3.9 that nInt(A) 6= ∅ and hence
nInt(A) = A. Thus A is gn-open.

Since an n-open set is both gn-open and gn-closed, the converse of Theorem
3.14 does not hold. It follows from Theorem 3.14 that, if X is not discrete,
then every subset of X is either gn-open or gn-closed.

Theorem 3.15 If X is not discrete, then nInt(nCl(A)) = nCl(nInt(A))
for every A ⊆ X

Proof. Let A ⊆ X. It follows from Theorem 2.10(a) and Theorem 2.10(b)
that nCl(A) = A or nCl(A) = X and nInt(A) = A or nInt(A) = ∅. It follows
from Lemma 3.9 that it is not the case that nCl(A) = X and nInt(A) = ∅.
Therefore one of the following cases holds:

(1) nCl(A) = A and nInt(A) = A.

(2) nCl(A) = A and nInt(A) = ∅.
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(3) nCl(A) = X and nInt(A) = A.

If (1) holds, then nCl(nInt(A)) = nCl(A) = A and nInt(nCl(A)) =
nInt(A) = A. If we assume (2), then nCl(nInt(A)) = nCl(∅) = ∅ and
nInt(nCl(A)) = nInt(A) = ∅. Similarly, if (3) holds, then nCl(nInt(A)) =
nCl(A) = X and nInt(nCl(A)) = nInt(X) = X. In each case nInt(nCl(A)) =
nCl(nInt(A)).

Remark 3.16 We previously proved indirectly that, if X is not discrete
and A ⊆ X, then A is semi-n-open if and only if A is pre-n-open by showing
that both of the conditions are equivalent to gn-open. Obviously, Theorem 3.15
provides an immediate direct proof of this result.

Definition 3.17 A subset A of a space X is said to be regular n-open if
A = nInt(nCl(A)) and regular n-closed if A = nCl(nInt(A)).

Obviously regular n-open ⇒ pre-n-open and regular n-closed ⇒ semi-n-
open. The following example shows that these implications cannot be reversed.

Example 3.18 Let X = {a, b, c} have the topology τ = {X, ∅, {a, b}, {c}}.
The n-open sets are {a}, {b}, {a, c}, and {b, c}. The set A = {a, b} is neither
regular n-open nor regular n-closed but is both semi-n-open and pre-n-open,
since nCl(nInt(A)) = nInt(nCl(A)) = X.

It follows immediately from Theorem 3.15 that, if X is not discrete, then
a set A is regular n-open if and only if it is regular n-closed. However, if X is
discrete, then, since nCl(nInt(A)) = X and nInt(nCl(A)) = ∅ for every set
A ⊆ X, X is the only regular-n-closed set and ∅ is the only regular n-open set.

The implications in the following diagrams have been established:

Assume X is not discrete.

regular n-open
m

regular n-closed
⇓

gn-open ⇔ semi-n-open ⇔ pre-n-open
⇑

not gn-closed
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Assume X is discrete.

regular n-open
m

gn-open ⇔ pre-n-open ⇒ semi-n-open
⇑

regular n-closed
m

gn-closed

4 Algebraic Properties

A monoid is a semigroup with identity. In this section the n-closure and n-
interior operators are considered to be elements of the monoid O(X) = {F :
P(X) → P(X) : F is a function} under the operation of composition. The
identity operator is denoted by I.

Definition 4.1 A space X is said to be gn-discrete if every set A ⊆ X is
gn-open.

Example 4.2 If X is a connected space, then every proper nonempty subset
of X is non clopen, hence n-open and therefore gn-open. Since X and ∅ are
gn-open, X is gn-discrete.

Lemma 4.3 The operators I, nCl, nInt, and nCl ◦nInt on a space X are
all distinct if and only if X is not discrete and not gn-discrete.

Proof. Assume X is not discrete and not gn-discrete. To begin with we
show that I, nCl, and nInt are distinct. Since X is not gn-discrete, there
exists a set A that is not gn-open. Then by Theorem 2.12(b) nInt(A) 6= A.
Therefore nInt 6= I. It follows from Theorem 3.14 that A is gn-closed and
hence by Theorem 2.12(a) nCl(A) = A. Therefore nInt 6= nCl. Let B be
the complement of A. Then B is not gn-closed and nCl(B) 6= B and hence
nCl 6= I.

Next it is established that nCl ◦ nInt 6= nInt. Since nCl(B) 6= B, by
Theorem 2.10(a) nCl(B) = X Then, since X is not discrete, it follows from
Lemma 3.9 that nInt(B) 6= ∅. Hence nInt(B) = B and we have nCl ◦
nInt(B) = nCl(nInt(B)) = nCl(B) = X. Since B is not gn-closed and X is
gn-closed, B 6= X. Then nInt(B) 6= X and hence nCl ◦ nInt 6= nInt.

Finally we show that nCl◦nInt is distinct from nCl and I. Since nInt(A) 6=
A, then nInt(A) = ∅. Hence we have nCl(nInt(A)) = nCl(∅) = ∅. Since A
is not gn-open and ∅ is gn-open, A 6= ∅. Thus nCl ◦ nInt 6= I and, since



68 C. W. Baker

nCl(A) 6= ∅, nCl ◦ nInt 6= nCl. Therefore the operators I, nCl, nInt, and
nCl ◦ nInt are all distinct.

Assume X is either discrete or gn-discrete. If X is discrete, then for every
A ⊆ X nCl ◦ nInt(A) = nCl(nInt(A)) = nCl(∅) = X = nCl(A) and hence
nCl ◦ nInt = nCl. If X is gn-discrete, then every set A ⊆ X is both gn-
open and gn-closed. Therefore by Theorem 2.12(a), (b) for every set A ⊆ X
nCl(A) = A and nInt(A) = A. It then follows that nCl = nInt = nCl ◦
nInt = I. Thus in either case the operators I, nCl, nInt, and nCl ◦ nInt are
not distinct.

The space (X, τ) in Example 3.18 is not discrete and also not gn-discrete,
since the set {c} is not gn-open.

Since a connected space is not discrete but is gn-discrete, not discrete 6⇒ not
gn-discrete. Since a discrete space is also not gn-discrete, not gn-discrete 6⇒
not discrete. Thus not gn-discrete and not discrete are independent properties
and hence Lemma 4.3 is a decomposition of the property that the operators
I, nCl, nInt, and nCl ◦ nInt on a space X are all distinct.

Theorem 4.4 If X is not discrete and not gn-discrete, then M = {I, nCl,
nInt, nCl ◦ nInt} is a commutative monoid.

Proof. By Lemma 4.3 the operators I, nCl, nInt, and nCl ◦ nInt are
all distinct. The closure and commutativity follow from Theorem 3.15 (nCl ◦
nInt = nInt◦nCl), Theorem 2.10(c) (nCl◦nCl = nCl), and Theorem 2.10(d)
(nInt ◦ nInt = nInt).

The next theorem is a consequence of Theorem 2.9.

Theorem 4.5 If X is discrete, the set M = {I, nCl, nInt} is a non com-
mutative monoid.
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