International Journal of Contemporary Mathematical Sciences Vol. 17, 2022, no. 2, 61 - 68 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2022.91751

A Note on the *n*-Closure and *n*-Interior Operators

C. W. Baker

Department of Mathematics Indiana University Southeast New Albany, IN 47150-6405, USA

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2022 Hikari Ltd.

Abstract

The n-closure operator (nCl) and the n-interior operator (nInt) are used to develop several new classes of sets related to the n-open sets. These operators are used to prove a new characterization of discrete spaces. Additionally a new property of these operators is proved. Also the algebraic properties of these operators are investigated.

Mathematics Subject Classification: 54A05

Keywords: n-closure, n-interior, n-open, gn-open, gn-discrete, semi-n-open, pre-n-open, regular n-open, regular n-closed

1 Introduction

The concept of an n-open subset of a topological space was introduced in [1] and developed further in [2] and [3]. In this note the n-closure operator (nCl) and the n-interior operator (nInt) are used to define the semi-n-open sets, the pre-n-open sets, the regular n-open sets, and the regular n-closed sets. The basic properties of these sets are developed. A new characterization of discrete spaces is developed in terms of these operators. Specifically it is proved that a space X is discrete if and only if it has a subset A such that nCl(A) = X and $nInt(A) = \emptyset$. A new property of these operators is proved. It is shown that for a subset A of a non-discrete space X, nCl(nInt(A)) = nInt(nCl(A)). Finally, these operators are considered from an algebraic viewpoint.

2 Preliminaries

Unless otherwise stated the symbol X represents a topological space (briefly a space). All topological spaces are nonempty with no separation properties assumed unless explicitly stated. The closure and interior of a set A are signified by Cl(A) and Int(A), respectively.

Definition 2.1 Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily m_X of $\mathcal{P}(X)$ is called a minimal structure (briefly an m-structure) on X [4], if $\emptyset \in m_X$ and $X \in m_X$.

Definition 2.2 A subset A of a space X is said to be n-open [1] if $Int(A) \neq Cl(A)$. A subset of X is called n-closed if its complement is n-open.

Theorem 2.3 [1] The following statements are equivalent for every set $A \subseteq X$:

- (a) A is n-open.
- (b) A is not clopen.
- (c) X A is n-open.

Thus the n-open sets coincide with the n-closed sets.

Remark 2.4 Nether X nor \emptyset is n-open. Therefore the collection of n-open sets does not form a minimal structure.

Definition 2.5 Let A be a subset of a space X. The n-interior of A [1] is denoted by nInt(A) and given by $nInt(A) = \bigcup \{U \subseteq X : U \subseteq A \text{ and } U \text{ is } n\text{-open}\}$. The n-closure of A [1] is denoted by nCl(A) and given by $nCl(A) = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } n\text{-closed}\}$.

Theorem 2.6 [1] The following statements hold for every set $A \subseteq X$:

- (a) nInt(X A) = X nCl(A).
- (b) nCl(X A) = X nInt(A).
- (c) $x \in nCl(A)$ if and only if $U \cap A \neq \emptyset$ for every n-open set U containing x.

Theorem 2.7 [1] If X is a space, then

- (a) nCl(X) = X.
- (b) $nInt(\emptyset) = \emptyset$.

Theorem 2.8 [1] If X is not discrete, then

- (a) nInt(X) = X.
- (b) $nCl(\emptyset) = \emptyset$.

Theorem 2.9 [1] If X is a discrete space, then

- (a) $nInt(A) = \emptyset$ for every set $A \subseteq X$.
- (b) nCl(A) = X for every set $A \subseteq X$.

Theorem 2.10 [2] Let A be a subset of a space X. The following statements hold:

- (a) nCl(A) = A or nCl(A) = X.
- (b) $nInt(A) = A \text{ or } nInt(A) = \emptyset.$
- (c) nCl(nCl(A)) = nCl(A).
- (d) nInt(nInt(A)) = nInt(A).

Definition 2.11 A subset A of a space X is said to be generalized n-closed (briefly gn-closed) [2], if whenever $A \subseteq U$ and U is open, then $nCl(A) \subseteq U$. A subset of X is called generalized n-open (briefly gn-open) if its complement is gn-closed.

Theorem 2.12 [2] Let A be a subset of a space X. The following statements hold:

- (a) A is gn-closed if and only if nCl(A) = A.
- (b) A is gn-open if and only if nInt(A) = A.
- (c) nCl(A) is gn-closed.
- (d) nInt(A) is gn-open.

3 Semi-n-Open Sets and Pre-n-Open Sets

Definition 3.1 A subset A of a space X is said to be semi-n-open if there exists a gn-open set U such that $U \subseteq A \subseteq nCl(U)$.

Theorem 3.2 Let A be a subset of a space X. Then A is semi-n-open if and only if $A \subseteq nCl(nInt(A))$.

Proof. Assume $A \subseteq nCl(nInt(A))$. Then $nInt(A) \subseteq A \subseteq nCl(nInt(A))$ and by Theorem 2.12(d) nInt(A) is gn-open. Therefore A is semi-n-open.

Assume A is semi-n-open and let U be a gn-open set such that $U \subseteq A \subseteq nCl(U)$. Therefore $U = nInt(U) \subseteq nInt(A)$ and hence $A \subseteq nCl(U) \subseteq nCl(nInt(A))$.

Theorem 3.3 Let A be a subset of a space X. If A is gn-open, then A is semi-n-open.

Proof. Since A is gn-open, by Theorem 2.12(b) A = nInt(A). Then $A \subseteq nCl(A) = nCl(nInt(A))$. Thus A is semi-n-open.

Theorem 3.4 Assume X is not discrete and let $A \subseteq X$. If A is semi-nopen, then A is gn-open.

Proof. Assume A is semi-n-open. Then by Theorem $3.2\ A \subseteq nCl(nInt(A))$. It follows from Theorem 2.10(b) that nInt(A) = A or $nInt(A) = \emptyset$. If nInt(A) = A, A is gn-open. If $nInt(A) = \emptyset$, then, since X is not discrete, $nCl(nInt(A)) = nCl(\emptyset) = \emptyset$. Since $A \subseteq nCl(nInt(A))$, $A = \emptyset$, which is gn-open. Therefore A is gn-open.

Corollary 3.5 Assume X is not discrete and let $A \subseteq X$. Then A is seminopen if and only if A is gn-open.

Remark 3.6 If X is discrete, then $nCl(nInt(A)) = nCl(\emptyset) = X$ for every set $A \subseteq X$. Therefore every set is semi-n-open. However, \emptyset is the only gnopen set. Thus, if X is discrete, gn-open \Rightarrow semi-n-open, but semi-n-open \neq gn-open.

Definition 3.7 A subset A of a space X is said to be pre-n-open if $A \subseteq nInt(nCl(A))$.

Theorem 3.8 Let A be a subset of a space X. If A is gn-open, then A is pre-n-open.

Proof. Since A is gn-open, $A = nInt(A) \subseteq nInt(nCl(A))$. Thus A is pre-n-open.

Lemma 3.9 A space X is discrete if and only if there exists a subset A of X such that $nInt(A) = \emptyset$ and nCl(A) = X.

Proof. Let $A \subseteq X$ such that $nInt(A) = \emptyset$ and nCl(A) = X. Since $nInt(A) = \emptyset$, for every $x \in A \{x\}$ is not n-open and hence must be clopen. Since nCl(A) = X, $nInt(X - A) = \emptyset$. Therefore for every $x \in X - A \{x\}$ is not n-open and hence must be clopen. It follows that X is discrete.

If X is discrete, then every subset A of X satisfies the conditions that $nInt(A) = \emptyset$ and nCl(A) = X.

Theorem 3.10 Let A be a subset of a space X. If A is pre-n-open, then A is gn-open.

Proof. Assume A is pre-n-open. Then $A \subseteq nInt(nCl(A))$. If X is discrete, then $nInt(nCl(A)) = \emptyset$ and hence $A = \emptyset$, which is gn-open. Assume X is not discrete. By Theorem 2.10(a) nCl(A) = A or nCl(A) = X. If nCl(A) = A, then $A \subseteq nInt(A)$ and hence A = nInt(A). Therefore by Theorem 2.12(b) A is gn-open. If nCl(A) = X, then, since X is not discrete, it follows from Lemma 3.9 that $nInt(A) \neq \emptyset$. Thus A = nInt(A) and hence A is gn-open. Therefore in either case A is gn-open.

Corollary 3.11 Let A be a subset of a space X. Then A is pre-n-open if and only if A is gn-open.

Corollary 3.12 Assume X is not discrete and let $A \subseteq X$. Then A is pre-n-open if and only if A is semi-n-open.

Remark 3.13 If X is discrete, the only pre-n-open set is \emptyset and every every set is semi-n-open. Therefore, if X is discrete, then pre-n-open \Rightarrow semi-n-open, but semi-n-open \Rightarrow pre-n-open.

Theorem 3.14 Assume X is not discrete. Let $A \subseteq X$. If A is not gn-closed, then A is gn-open.

Proof. Assume A is not gn-closed. Then $nCl(A) \neq A$ and therefore nCl(A) = X. It follows from Lemma 3.9 that $nInt(A) \neq \emptyset$ and hence nInt(A) = A. Thus A is gn-open.

Since an n-open set is both gn-open and gn-closed, the converse of Theorem 3.14 does not hold. It follows from Theorem 3.14 that, if X is not discrete, then every subset of X is either gn-open or gn-closed.

Theorem 3.15 If X is not discrete, then nInt(nCl(A)) = nCl(nInt(A)) for every $A \subseteq X$

Proof. Let $A \subseteq X$. It follows from Theorem 2.10(a) and Theorem 2.10(b) that nCl(A) = A or nCl(A) = X and nInt(A) = A or $nInt(A) = \emptyset$. It follows from Lemma 3.9 that it is not the case that nCl(A) = X and $nInt(A) = \emptyset$. Therefore one of the following cases holds:

- (1) nCl(A) = A and nInt(A) = A.
- (2) nCl(A) = A and $nInt(A) = \emptyset$.

(3)
$$nCl(A) = X$$
 and $nInt(A) = A$.

If (1) holds, then nCl(nInt(A)) = nCl(A) = A and nInt(nCl(A)) = nInt(A) = A. If we assume (2), then $nCl(nInt(A)) = nCl(\emptyset) = \emptyset$ and $nInt(nCl(A)) = nInt(A) = \emptyset$. Similarly, if (3) holds, then nCl(nInt(A)) = nCl(A) = X and nInt(nCl(A)) = nInt(X) = X. In each case nInt(nCl(A)) = nCl(nInt(A)).

Remark 3.16 We previously proved indirectly that, if X is not discrete and $A \subseteq X$, then A is semi-n-open if and only if A is pre-n-open by showing that both of the conditions are equivalent to gn-open. Obviously, Theorem 3.15 provides an immediate direct proof of this result.

Definition 3.17 A subset A of a space X is said to be regular n-open if A = nInt(nCl(A)) and regular n-closed if A = nCl(nInt(A)).

Obviously regular n-open \Rightarrow pre-n-open and regular n-closed \Rightarrow semi-n-open. The following example shows that these implications cannot be reversed.

Example 3.18 Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a, b\}, \{c\}\}$. The n-open sets are $\{a\}, \{b\}, \{a, c\},$ and $\{b, c\}$. The set $A = \{a, b\}$ is neither regular n-open nor regular n-closed but is both semi-n-open and pre-n-open, since nCl(nInt(A)) = nInt(nCl(A)) = X.

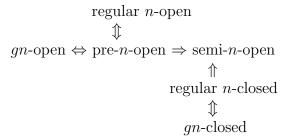
It follows immediately from Theorem 3.15 that, if X is not discrete, then a set A is regular n-open if and only if it is regular n-closed. However, if X is discrete, then, since nCl(nInt(A)) = X and $nInt(nCl(A)) = \emptyset$ for every set $A \subseteq X$, X is the only regular-n-closed set and \emptyset is the only regular n-open set.

The implications in the following diagrams have been established:

Assume X is not discrete.

 $\begin{array}{c} \operatorname{regular} n\text{-}\operatorname{open} \\ & \updownarrow \\ \operatorname{regular} n\text{-}\operatorname{closed} \\ & \Downarrow \\ gn\text{-}\operatorname{open} \Leftrightarrow \operatorname{semi-}n\text{-}\operatorname{open} \Leftrightarrow \operatorname{pre-}n\text{-}\operatorname{open} \\ & \uparrow \\ \operatorname{not} gn\text{-}\operatorname{closed} \end{array}$

Assume X is discrete.



4 Algebraic Properties

A monoid is a semigroup with identity. In this section the *n*-closure and *n*-interior operators are considered to be elements of the monoid $\mathcal{O}(X) = \{F : \mathcal{P}(X) \to \mathcal{P}(X) : F \text{ is a function}\}$ under the operation of composition. The identity operator is denoted by I.

Definition 4.1 A space X is said to be gn-discrete if every set $A \subseteq X$ is gn-open.

Example 4.2 If X is a connected space, then every proper nonempty subset of X is non clopen, hence n-open and therefore gn-open. Since X and \emptyset are gn-open, X is gn-discrete.

Lemma 4.3 The operators I, nCl, nInt, and $nCl \circ nInt$ on a space X are all distinct if and only if X is not discrete and not gn-discrete.

Proof. Assume X is not discrete and not gn-discrete. To begin with we show that I, nCl, and nInt are distinct. Since X is not gn-discrete, there exists a set A that is not gn-open. Then by Theorem 2.12(b) $nInt(A) \neq A$. Therefore $nInt \neq I$. It follows from Theorem 3.14 that A is gn-closed and hence by Theorem 2.12(a) nCl(A) = A. Therefore $nInt \neq nCl$. Let B be the complement of A. Then B is not gn-closed and $nCl(B) \neq B$ and hence $nCl \neq I$.

Next it is established that $nCl \circ nInt \neq nInt$. Since $nCl(B) \neq B$, by Theorem 2.10(a) nCl(B) = X Then, since X is not discrete, it follows from Lemma 3.9 that $nInt(B) \neq \emptyset$. Hence nInt(B) = B and we have $nCl \circ nInt(B) = nCl(nInt(B)) = nCl(B) = X$. Since B is not gn-closed and X is gn-closed, $B \neq X$. Then $nInt(B) \neq X$ and hence $nCl \circ nInt \neq nInt$.

Finally we show that $nCl \circ nInt$ is distinct from nCl and I. Since $nInt(A) \neq A$, then $nInt(A) = \emptyset$. Hence we have $nCl(nInt(A)) = nCl(\emptyset) = \emptyset$. Since A is not gn-open and \emptyset is gn-open, $A \neq \emptyset$. Thus $nCl \circ nInt \neq I$ and, since

 $nCl(A) \neq \emptyset$, $nCl \circ nInt \neq nCl$. Therefore the operators I, nCl, nInt, and $nCl \circ nInt$ are all distinct.

Assume X is either discrete or gn-discrete. If X is discrete, then for every $A \subseteq X$ $nCl \circ nInt(A) = nCl(nInt(A)) = nCl(\emptyset) = X = nCl(A)$ and hence $nCl \circ nInt = nCl$. If X is gn-discrete, then every set $A \subseteq X$ is both gn-open and gn-closed. Therefore by Theorem 2.12(a), (b) for every set $A \subseteq X$ nCl(A) = A and nInt(A) = A. It then follows that $nCl = nInt = nCl \circ nInt = I$. Thus in either case the operators I, nCl, nInt, and $nCl \circ nInt$ are not distinct.

The space (X, τ) in Example 3.18 is not discrete and also not gn-discrete, since the set $\{c\}$ is not gn-open.

Since a connected space is not discrete but is gn-discrete, not discrete $\not\Rightarrow$ not gn-discrete. Since a discrete space is also not gn-discrete, not gn-discrete $\not\Rightarrow$ not discrete. Thus not gn-discrete and not discrete are independent properties and hence Lemma 4.3 is a decomposition of the property that the operators I, nCl, nInt, and $nCl \circ nInt$ on a space X are all distinct.

Theorem 4.4 If X is not discrete and not gn-discrete, then $M = \{I, nCl, nInt, nCl \circ nInt\}$ is a commutative monoid.

Proof. By Lemma 4.3 the operators I, nCl, nInt, and $nCl \circ nInt$ are all distinct. The closure and commutativity follow from Theorem 3.15 ($nCl \circ nInt = nInt \circ nCl$), Theorem 2.10(c) ($nCl \circ nCl = nCl$), and Theorem 2.10(d) ($nInt \circ nInt = nInt$).

The next theorem is a consequence of Theorem 2.9.

Theorem 4.5 If X is discrete, the set $M = \{I, nCl, nInt\}$ is a non commutative monoid.

References

- [1] C.W. Baker, n-open sets and n-continuous functions, $Int.\ J.\ Contemp.\ Math.\ Sci., 16$ (2021), 13-20. https://doi.org/10.12988/ijcms.2021.91466
- [2] C.W. Baker, Generalized *n*-closed sets and generalized *n*-continuous functions, *Int. J. Contemp. Math. Sci.*, **16** (2021), 149-155. https://doi.org/10.12988/jjcms.2021.91611
- [3] C.W. Baker, On preserving *n*-dense sets, *Int. J. Contemp. Math. Sci.*, **17** (2022), 29-35. https://doi.org/10.12988/ijcms.2022.91642
- [4] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18 (2000), 31-41.

Received: October 29, 2022; Published: November 17, 2022