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Abstract

In this paper, we prove that Calderén-Zygmund singular integral
operators are bounded from local Hardy-type amalgam space [9(hP)
into IP(hP) where 1 < ¢ < oo and 0 < p < gq.
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1 Introduction

Amalgam spaces are defined as follows:

def !
1(LP) = q fo M fllaqeey = [Z HfH%p(Q)] <oo o,

QeQ

where 0 < p,q < 0o, Q is the collection of all cubes with uniform side length
1 and their vertices on integral lattices of IR™. One of the main reason to
study the amalgam spaces is that they allow us to separate the global be-
haviour from the local behaviour of a function. In [14] the author proved that
pseudo-differential operators of order zero simultaneously preserve local and
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global behaviour of functions in the amalgam spaces in the sense that they
are bounded from [9(LP) into [9(LP), where 0 < ¢ < 1 < p < oo. In [15],
the author proved that pseudo-differential operators of order zero are bounded
from local Hardy-type amalgam space {9(h?) into [9(hP) where 0 < ¢ < p < 1.
In [16], the author proved that Calderén-Zygmund singular integral operators
are bounded from ['(L?) into weak — [*(LP). In this paper, we prove that
Calderén-Zygmund singular integral operators are bounded from local Hardy-
type amalgam space [9(h?) into IP(h?) where 1 < ¢ < oo and 0 < p < g.
The main results in this paper serve as a kind of preparation for proving the
boundedness of Calderén-Zygmund singular integral operators from I!(h?) into
weak — I (h?), where 0 < p < 1, which will appear in a separate paper [17].

2 Preliminary

Throughout this paper, we will adopt the following notations.

(a) If 1 < p < o0, then p' is denoted as the exponent conjugate to p. Q(x,r)
is the closed cube centered at = with side length r. [(Q) is the side length
of the cube Q). B(z,r) is an open ball centered at z with radius r. If
t > 0,B is an open ball and @) is a closed cube in IR®, then tB, tQ
have the same centers as B, () respectively but whose radius and side
length are expanded by the factor t. If E is a subset of IR™, then the
complement of £ in IR™ will be denoted as °E. m,, is the usual Lebesgue
measure on IR".

(b) LP will indicate the usual function spaces on IR®. LP C., C® are de-
noted as the spaces of all compactly supported LP-functions, continuous
functions and smooth functions respectively. S is the Schwartz class of
all rapidly decreasing functions. Its dual space consists of all tempered
distributions, denoted as S'.

(c) Let APf(x) be the average of f over the closed cube Q(z,7) in p"*-mean,
1

ie. APf(x) = [Tin Jom F@IF dw} ” provided that 0 < p < co. When
p = 00, we define A f(x) = || f|| Lo (Q(z,r)). When r = 1, we simply write
AP f(z).

(d) The Hardy-Littlewood maximal function and its uncentered version are

defined as

M f(z) = sup

r>0 Cp rr

— 1
[ fldm Mg = s [ flam,,
B(z,r) ze€B(y,r) Cn T JB(yr)

respectively, where ¢, is the volume of the unit ball.
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1
def

(e) 19(Lr) & o

{75 1oy ™ [Saca )" <+ | wiere0 < prg <

0o, Q is the collection of closed cubes with uniform side length 1 and
their vertices on integral lattices of IR™. If ¢ = oo, then ||f||ier) =

sup || fl e (q)-
QeQ
The following four lemmas will be frequently used throughout the thesis.

Lemma 2.1 Let f : IR™ — € be a Borel measurable function, X\, r > 0,k €
Z7 0<p<oo. Then

[{AZf > A} <c2™ [{ A, o f>27"P A},
where ¢ is a constant independent of f,r and .
Proof The reader may refer to [14].

Lemma 2.2 (Bertrandias, Datry, Dupuis [2]) Suppose that 0 < p,q < c©.
Then there exist two numbers c1, co dependent only on p, q,n such that for each
f: IR™ = C be Borel measurable,

alAfllg < [Z (”f”LP(Q))q] < e[ APl

QEeQ

Lemma 2.3 Let f : IR® — € be a Borel measurable function, r > 0,k €
ZT,0<p,q<oo. Then

1
A2 fllg < (@) 9| AY i fllgs

where ¢ 1s a constant independent of f and r but dependent on p,q.

Proof It is a consequence of Lemma 2.1 or 2.2. The proof is complete. ||

Lemma 2.4 (Maximal Theorem) The uncentered maximal operator M is
bounded from L' into weak-L* and from LP into LP for each 1 < p < c0.

Proof For the proof, the reader can refer to [21]. ||

The class of operators which we will consider in this thesis is defined as
follows. We call operators in this class to be the Calderén-Zygmund singular
integral operators throughout the thesis.

Definition 2.5 (The Calderén-Zygmund Singular Integral Operators)
Let T be a bounded linear operator on L? that are translation-invariant. It is
a well-known fact (see Stein [21]) that T' is representable as

TF(E) =m(&)f(€) and |m(€)] < A.
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for all f € L*. Now let W be the tempered distribution with W =m. Then we
have, for all f € S,
Tf=Wxf.

We make the a priori assumption that the distribution W coincides, away from
the origin, with a locally integrable function K. Then we have

1f(x) = [ K= )f )y
for all f € L? and almost all x ¢ supp(f). Moreover we assume that

ly —y'|°

/
|K($—y)—K($—y)|<Cm

for all |z —y| = 2|y — /|,
where 6 € (0,1] and ¢ > 0 are fized constants. Then we call the operator T to
be a Calderon-Zygmund singular integral operator.

Such operator was known to be bounded on LP(1 < p < oo) and from L' into
weak-L' (see Stein [21]). The typical examples are the Hilbert transform on
IR!, whose kernel is %, and its n-dimensional analogue, the Riesz transforms

on IR®. The kernel of the j* Riesz transform is —%2, where 1 < j < n.

[y]

3 Local Hardy-Type Amalgam Spaces [?(h?), 1 <
q<o0, 0<p<gq

3.1 Definition of [9(h?), 1 < ¢g< o0, 0 <p<q
Definition 3.1.1 Suppose f € S', x € IR™.
(a) Let Fy = {6 € CR(B(0, 1)) : [0°¥l < 1, 8] < N},

(i) M™f(x) = sup sup |f * ()],

0<t<1 YcFy

(if) M*N f(x) = sup sup |f 1 (2)|.

t>0 ypeFN

(b) Let ¢ € S with [ ¢ # 0.
(i) M{f(z) = sup |f*u(2)],

0<t<1

(ii) M?f(x) = sup |f * ¢u()|.
>0
Definition 3.1.2 Let 1 < g < 0o, 0 < p < q. We denote 19(h?) = {f is a
distribution : Ap(MlFNf) € L%}, where Fiy is the collection of smooth functions
defined in Definition 3.1.1 and N = maxz{0, [n(% — 1]+ 1}, [n(]l) —1)] is the
integral part of n(% —1).
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Throughout this section, N will be used to denote the number max{0, [n(% —

1)]+1}. We remark that with this choice of IV, it is not difficult to verify that
for each local (2,p)-atom a (see definition in Goldberg [12]), ||M{™a| . < ¢
where c¢ is a constant independent of the choice of a. As a consequence, for f €
R || M fllz» =~ || fl|lne- Besides, on this range of norm indices p, ¢, the basic
assumption on f is that f is a distribution which, by definition, is a continuous
linear functional on C2°. We recall a characterization of distributions. A
linear functional f on C° is a distribution if and only if for each compact set
K CIR", there exist C' > 0 and m € Z" such that

If(o)] <C Z |0“¢|loc whenever f € C supported inside K.

|a|l<m

Lemma 3.1.3 Suppose that (i) ¢ € C5°(B(0,1)), for each |a| < N, ||09¢]|e <
1, (ii) n € CP(Q,) where Q, is a cube with 1(Q,) = 1, for each |a] <
N, |0°n||lc < 1. Then there exists a constant ¢ (dependent only on N ) such
that

ij(fn)(a:) < ¢ x30, ()M~ f (), whenever f € S,z € IR®,
where by definition, (fn)(¢) = f(ne) for all p € S.

Proof Noticing that for all z,w € IR®, t € (0,1),

r—w.l z—w

nw)ei(z —w) = nxt(T)t_nQS( P ) where 1, ;(£) = n(z — t§),
1 T —w
= t_n(nx,t ' )( ¢ )

For all multi-index || < N, w € IR*, t € (0,1),

e 9)w) = 37 )0 @)(0L79) ),

r<B i
= (7)o@ - )@k o)),
r<B

It follows that |05 (ns-®)leo < ( 5 > < ey because supp(¢) € B(0,1), V|y| <
<B

N, 10]le, 107¢]lc < 1 and 0 < ¢t < 1. So L(n.: - ¢) € Fy. More-

CN
over supp(M{(fn)) C 3Q,. Consequently, for all z € TR", M{(fn)(z) <
CN * X30, (z)(M]™ f)(z). The proof of the lemma is complete. |

We first start with a decomposition theorem for distributions in {9(h?), in
which the building blocks are required to be localized in some dyadic cubes.
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As a consequence, we show that C2° is a dense subspace of [9(h?), and each
distribution in [9(h?) is locally a hP-distribution.

To state the lemma below, we introduce a smooth partition of unity as
below: Let Q be a prescribed collection of closed cubes with uniform side
length 1 whose interiors do not intersect with each other and union is equal to
IR". Denote xp = centre of Qi, Qr € Q, k =1,2,3,... Take a C*-function
¥ such that 0 < ¢ < 1 on IR® ¢ = 1 on Q(0,1) and supp(v) C Q(0,2).

Define ny(z) = =) for each € IR®, k = 1,2,.... Then for each
_le(w—ﬂﬁj)
=

z € IR*, Y 9(x —x;) > 1. Moreover, for each o, k, [[0Nklcc < call0%Y||0o
=1
where ¢, is dependent on « and the dimension n only.

Lemma 3.1.4 Let 1 < ¢ < 00, 0 < p < q. Suppose that {n;}5° is the smooth
partition of unity stated in the previous paragraph. If f is a distribution, then
the following three quantities are mutually comparable with bounds independent

of f:
(©) | AP(MY f) o,

() [0, i),

ceey e 1
(it) f{[S Al : £ = Yoeo Aatar gl < 1, supplag) C 4Q}, where
the convergence is taken in the sense of distribution.

Proof Denote Ni(f), No(f), N3(f) to be the expressions in (i), (ii), (iii)
respectively. For the proof of No(f) < ¢Ni(f) where ¢ being independent of
the choice of f, it is already contained in the proof of Theorem 3.3.2 in [15]. We
will not repeat it here. Besides, it is trivial to see that N3(f) < No(f). What
we are going to show is that Ni(f) < ¢N3(f). Now let f =3, 5 Agaq where
ag 's are satisfied the above mentioned properties. Then case 1: 1 < p < q.
We have

| i nwea = Y [ 1o e,
veg”’V

> [ I 40 Ogue)) Wiy,

vea’V Qeo

- S 1Y #06 Ogw) )y

VeQ 4QN4AV £

SC D0 IMaglne),

VEQ 4Qn4V£D

Cnyg Z ’)‘V‘q7

Ve

N

N

N
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where ¢, , only depends on the dimension n and norm ¢. Case 2: 0 < p < 1.

We have

| waspwida = Y [ 106 p,

Ve

<Y/ Ziw/ s i Iy
1

Ve QeQ

:Z/|

Veo 4QN4AV £

YO e,

VeQ 4Qnav#0

Smrt YT gl

veQ 4V N4Q#£0

me 3 Dl

Ve

Aol / M agl? dmy 1% dy,
Q(y,1)

N

N

N

where m is the number of all distinct elements in {Q € Q : 4Q N4V # (}.
Note that m is independent of the chioce of V. The second last inequality
follows from the Holder’s inequality and the fact that p < ¢. This completes
the proof of the lemma. |

As a consequence of the above lemma, each distribution in [?(h?) (1 < p <
q < 00) is locally an LP-function because each fn, € LP. As a result, it is easy
to see that [9(h?) is a Banach space. Moreover since || fni||ne = || f1x|| > Where
1<p<q<oo, |AP(M™Y )|, = |APfll,. For 0 < p<1<q<oo, (19h7),] -
i (h,,)) defines a topological vector space with a complete translation invariant
metric, d(f,g) = ||f — ngq pey- Besides, we can show that Cg° is a dense

subspace of [9(h?). Indeed, it is obvious that ||f — S°0_ | fiilluey — O as
N — oo by the previous lemma. Together with the fact that h” space is stable
under multiplication by S (see Goldberg [12]), each fr; can be approximated
in hP-norm by smooth functions which are compactly supported inside 4Q)
(supp(fnr) C 2Q%). Finally by the previous lemma, f can be approximated in
[7(hP)-norm by compactly supported smooth functions.

In the rest of this section, we consider AP f(x) as the average of f over the
open ball B(x,r).
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3.2 The Calderon-Zygmund Singular Integral Opera-
tors on l9(hP), 1 <g< o0, 0 <p<yq

Proposition 3.2.1 Let 0 < p < oo. Then there exists a constant ¢ > 0
(dependent only on p) such that

sup A [{AP(MEN ) > XY < e | AP (MY )| whenever f € I*(hP).
A>0

Proof Let f € I}(h?). Denote Gf = sup sup |f * ¢;|. Then AP(M~f) <

YeFy t=1

cAP(MI™ f) + cAP(Gf). So
AP 1) > X} < A ) > 23]+ {A%(G) > o))

Therefore, it is sufficient for us to show that the third quantity is less than
d X7V || flliwwy- To finish the proof, it suffices to show that

G Fllesn) < ¢ M(AP(MI™ f))(y), for each y € IR™, (3.1)

where ¢ is independent of y, f. Indeed, we fix yo € IR®, zg € B(yo,1). Then
take a function ¢ € C§°(B(0, 1)) with [ ¢ = 1. (The choice of ¢ is independent
of f) Fixt>1and ¢ € Fy. Then

o ) = S F (0

o — - 1 o — -

P T 0w =) a.

t’l’b
Now for each w € B(zo,t + 1), 8 € B(w, 1), we define

_ 1
gusly) = 2o g0 5 0ty

So f((™=)p(w —-)) = f(2" gus(2 (B —"-))). We claim that for such g, s
function, supp(gw,s) € B(0,1). It follows from the fact that supp(¢) € B(0, 1)

and |w — f| < }l. Moreover by the Leibnitz’ formula, there exists a positive

number L (independent of xq, 5, w and ¢, but dependent on ¢ and N) such
that for each |af < N, [|05(gw,p)|lc0 < L. So

_. 1
FE)s(w = DI < L- (M), for each B € Blw, 7).
Integrating both sides in the p*-mean over the ball B(w, i)v we have
FE(Z)o(w = )| < eL- AL (M f)(w).

Since t > 1 and yo € B(xo,t + 1), we finally have

[f o ul(wo)| < e M(AP(M™ f)) (o).
So (3.1) is established. The proof is therefore complete. |
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Theorem 3.2.2 (Goldberg [12]) Let 0 <p < 1,9 € S with [ =1 and
[ x*y¢(x)dx = 0 for each o # 0. Then for each f € hP, f — fx1 € HP and
\f = fx||ur < || fllne where ¢ is independent of f. Moreover, fx1 = > \;b;
a.e. on IR™ where b;’s are local (2, p)-atoms with their supporting cubes, 1(Q) >
L, and 32 [ifP < el f -

Theorem 3.2.3 (Stein [22]) Let 0 < p < 1, T be the Calderén-Zygmund
singular integral operator with its kernel satisfying the following assumption

1
P K@) <cla ™ for 18]< (D] @ £0.
Then T is bounded from HP into HP.

Now we come to the main results in this paper.

Theorem 3.2.4 Let 1 < ¢ < 00, 0 < p < q, T be the Calderon-Zygmund
singular integral operator. (i) If 1 < p < q, then there exists a constant ¢
(dependent only on p,q,T) such that

| T flliawry < € | fllianey whenever f e C.

So T admits a unique bounded linear extension on [7(h?). (ii) If0 < p < 1 and
K satisfies the following stronger assumption

07K (1)) < c |z ﬁruﬂ<m§—wn+zx#a

then there exists a constant ¢ (dependent only on p,q,T) such that
NT flliagey < & || fllianey whenever f e C.
So T admits a unique bounded linear extension on 19(hP).

Proof Take a smooth function ¢ vanishing outside B(0, 1) and [ ¢dz = 1. Let
feC*. Then T(f *) is a well-defined function in L?. We now write T'f =
T(f«)+T(f — f*1). We claim that \T(f * ) |l1aney < cql| fllia(nry- Indeed,
from (3.1), we know | f 1| < ¢ M(AP(M[™ f)). So by the maximal theorem,
the Li-boundedness property of T and the Jensen inequality (1 < ]%), we have

IT(F 5 0) iy < o ITCF % 0)le < € 1f % 0l < € IFEAP MY )10 <
e 1 o

What remains to show is [|T'(f — f*1)|[ianry < ¢ || f||19(ar). For convenience,
we write T'f = T(f — f ). Take another smooth function n € C3°(B(0,5))
such that n = 1 on B(0,4),0 < n < 1. Denote 1,(-) = n(z — -) for each
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x € IR™. We are going to establish the inequality by dividing into three steps
to show that for each x € IR™,

AP(M (T () () < ¢ ALy (M f)(w), (3.2)
AP(M{™(T(f(1 = na))(@) < ¢ M f(2) ifl<p<gq (33
AP(M(T(F(1 = m))) () < ¢ IGS leqs if0<p<l, (34

where M{f = sup;, cﬂ% fB(I 9 |fldm,, and Gf is defined as in Proposition
3.2.1. We fix a point zo € IR,

Step (i). We are going to establish (3.2). We argue that fn,, € h?. In
fact, by Lemma 3.1.3, ||fnullne < ¢ AP(M™ f)(z0) < ¢ Ab (MY £)(B) for
each 3 € B(xg,10). Then fn,, € h? follows from Lemma 2.3. Case 1: 1 < p <
¢. The LP-boundedness property of T implies that AP(M™(T(fn.,)))(z0) <
HT(fn:m)HLp S ”fﬁonLP =c anonhp Sc A;i)O(Mfo)(xO) Case 2: 0 <
p < 1. By invoking Theorem 3.2.2, fn,, = ¢1 + g2 where ¢ € H? with
lg1llae < || fNxgllne and go = > \ib; a.e. on IR™ for some local (2, p)-atoms
b;’s with their supporting cubes [(Q) > 1 and Y [N|? < ¢f| [z ||he- First we
claim that for each i, AP(MI™ (Th;))(zo) < ¢ where ¢ is independent of i and f.
Let @; be the smallest supporting cube of b;,[(Q;) > 1. Then by the Holder’s
inequality,

N

AP (M (Tb,)) (o) [ / @ dy

cl[ M (Tb)|I%..
CHb'HLZv

c|@i =,

C.

INCINCIN N

The claim is justisfied. Now we come back to establish (3.2). By Theorem
3.2.3,

AP (M (T(fra0))) (o) [P < [AP(M{™ (Tgr)) (o) P + [AP (M (T(Y_ b))
< ATl + D Il [AP M (Th:) (o) P
< el + ¢ 1 f 7ol
< e nwollre-

So (3.2) follows. (It is this point where we make use of Theorem 3.2.3.)
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Step (ii). We are going to establish (3.3). Indeed, for each 5 € B(xy,2),

TGO =ma)@ = | [ (=9 = K <003 =) £)- (1= (1)l

</ K(8 —y) — K+ (8 — y)||f)ldy,
€B(zq,4)

< ([ 1K@ -9 - K@ —y—lle@ld) 1)y,
/CB% , /]Rn y y y)|dy

< el [ Sy (since supp () € B(0.1)

oo B4l

< - /cB(xOA) %dy (since B € B(xo,2)),

< STy i,
-  [ wly

=0
< vl (Myf) (o).

Step (iii). We are going to establish 3.4. For convenience, we write

o(-) def- 1n(3) — n(-). Noticing that for each 5 € B(x,2),

T(F(L=na))(8) — / KB —y)— K (5 — )] 1) (1 - nu(v)) dy,

To—Y

= Z . — K b(5—y)] fly) O(5) dy.
-3 / n K5 - )] S) O ) dy.

e

where K;(w) = K(w)((5) and ¢ is smooth function such that ((y) = 1 on
1 < |yl < 2% and ((y) = 0 outside 271 < |y| < 2°. The last equality follows
from the fact that ©(%3=) vanishes outside 272 < |zo—-| < 5-:2""!, on which we
must have 2 +1 < | —+] < 27 —1. Now let ¢ € Fiy,w € B(xy, 1) 0<t<1.
Define for each y € IR®,

Giay) = 270 (K = Kix ) % 60) (2) (G +8y) = (= +16y)]

It follows that
60+ T (1~ i) Z - ) 0 )

What we need to show is that there exists a positive number L (independent
of i,w, xg, f, ¢ and t) such that for each i =0,1,2,..., 2L g;, € F. Indeed,
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it is easy to see that supp(¢;.,) € B(0,1). Moreover the smoothness of ¢

implies the function g¢;, to be also smooth. Observe that for |y| < [n(]lJ -

D]+ 2, 0Kl < C, 277+ where C, depends only on ¢, K, N, but
does not depend on %, w, o, f, ¢,t. Then g, satisfies the following differential
inequality: for each || < N, (let ¢y, = max{2- 16" (|0°n||: |B] < N})

95 )] < 2 ey SO0 )2 [ K — (@)K 0] % (2 |

r<a
< 2 oy Z( o )2(i+4)h\ 10 K — (0 1) * ]| oo
e
< e onlitd) CN,r;Z( Q )2(z’+4)m Z ||a;+BKi||ooa
1< 7 181=1
< ¢ty cNﬂz( « >2<z‘+4>m 3 Cpg - 20D,
e 18|=1
—1 n @
o 18l=1
< 2707

where L depends only on N, n, K but does not depend on ,w, zg, f, ¢,t. The
claim is justified. So we have
Fy (7 — 1
MEY T (1= m))(w) €3 5
i=0

Gf(w) < cllGflleBeo)

Then (3.4) follows. B
By invoking (3.1), (3.3) and (3.4) imply that A?(M[™ (T'(f(1—n4,))))(z0) <
¢ M(AP(M{™ f))(20). Finally we have

ITf ooy < € | AT (M f)l| 20 + ¢ M (AP (MY £)) | < ¢ fllony-

The proof is therefore complete. |
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