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Abstract
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into lp(hp) where 1 < q <∞ and 0 < p ≤ q.
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1 Introduction

Amalgam spaces are defined as follows:

lq(Lp)
def
=

f : ‖f‖lq(Lp) =

[∑
Q∈Q

‖f‖qLp(Q)

] 1
q

<∞

 ,

where 0 < p, q <∞, Q is the collection of all cubes with uniform side length
1 and their vertices on integral lattices of IRn. One of the main reason to
study the amalgam spaces is that they allow us to separate the global be-
haviour from the local behaviour of a function. In [14] the author proved that
pseudo-differential operators of order zero simultaneously preserve local and
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global behaviour of functions in the amalgam spaces in the sense that they
are bounded from lq(Lp) into lq(Lp), where 0 < q ≤ 1 < p < ∞. In [15],
the author proved that pseudo-differential operators of order zero are bounded
from local Hardy-type amalgam space lq(hp) into lq(hp) where 0 < q ≤ p ≤ 1.
In [16], the author proved that Calderón-Zygmund singular integral operators
are bounded from l1(Lp) into weak − l1(Lp). In this paper, we prove that
Calderón-Zygmund singular integral operators are bounded from local Hardy-
type amalgam space lq(hp) into lp(hp) where 1 < q < ∞ and 0 < p ≤ q.
The main results in this paper serve as a kind of preparation for proving the
boundedness of Calderón-Zygmund singular integral operators from l1(hp) into
weak − l1(hp), where 0 < p ≤ 1, which will appear in a separate paper [17].

2 Preliminary

Throughout this paper, we will adopt the following notations.

(a) If 1 6 p 6∞, then p′ is denoted as the exponent conjugate to p. Q(x, r)
is the closed cube centered at x with side length r. l(Q) is the side length
of the cube Q. B(x, r) is an open ball centered at x with radius r. If
t > 0, B is an open ball and Q is a closed cube in IRn, then tB, tQ
have the same centers as B, Q respectively but whose radius and side
length are expanded by the factor t. If E is a subset of IRn, then the
complement of E in IRn will be denoted as cE. mn is the usual Lebesgue
measure on IRn.

(b) Lp will indicate the usual function spaces on IRn. Lpc , Cc, C
∞
c are de-

noted as the spaces of all compactly supported Lp-functions, continuous
functions and smooth functions respectively. S is the Schwartz class of
all rapidly decreasing functions. Its dual space consists of all tempered
distributions, denoted as S ′ .

(c) Let Aprf(x) be the average of f over the closed cube Q(x, r) in pth-mean,

i.e. Aprf(x) =
[

1
rn

∫
Q(x,r)

|f(ω)|p dω
] 1
p

provided that 0 < p < ∞. When

p =∞, we define A∞r f(x) = ‖f‖L∞(Q(x,r)). When r = 1, we simply write
Apf(x).

(d) The Hardy-Littlewood maximal function and its uncentered version are
defined as

Mf(x) = sup
r>0

1

cn rn

∫
B(x,r)

|f |dmn , M̃f(x) = sup
x∈B(y,r)

1

cn rn

∫
B(y,r)

|f |dmn,

respectively, where cn is the volume of the unit ball.
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(e) lq(Lp)
def
=

{
f : ‖f‖lq(Lp)

def
=
[∑

Q∈Q ‖f‖
q
Lp(Q)

] 1
q
< +∞

}
, where 0 < p, q <

∞, Q is the collection of closed cubes with uniform side length 1 and
their vertices on integral lattices of IRn. If q = ∞, then ‖f‖l∞(Lp) =
sup
Q∈Q
‖f‖Lp(Q).

The following four lemmas will be frequently used throughout the thesis.

Lemma 2.1 Let f : IRn → lC be a Borel measurable function, λ, r > 0, k ∈
Z+, 0 < p <∞. Then

|{ Aprf > λ }| 6 c 2kn |{ Ap
r·2−kf > 2−n/p λ }|,

where c is a constant independent of f, r and λ.

Proof The reader may refer to [14].

Lemma 2.2 (Bertrandias, Datry, Dupuis [2]) Suppose that 0 < p, q <∞.
Then there exist two numbers c1, c2 dependent only on p, q, n such that for each
f : IRn → lC be Borel measurable,

c1‖Apf‖q 6

[∑
Q∈Q

(
‖f‖Lp(Q)

)q] 1
q

6 c2‖Apf‖q.

Lemma 2.3 Let f : IRn → lC be a Borel measurable function, r > 0, k ∈
Z+, 0 < p, q <∞. Then

‖Aprf‖q 6 c(2kn)
1
q ‖Ap

r·2−kf‖q,

where c is a constant independent of f and r but dependent on p, q.

Proof It is a consequence of Lemma 2.1 or 2.2. The proof is complete.

Lemma 2.4 (Maximal Theorem) The uncentered maximal operator M̃ is
bounded from L1 into weak-L1 and from Lp into Lp for each 1 < p <∞.

Proof For the proof, the reader can refer to [21].
The class of operators which we will consider in this thesis is defined as

follows. We call operators in this class to be the Calderón-Zygmund singular
integral operators throughout the thesis.

Definition 2.5 (The Calderón-Zygmund Singular Integral Operators)
Let T be a bounded linear operator on L2 that are translation-invariant. It is
a well-known fact (see Stein [21]) that T is representable as

T̂ f(ξ) = m(ξ)f(ξ) and |m(ξ)| 6 A.
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for all f ∈ L2. Now let W be the tempered distribution with Ŵ = m. Then we
have, for all f ∈ S,

Tf = W ∗ f.
We make the a priori assumption that the distribution W coincides, away from
the origin, with a locally integrable function K. Then we have

Tf(x) =

∫
K(x− y)f(y)dy,

for all f ∈ L2
c and almost all x /∈ supp(f). Moreover we assume that

|K(x− y)−K(x− y′)| 6 c
|y − y′|δ

|x− y|n+δ
for all |x− y| > 2|y − y′|,

where δ ∈ (0, 1] and c > 0 are fixed constants. Then we call the operator T to
be a Calderón-Zygmund singular integral operator.

Such operator was known to be bounded on Lp(1 < p <∞) and from L1 into
weak-L1 (see Stein [21]). The typical examples are the Hilbert transform on
IR1, whose kernel is 1

x
, and its n-dimensional analogue, the Riesz transforms

on IRn. The kernel of the jth Riesz transform is
yj
|y|n+1 , where 1 6 j 6 n.

3 Local Hardy-Type Amalgam Spaces lq(hp), 1 6
q <∞, 0 < p 6 q

3.1 Definition of lq(hp), 1 6 q <∞, 0 < p 6 q

Definition 3.1.1 Suppose f ∈ S ′, x ∈ IRn.

(a) Let FN = {ψ ∈ C∞0 (B(0, 1)) : ‖∂βψ‖∞ 6 1, |β| 6 N},

(i) MFN
1 f(x) = sup

0<t<1
sup
ψ∈FN
|f ∗ ψt(x)|,

(ii) MFNf(x) = sup
t>0

sup
ψ∈FN
|f ∗ ψt(x)|.

(b) Let φ ∈ S with
∫
φ 6= 0.

(i) Mφ
1 f(x) = sup

0<t<1
|f ∗ φt(x)|,

(ii) Mφf(x) = sup
t>0
|f ∗ φt(x)|.

Definition 3.1.2 Let 1 6 q < ∞, 0 < p 6 q. We denote lq(hp) = {f is a
distribution : Ap(MFN

1 f) ∈ Lq}, where FN is the collection of smooth functions
defined in Definition 3.1.1 and N = max{0, [n(1

p
− 1)] + 1}, [n(1

p
− 1)] is the

integral part of n(1
p
− 1).
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Throughout this section, N will be used to denote the number max{0, [n(1
p
−

1)] + 1}. We remark that with this choice of N , it is not difficult to verify that
for each local (2, p)-atom a (see definition in Goldberg [12]), ‖MFN

1 a‖Lp 6 c
where c is a constant independent of the choice of a. As a consequence, for f ∈
hp, ‖MFN

1 f‖Lp ' ‖f‖hp . Besides, on this range of norm indices p, q, the basic
assumption on f is that f is a distribution which, by definition, is a continuous
linear functional on C∞c . We recall a characterization of distributions. A
linear functional f on C∞c is a distribution if and only if for each compact set
K ⊆ IRn, there exist C > 0 and m ∈ Z+ such that

|f(φ)| 6 C
∑
|α|6m

‖∂αφ‖∞ whenever f ∈ C∞ supported inside K.

Lemma 3.1.3 Suppose that (i) φ ∈ C∞0 (B(0, 1)), for each |α| 6 N, ‖∂αφ‖∞ 6
1, (ii) η ∈ C∞0 (Qη) where Qη is a cube with l(Qη) > 1, for each |α| 6
N, ‖∂αη‖∞ 6 1. Then there exists a constant c (dependent only on N) such
that

Mφ
1 (fη)(x) 6 c · χ3Qη(x)MFN

1 f(x), whenever f ∈ S ′ , x ∈ IRn,

where by definition, (fη)(ϕ) := f(ηϕ) for all ϕ ∈ S.

Proof Noticing that for all x, ω ∈ IRn, t ∈ (0, 1),

η(ω)φt(x− ω) = ηx,t(
x− ω
t

)
1

tn
φ(
x− ω
t

) where ηx,t(ξ) = η(x− tξ),

=
1

tn
(ηx,t · φ)(

x− ω
t

).

For all multi-index |β| ≤ N, ω ∈ IRn, t ∈ (0, 1),

∂βω(ηx,t · φ)(ω) =
∑
γ6β

( β
γ

)
(∂γωηx,t)(ω)(∂β−γω φ)(ω),

=
∑
γ6β

( β
γ

)
(−t)|γ|(∂γωη)(x− tω)(∂β−γω φ)(ω).

It follows that ‖∂βω(ηx,t·φ)‖∞ 6
∑
γ6β

( β
γ

)
6 cN because supp(φ) ⊆ B(0, 1), ∀|γ| 6

N, ‖∂γη‖∞, ‖∂γφ‖∞ 6 1 and 0 < t < 1. So 1
cN

(ηx,t · φ) ∈ FN . More-

over supp(Mφ
1 (fη)) ⊆ 3Qη. Consequently, for all x ∈ IRn, Mφ

1 (fη)(x) 6
cN · χ3Qη(x)(MFN

1 f)(x). The proof of the lemma is complete.

We first start with a decomposition theorem for distributions in lq(hp), in
which the building blocks are required to be localized in some dyadic cubes.
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As a consequence, we show that C∞c is a dense subspace of lq(hp), and each
distribution in lq(hp) is locally a hp-distribution.

To state the lemma below, we introduce a smooth partition of unity as
below: Let Q be a prescribed collection of closed cubes with uniform side
length 1 whose interiors do not intersect with each other and union is equal to
IRn. Denote xk = centre of Qk, Qk ∈ Q, k = 1, 2, 3, . . . Take a C∞-function
ψ such that 0 6 ψ 6 1 on IRn, ψ ≡ 1 on Q(0, 1) and supp(ψ) ⊆ Q(0, 2).

Define ηk(x) = ψ(x−xk)
∞∑
j=1

ψ(x−xj)
for each x ∈ IRn, k = 1, 2, . . . . Then for each

x ∈ IRn,
∞∑
j=1

ψ(x − xj) > 1. Moreover, for each α, k, ‖∂αηk‖∞ 6 cα‖∂αψ‖∞

where cα is dependent on α and the dimension n only.

Lemma 3.1.4 Let 1 6 q <∞, 0 < p 6 q. Suppose that {ηk}∞1 is the smooth
partition of unity stated in the previous paragraph. If f is a distribution, then
the following three quantities are mutually comparable with bounds independent
of f :

(i) ‖Ap(MFN
1 f)‖Lq ,

(ii) [
∑∞

k=1 ‖fηk‖
q
hp ]

1
q ,

(iii) inf{[
∑
|λQ|q]

1
q : f =

∑
Q∈Q λQaQ, ‖aQ‖hp 6 1, supp(aQ) ⊆ 4Q}, where

the convergence is taken in the sense of distribution.

Proof Denote N1(f), N2(f), N3(f) to be the expressions in (i), (ii), (iii)
respectively. For the proof of N2(f) 6 cN1(f) where c being independent of
the choice of f , it is already contained in the proof of Theorem 3.3.2 in [15]. We
will not repeat it here. Besides, it is trivial to see that N3(f) 6 N2(f). What
we are going to show is that N1(f) 6 cN3(f). Now let f =

∑
Q∈Q λQaQ where

aQ ’s are satisfied the above mentioned properties. Then case 1: 1 6 p 6 q.
We have∫

IRn

|Ap(MFN
1 f)(y)|qdy =

∑
V ∈Q

∫
V

|Ap(MFN
1 f)(y)|qdy,

6
∑
V ∈Q

∫
V

|
∑
Q∈Q

Ap(MFN
1 (λQaQ))(y)|qdy,

=
∑
V ∈Q

∫
V

|
∑

4Q∩4V 6=∅

Ap(MFN
1 (λQaQ))(y)|qdy,

6
∑
V ∈Q

(
∑

4Q∩4V 6=∅

‖λQaQ‖hp)q,

6 cn,q
∑
V ∈Q

|λV |q,
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where cn,q only depends on the dimension n and norm q. Case 2: 0 < p < 1.
We have

∫
IRn

|Ap(MFN
1 f)(y)|qdy =

∑
V ∈Q

∫
V

|Ap(MFN
1 f)(y)|qdy,

6
∑
V ∈Q

∫
V

|
∑
Q∈Q

|λQ|p
∫
Q(y,1)

|MFN
1 aQ|p dmn |

q
p dy,

=
∑
V ∈Q

∫
V

|
∑

4Q∩4V 6=∅

|λQ|p
∫
Q(y,1)

|MFN
1 aQ|p dmn |

q
p dy,

6
∑
V ∈Q

(
∑

4Q∩4V 6=∅

|λQ|p)
q
p ,

6
∑
V ∈Q

(m
q
p
−1

∑
4V ∩4Q6=∅

|λQ|q),

6 m
q
p

∑
V ∈Q

|λV |q,

where m is the number of all distinct elements in {Q ∈ Q : 4Q ∩ 4V 6= ∅}.
Note that m is independent of the chioce of V . The second last inequality
follows from the H

..
older’s inequality and the fact that p 6 q. This completes

the proof of the lemma.

As a consequence of the above lemma, each distribution in lq(hp) (1 6 p 6
q <∞) is locally an Lp-function because each fηk ∈ Lp. As a result, it is easy
to see that lq(hp) is a Banach space. Moreover since ‖fηk‖hp ' ‖fηk‖Lp where
1 < p 6 q <∞, ‖Ap(MFN

1 f)‖q ' ‖Apf‖q. For 0 < p 6 1 6 q <∞, (lq(hp), ‖ ·
‖plq(hp)) defines a topological vector space with a complete translation invariant

metric, d(f, g) = ‖f − g‖plq(hp). Besides, we can show that C∞c is a dense

subspace of lq(hp). Indeed, it is obvious that ‖f −
∑N

k=1 fηk‖lq(hp) → 0 as
N →∞ by the previous lemma. Together with the fact that hp space is stable
under multiplication by S (see Goldberg [12]), each fηk can be approximated
in hp-norm by smooth functions which are compactly supported inside 4Qk

(supp(fηk) ⊂ 2Qk). Finally by the previous lemma, f can be approximated in
lq(hp)-norm by compactly supported smooth functions.

In the rest of this section, we consider Aprf(x) as the average of f over the
open ball B(x, r).
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3.2 The Calderón-Zygmund Singular Integral Opera-
tors on lq(hp), 1 < q <∞, 0 < p 6 q

Proposition 3.2.1 Let 0 < p < ∞. Then there exists a constant c > 0
(dependent only on p) such that

sup
λ>0

λ |{Ap(MFNf) > λ}| 6 c ‖Ap(MFN
1 f)‖L1 , whenever f ∈ l1(hp).

Proof Let f ∈ l1(hp). Denote Gf = sup
ψ∈FN

sup
t>1
|f ∗ ψt|. Then Ap(MFNf) 6

cAp(MFN
1 f) + cAp(Gf). So

|{Ap(MFNf) > λ}| 6 |{Ap(MFN
1 f) >

λ

2c
}| + |{Ap(Gf) >

λ

2c
}|.

Therefore, it is sufficient for us to show that the third quantity is less than
c′ λ−1 ‖f‖l1(hp). To finish the proof, it suffices to show that

‖Gf‖C(B(y,1)) 6 c M̃(Ap(MFN
1 f))(y), for each y ∈ IRn, (3.1)

where c is independent of y, f . Indeed, we fix y0 ∈ IRn, x0 ∈ B(y0, 1). Then
take a function φ ∈ C∞0 (B(0, 1

4
)) with

∫
φ = 1. (The choice of φ is independent

of f) Fix t > 1 and ψ ∈ FN . Then

f ∗ ψt(x0) =
1

tn
f(ψ(

x0 − ·
t

)) =
1

tn

∫
B(x0,t+

1
2
)

f(ψ(
x0 − ·
t

)φ(w − ·)) dw.

Now for each w ∈ B(x0, t+ 1
2
), β ∈ B(w, 1

4
), we define

gw,β(y) = 2−nψ(
x0 − β + 2−1y

t
)φ(w − β + 2−1y).

So f(ψ(x0−·
t

)φ(w − ·)) = f(2n gw,β(2 (β − ·))). We claim that for such gw,β
function, supp(gw,β) ⊆ B(0, 1). It follows from the fact that supp(φ) ⊆ B(0, 1

4
)

and |w − β| < 1
4
. Moreover by the Leibnitz’ formula, there exists a positive

number L (independent of x0, β, w and t, but dependent on φ and N) such
that for each |α| 6 N , ‖∂αy (gw,β)‖∞ 6 L. So

|f(ψ(
x0 − ·
t

)φ(w − ·))| 6 L · (MFN
1 f)(β), for each β ∈ B(w,

1

4
).

Integrating both sides in the pth-mean over the ball B(w, 1
4
), we have

|f(ψ(
x0 − ·
t

)φ(w − ·))| 6 cL · Ap1
4

(MFN
1 f)(w).

Since t > 1 and y0 ∈ B(x0, t+ 1), we finally have

|f ∗ ψt(x0)| 6 c M̃(Ap(MFN
1 f))(y0).

So (3.1) is established. The proof is therefore complete.
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Theorem 3.2.2 (Goldberg [12]) Let 0 < p 6 1, ψ ∈ S with
∫
ψ = 1 and∫

xαψ(x)dx = 0 for each α 6= 0. Then for each f ∈ hp, f − f ∗ ψ ∈ Hp and
‖f −f ∗ψ‖Hp 6 c‖f‖hp where c is independent of f . Moreover, f ∗ψ =

∑
λibi

a.e. on IRn where bi’s are local (2, p)-atoms with their supporting cubes, l(Q) >
1, and

∑
|λi|p 6 c‖f‖php.

Theorem 3.2.3 (Stein [22]) Let 0 < p 6 1, T be the Calderón-Zygmund
singular integral operator with its kernel satisfying the following assumption

|∂βK(x)| 6 c |x|−n−|β| for |β| 6 [n(
1

p
− 1)], x 6= 0.

Then T is bounded from Hp into Hp.

Now we come to the main results in this paper.

Theorem 3.2.4 Let 1 < q < ∞, 0 < p 6 q, T be the Calderón-Zygmund
singular integral operator. (i) If 1 < p 6 q, then there exists a constant c
(dependent only on p, q, T ) such that

‖Tf‖lq(hp) 6 c ‖f‖lq(hp) whenever f ∈ C∞c .

So T admits a unique bounded linear extension on lq(hp). (ii) If 0 < p 6 1 and
K satisfies the following stronger assumption

|∂βK(x)| 6 c |x|−n−|β| for |β| 6 [n(
1

p
− 1)] + 2, x 6= 0,

then there exists a constant c′ (dependent only on p, q, T ) such that

‖Tf‖lq(hp) 6 c′ ‖f‖lq(hp) whenever f ∈ C∞c .

So T admits a unique bounded linear extension on lq(hp).

Proof Take a smooth function ψ vanishing outside B(0, 1) and
∫
ψdx = 1. Let

f ∈ C∞c . Then T (f ∗ ψ) is a well-defined function in Lq. We now write Tf =
T (f ∗ψ) + T (f − f ∗ψ). We claim that ‖T (f ∗ψ)‖lq(hp) 6 cq‖f‖lq(hp). Indeed,

from (3.1), we know |f ∗ ψ| 6 c M̃(Ap(MFN
1 f)). So by the maximal theorem,

the Lq-boundedness property of T and the Jensen inequality (1 6 q
p
), we have

‖T (f ∗ ψ)‖lq(hp) 6 cq ‖T (f ∗ ψ)‖Lq 6 c ‖f ∗ ψ‖Lq 6 c ‖M̃(Ap(MFN
1 f))‖Lq 6

c ‖f‖lq(hp).
What remains to show is ‖T (f−f ∗ψ)‖lq(hp) 6 c ‖f‖lq(hp). For convenience,

we write T̃ f = T (f − f ∗ ψ). Take another smooth function η ∈ C∞0 (B(0, 5))
such that η ≡ 1 on B(0, 4), 0 6 η 6 1. Denote ηx(·) = η(x − ·) for each
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x ∈ IRn. We are going to establish the inequality by dividing into three steps
to show that for each x ∈ IRn,

Ap(MFN
1 (T̃ (fηx)))(x) 6 c Ap10(M

FN
1 f)(x), (3.2)

Ap(MFN
1 (T̃ (f(1− ηx))))(x) 6 c M ′

1f(x) if 1 < p 6 q, (3.3)

Ap(MFN
1 (T̃ (f(1− ηx))))(x) 6 c ‖Gf‖C(B(x,1)) if 0 < p 6 1, (3.4)

where M ′
1f = sup1<t

1
cntn

∫
B(x,t)

|f |dmn and Gf is defined as in Proposition

3.2.1. We fix a point x0 ∈ IRn.

Step (i). We are going to establish (3.2). We argue that fηx0 ∈ hp. In
fact, by Lemma 3.1.3, ‖fηx0‖hp 6 c Ap10(M

FN
1 f)(x0) 6 c Ap20(M

FN
1 f)(β) for

each β ∈ B(x0, 10). Then fηx0 ∈ hp follows from Lemma 2.3. Case 1: 1 < p 6
q. The Lp-boundedness property of T implies that Ap(MFN

1 (T̃ (fηx0)))(x0) 6
‖T̃ (fηx0)‖Lp 6 c ‖fηx0‖Lp ' c ‖fηx0‖hp 6 c Ap10(M

FN
1 f)(x0). Case 2: 0 <

p 6 1. By invoking Theorem 3.2.2, fηx0 = g1 + g2 where g1 ∈ Hp with
‖g1‖Hp 6 c‖fηx0‖hp and g2 =

∑
λibi a.e. on IRn for some local (2, p)-atoms

bi’s with their supporting cubes l(Q) > 1 and
∑
|λi|p 6 c‖fηx0‖

p
hp . First we

claim that for each i, Ap(MFN
1 (T̃ bi))(x0) 6 c where c is independent of i and f .

Let Qi be the smallest supporting cube of bi, l(Qi) > 1. Then by the Hölder’s
inequality,

|Ap(MFN
1 (T̃ bi))(x0)|p 6 c

[∫
B(x0,1)

|MFN
1 (T̃ bi)(y)|p·

2
p dy

] p
2

,

6 c‖MFN
1 (T̃ bi)‖pL2 ,

6 c‖bi‖pL2 ,

6 c|Qi|
p
2
−1,

6 c.

The claim is justisfied. Now we come back to establish (3.2). By Theorem
3.2.3,

|Ap(MFN
1 (T̃ (fηx0)))(x0)|p 6 |Ap(MFN

1 (T̃ g1))(x0)|p + |Ap(MFN
1 (T̃ (

∑
λibi)))(x0)|p,

6 ‖T̃ g1‖pHp +
∑
|λi|p |Ap(MFN

1 (T̃ bi))(x0)|p,
6 c ‖g1‖pHp + c ‖fηx0‖

p
hp ,

6 c ‖fηx0‖
p
hp .

So (3.2) follows. (It is this point where we make use of Theorem 3.2.3.)
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Step (ii). We are going to establish (3.3). Indeed, for each β ∈ B(x0, 2),

|T̃ (f(1− ηx0))(β)| = |
∫
IRn

(K(β − y)−K ∗ ψ(β − y)) · f(y) · (1− ηx0(y))dy|,

6
∫
cB(x0,4)

|K(β − y)−K ∗ ψ(β − y)||f(y)|dy,

6
∫
cB(x0,4)

(

∫
IRn

|K(β − y)−K(β − y − t)||ψ(t)|dt) · |f(y)|dy,

6 c‖ψ‖1 ·
∫
cB(x0,4)

|f(y)|
|β − y|n+δ

dy (since supp (ψ) ⊆ B(0, 1)),

6 c‖ψ‖1 ·
∫
cB(x0,4)

|f(y)|
|x0 − y|n+δ

dy (since β ∈ B(x0, 2)),

6 c‖ψ‖1 ·
∞∑
j=0

(
1

2
)(n+δ)(j+2)

∫
2j+26|x0−y|<2j+3

|f(y)|dy,

6 c‖ψ‖1 · (M
′

1f)(x0).

Step (iii). We are going to establish 3.4. For convenience, we write

Θ(·) def.
= η( ·

2
)− η(·). Noticing that for each β ∈ B(x0, 2),

T̃ (f(1− ηx0))(β) =

∫
IRn

[K(β − y)−K ∗ ψ(β − y)] f(y) (1− ηx0(y)) dy,

=
∞∑
i=0

∫
IRn

[K(β − y)−K ∗ ψ(β − y)] f(y) Θ(
x0 − y

2i
) dy,

=
∞∑
i=0

∫
IRn

[Ki(β − y)−Ki ∗ ψ(β − y)] f(y) Θ(
x0 − y

2i
) dy,

where Ki(ω) = K(ω)ζ( ω
2i

) and ζ is smooth function such that ζ(y) ≡ 1 on
1 6 |y| 6 24 and ζ(y) ≡ 0 outside 2−1 6 |y| 6 25. The last equality follows
from the fact that Θ(x0−·

2i
) vanishes outside 2i+2 6 |x0−·| 6 5·2i+1, on which we

must have 2i + 1 6 |β−·| 6 2i+4− 1. Now let φ ∈ FN , ω ∈ B(x0, 1), 0 < t 6 1.
Define for each y ∈ IRn,

gi,ω(y) = 2n(i+4) ((Ki−Ki ∗ψ)∗φt)(2i+4y) [η(
x0 − ω

2i+1
+8y)−η(

x0 − ω
2i

+16y)].

It follows that

φt ∗ T̃ (f(1− ηx0))(ω) =
∞∑
i=0

∫
IRn

(
1

2i+4
)
n

gi,ω(
ω − y
2i+4

) f(y) dy.

What we need to show is that there exists a positive number L (independent
of i, ω, x0, f, φ and t) such that for each i = 0, 1, 2, . . . , 2iL gi,ω ∈ FN . Indeed,
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it is easy to see that supp(gi,ω) ⊆ B(0, 1). Moreover the smoothness of φ
implies the function gi,ω to be also smooth. Observe that for |γ| 6 [n(1

p
−

1)] + 2, ‖∂γKi‖∞ 6 Cγ 2−i(n+|γ|) where Cγ depends only on ζ,K,N , but
does not depend on i, ω, x0, f, φ, t. Then gi,ω satisfies the following differential
inequality: for each |α| 6 N , (let cN,η = max{2 · 16N‖∂βη‖∞ : |β| 6 N})

|∂αy (gi,ω)(y)| 6 2n(i+4) · cN,η
∑
γ6α

( α
γ

)
2(i+4)|γ| | [∂γyKi − (∂γyKi) ∗ ψ] ∗ φt(2i+4y) |,

6 c 2n(i+4) · cN,η
∑
γ6α

( α
γ

)
2(i+4)|γ| ‖∂γyKi − (∂γyKi) ∗ ψ‖∞,

6 c 2n(i+4) · cN,η
∑
γ6α

( α
γ

)
2(i+4)|γ|

∑
|β|=1

‖∂γ+βy Ki‖∞,

6 c 2n(i+4) · cN,η
∑
γ6α

( α
γ

)
2(i+4)|γ|

∑
|β|=1

Cγ+β · 2−i(n+|γ|+1),

= c 2−i · 24(n+N) · cN,η ·
∑
γ6α

( α
γ

) ∑
|β|=1

Cγ+β,

6 2−iL−1,

where L depends only on N, η,K but does not depend on i, ω, x0, f, φ, t. The
claim is justified. So we have

MFN
1 (T̃ (f(1− ηx0)))(ω) 6

∞∑
i=0

1

2iL
Gf(ω) 6 c ‖Gf‖C(B(x0,1)).

Then (3.4) follows.

By invoking (3.1), (3.3) and (3.4) imply that Ap(MFN
1 (T̃ (f(1−ηx0))))(x0) 6

c M̃(Ap(MFN
1 f))(x0). Finally we have

‖T̃ f‖lq(hp) 6 c ‖Ap10(M
FN
1 f)‖Lq + c ‖M̃(Ap(MFN

1 f))‖Lq 6 c ‖f‖lq(hp).

The proof is therefore complete.
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