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Abstract

A Laplace-Neumann problem is introduced and developed in a novel
way. Important results are presented which are very important for
studying this type of problem on a compact manifold. An existence
theorem applicable to eigenvalue curves is also proved.
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Introduction and Preliminary Notes

1. Some properties of eigenvalues and eigenfunctions of the Laplace-Beltrami
operator a compact Riemannian manifolds subjected to Neumann boundary
conditions are investigated [1-3]. Difficulties can appear in dealing with g is
allowed to vary through the space of metrics. Some Laplace-Neumann operator
problems are formulated on compact manifolds. Every metric g determines a
sequence 0 = A\o(g) < Ai(g) < A2(g) < --- < Ag(g) < --- of eigenvalues of A,
counted with their multiplicities Each eigenvalue can be regarded as a function
of ¢ € M, the space of all C* Riemannian metrics on M™. The main result
is to establish an existence result for the Laplace-Neumann operator. There
exist analytic curves of eigenvalues for a Laplace-Neumann problem associated
to analytic eigenfunction curves [4-5].
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2. Some preliminary essential information which will be required here is
established. Let M™ for n > 2 be a compact, oriented n-dimensional smooth
manifold with boundary M. Let MF be the separable Banach space of all C*
Riemannian metrics on M" for any 2 < k < oo with C* topology. The inner
product is denoted (T, S) = Tr(7'S*) induced by g acting on the space of (0, 2)-
tensors on M, where S* denotes the adjoint of S. In local coordinates, we write
(T,S*) = g*¢/' T;;Spy. For f € C>°(M) the Laplacian of f is Af = (V2f,g),
where V2f = Vd f is the Hessian of f. As usual each (0,2)-tensor T on
(M™, g) can be associated to a unique (1, 1)-tensor through the inner product
g(T(X),Y) = T(X,Y) for all vector fields X,Y € V(M™), the set of vector
fields on M™. Writing this (1,1) tensor as 7', the (0,1) tensor, the divergence
is defined as

(divT)(X)(p) = Te(Y — (Vy T)(X)(p)), (1)

with p € M™ and X,Y € V,(M™).
It may be recalled that if 7" is a symmetric (0, 2)-tensor on a Riemannian
manifold (M", g) and f a smooth function on M", then div satisfies

div(T(fX)) = f(divT, X) + f(VX,T) + T(Vf,X) 2)

for each vector field X and the duality (div7)(X) = (div7, X) holds.
Let t — g(t) be a smooth variation of g such that (M",g(t),dpugw)) is a
Riemannian manifold. Here dp,q) is the volume form measure of g(t). Let

do g be the volume element with respect to g(t) restricted to 9M. Denote by
H a (0,2)-tensor defined by

Hy = Sleog(t), = (). ®)

Let h denote the trace of the (0,2)-tensor H induced by the derivative of g(t)
restricted to M. The following derivatives will be required as well
d 1 d 1-
77 oy = hdpg, = doge) = Shdoy. (4)
Vector fields X,Y € T(M™) can be expanded with respect to the basis 0;
such that X = ¢z;(t)0; and Y = g™y, (t)0;, where the coefficients in these
expressions are given by z;(t) = (X, 0;) and y;(t) = (Y, 0;).

It is convenient to write X = ¢¥#,(t)d; and Y = ¢¥g;(t)d; such that
#;(t) = dx;(t)/dt and y; = dy;(t)/dt. We will use t — ¢(t) to denote a smooth
variation of g.

Lemma 1. For every X,Y € V(M™) and f,g € C*(M™), the following
properties hold

(i) %(X, Y) = —HX,Y) 4+ (X,Y) + (X, V). (5)
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(i) L, Vi) = ~H(V . V). )

d 1 _
(i) = Veg(t)) = —H(v, Vg) + 5 H{v,v){v, Vo) + (1, Vg).  (7)
where
_ Vi
IVif]
and V, indicates the gradient with respect to g(t).
Proof: The derivative of g% (t), the inverse of g;;(¢), is required. This can

be obtained by using the fact that ¢""(t)gm;(t) = ¢}, differentiating on both
sides with respect to ¢ and then solving

(8)

Vi

G00Y) = g (10015 (1)) = 0™ g™ (150) + 7 :(0)5(0) + 0 (1) 00351

= —H(X,Y)+ (X,Y) + (X,Y). (9)

To get (ii) let X = V f so that z; = (Vf,0;) = 0;f which is independent of ¢,
and similarly for Y = V,q. Now substitute into (7).
For (i7) it suffices to note from the definition of 1,

v — <vt.fa al)
A2
Hence .
b= ——H
2IV f]
Take X = 14 in (7) and use (10). O
Lemma 2: 1f v is the exterior normal field on OM and t — ¢(t) a smooth
variation of g, then

(v,1)0,F. (10)

d 1
E'tzo v(t)=—-H(v)+ QH(% v)v. (11)

Proof. Let f be a smooth function on M such that v(t) is given by (8).
Then we have

@th = —H"79;f0; = —g"*¢’* H(0k,05)0;f 0; = —g""H (g0, f Ok, 05)0; = —g" (H(V.f), 01) 9;

=—-H(V:[). (12)
Using (6) in the form

d

E<th, th> = _H<th; th>,
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it follows that

d 1 d 1 d

Eu(t) = _2|V—J|3E<th’ Vi )Vif + Vif

[Vef| dt
1 1 1 1
- 72|th|3H(th’ Vif)Vef + —WtﬂH(th) = Wﬂ(vtf, Vif)Vef — WH(Vt(J;;
Letting t go to zero on both sides of (13), result (11)
Slort) = SH 1) v — H) (1)
gl=ov(t) =g H(v,v)v v).

O
Theorem 1: The following integral formula holds for any two functions
frg € C=(M"),

| on fauy = [ n(Glandn) - (@iv Hap) () dye (19

where

, d
A = %h:o Agpy- (16)

Proof. By Stokes’ Theorem it follows that

/ nAgw) f dpgey = — / (df, dn) dpg(r) + /a y N, Vi f) dogey.  (17)
n Mn

By making use of (i) and (i), it follows from (17) at ¢t = 0,

, h h
/ nA fdpu, +/ 5 Mg fdug = | H(Vf,Vn)dp, — / (df,dn) dp,g

v .2
| of 1.
—l—/aM n(—H(v,Vf)+ éH(V, V) 5) do, + /8M 5h77<1/, V) do,. (18)

This result can be arranged so that it takes the following form,

H( 1)y~ [ bl dn)dy

n

/ 1
| onspaugg [ magdu, -
n n Mn

+/n n(—H(u,Vu)Jr%H(V,V)(V,Vﬁ+<V,Vf>)dug+%/ R (V1 )do,

oM
of 1 ~
h{df, dn) dug—/ n(H (v, VZ/)—dag—i—f/ hn(v,Vf)do,.
oM v 2 Jom

(19)

1
— [ HVLVW -
M’n,

Mmn

It follows that

’ 1
[ a8 gduy= [ H5Vdn~ [ a0 ndo,— 5 [ (o) +uhAf) du,
Mn Mn oM Mn
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| . of
w5 | i Hw )G do, (20)

Using h = h — H(v,v), (20) can be put in the form

|8 gy = [ R8T~ [ 090y = [ s dn) g

1 of
+§ /8M nh Em do,. (21)

Set T'=H, p =nand X = Vf in (2), it takes the form
div(H(nV f)) = n(div HV f) +n(V*f, H) + H(Vn,V f). (22)

Substituting (22) implies that the second term on the right of (21) is

| nHw V) iy = [ v HO9 ) dy
oM n

— [ (v H ) (D) duy+ [ HOVE VW (23)

M’ﬂ
In addition to the result (23), we have

[ty = [ ohag i) dug - [ o anyde, 2

n

Substitute (23), (24) into (21) and we arrive at

| png = [ BRI dg [ (VR 9 ) g [ (V1. 90) dy

Mn

1 1 1
5 [ dnytmAn duy+ s [ hAf b dn)) disy

n M M
for all functions n € C*°(M™). Many of the terms in (25) cancel out and the
desired result (15) remains. [

Theorem 2: Let {¢@;(t)} C C°(M™) be a differentiable family of real func-

tions such that (p;(t), ¢;(t))r2(mn.dy,,, = i for all ¢, the following system
holds:
—Agypilt) = A(t)pit), (26)
0
o—pilt) =0 27
aytw ( ) ( )

where (26) holds on M™ and (27) on M. Then

/ 1
N8 = [ GDie)g — o ® s, H) day (28)
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Proof. The derivative with respect to t is taken with respect to ¢ and then
set t = 0 on both sides of the eigenvalue equation

—Dym(t) = At)e(t).
with the result,
_Alg Pilt) — Dgp(t) = At)i(t) + Mt)gi(t). (29)

Substitute for Aypp(t) from the eigenvalue equation (26), multiply by ¢;(t)
and integrate on both sides of (29) to get

—/ (03, @i + 9 Dg:) dpsg :/ (Npjpi — @ilNgpj) dpg. — (30)
M

On the boundary, it is the case that

(e, Vg @i(t)) = Giyt (t),

it follows that with ¢ = 0 and (27)
. 1
(v,V;) = H(v,Vy;) — §H(1/, v)(v,V;) = H(v,V;). (31)
Integrating by parts in (30) and using (31), we obtain

. ’ 8 . ! .
Aij = —/ ©iA pidug — / Vi, P dpg = —/ ©iA pidpg — / (v, Vi) dug
Mn oM v Mn oM

= —/ 0N p; dptg — /aM ;i H(v, Vi) doy. (32)

Consequently, it follows that

_2).\5” = / cij;goi dug—F/ (piA/ngd/,Lg—F/ w:H(v, Vgoj)dug—k/ w0, H(w, Vp;)du,.
M Mm™ oM oM
(33)
Recall what has been developed already,

/ 1 .
/ @jAgwidung i (5 (dh, ds) — (divH, dg;) = (H, Vi) dpg.

Hence (33) takes the form,

. 1 )
—2\5;j = / <§dh—d1VH,gojdg0¢+<pidg0j>dug— / (H,p;V20i+9iVp;) du,

n

+/ wiH (v, Vgoj)dag—i-/ 0;H(v,V;)do,
oM OM
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1 :
— [ Gabdeiedny — [ (v da) + (H.V%0) duy
+/a i H(v, V%‘W%—/ wi((divH, dp;) + (H,V?p;)) dug — (34)
M n

+/ @iH(Va VSOj) dﬂg-
oM

Since

/ div X dpg =0,

and using (2) adapted to this case
div(H (pidep;)) = pi{divH, dpi) + 0i(Vp;, H) + H(Vpi, Vi),

equation (34) drops into the following form,

. 1 )
—2X0i5 = / (dh, d(pip;)) dug—div (H(pidp;)) dug+H(Vp;, Vipi) dpg+ /d |, el (v, Vi) dpg

—/ diV(H(%d%))+H(V%Vs@j)dug+/a 0 H(v,dp;) dpg
n M

h
= —/ S Alpips)dpg +2 | H(Vgi, Vi) dug.
n Mn
Dividing out the factor of —2, the result in (28) is obtained. [J

1 An Existence Result

An existence result is established which makes use of the Lyapunov-Schmidt
procedure. The problem to be considered is the following Neumann problem,

(At ‘I— )\)U = 07
(35)
ou 0.

9

The first equation in (35) holds on M™ and the second on M. As usual (M", g)
is an orientable, compact n-dimensional Remannian manifold with boundary
OM and Ay = Ay so an analytic variation of gy is associated t — g(t) with
9(0) = go. Also vy is a one-parameter family of unit exterior vectors along with
(OM, g(t)).

Theorem 3: Let Ay be an eigenvalue of the Laplace-Neumann operator of
multiplicity m > 2. For every € > 0, there exits a § > 0 such that for each
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|t| <, there exist exactly n to (35) eigenvalues including multiplicities in the
interval (A\g — €, \g + €).

Proof: Let {¢x}7_; be an orthonormal basis associated to eigenvalue Ao,
and define a projector P such that

Po=>"¢ [ evin, (36)
J:1 n

is the projection on the corresponding eigenspace. As is well-known, P induces
a splitting of L? such that

L*(M™,dp,) = R(P) ® N(P).

Any function v € L*(M™,du,) can be broken up into a sum of two factors
¢ + ¢ when ¢ € R(P) = ker(A + Xg) and ¢ € N(P). Using this fact,
Neumann problem (35) can be expressed equivalently as the following system
of equations:

(I =P)(Ar+A)(o+¢) =0,
P(A + M) (o +1) =0, (37)

9,
a—yt(¢+¢) = 0.

The first two in (37) pertain to in M™ and the third on 0M.
The Neumann problem can be decoupled and equivalently considered as a
system of equations

(I — P)(A 4+ N (o +9) =0, (38)
P (A + N(p+9) =0, (39)
(

0
3_w(¢+¢):0’ 40)

where (38) and (39) apply on M"™ and (40) on dM. Since ¢; € R(P) and ¢
are orthogonal elements, the divergence theorem implies that

P(A+ A Z %/ G5 (A 4+ N dpig, = Z%/ gpjéf/’ dpig,,  (41)
and consequently,
(A+ Ny =(I-— P)((A + )\W) + i ©j / @j% doyg. (42)
It is therefore possible to state that

(A‘{‘)\)w‘{‘([—P)(At‘*'A)(QS‘I‘w)_ZSOj/aMZ_zfdggozo. (43)
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The part which is relevant to M in equations (38)-(40) can be expressed as

I

S (A = 0. 44

= o) - (44)
Hence solving the first and third equations of (37) is equivalent to finding the
zeros of the following function

F:RxRxR(P)x H}M") NN — N(P) x H¥?>(M™),
(45)
(t)/\7¢7 ¢) — (Fl(ta )‘H¢7¢>7F2(t7 )‘7¢7¢)>7

In (41), Fy and F; are defined to be
Fim (8400 + (= P& = 0)(6+0) =3 o[ e do )

o

o+ (37 —)(¢+¢) (47)
Clearly F' depends differentially on the variables A, ¢, ¢ and ¢. The idea is to
use the implicit function theorem to show that F'(¢, A, ¢,¢) = (0,0) admits a
solution which depends on A, ¢ and ¢. To do so, observe that if £t =0, A\ = A\q

and ¢ = 0,

Fy =

OF ]
%(0,/\0,0,0)@& (A + No)¥ Zgo]/ gpja do, ‘ﬁ). (48)

It is claimed that the map (48) is an isomorphism from H?(M™) NN (P) onto
N(P) x H32(M™).

The implicit function theorem requires that there exist two positive num-
bers ¢, € as well as a function S(t, )¢ of class C! of the variables (¢, \) such that
for every [t| < § and X € (Ag—¢, Ag+e€), it holds that F (¢, A\, ¢, S(t, \)¢) = (0,0).
Further S(t, A)¢ is analytic at A and linear in ¢. This solves (37) with respect
to .

Now for every ¢ € R(P), there exist real numbers ¢y, ..., ¢, such that
o = Z;n:l ¢;¢;. The second equation in (37) can be regarded as a system of
equations in variables ci, ..., ¢,

S [ oulBit Ny + St Ng) dg =0, (49

Jj=1

where k = 0,...,m. Thus, A is an eigenvalue of A, if and only if det |A(¢, \)| =
0, where the matrix elements of A(t, \) are obtained by calculating the integral

Ag(t3) = [ ol Ny + (8 X)) dy (50)
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The associated eigenfunctions are given by

u(t, \) =Y i+ S(t, \)gy). (51)
j=1
This can be expressed in other words as ¢ = (ci,...,¢,) must satisfy the
system
A(t,\)c=0.

By Rouché’s Theorem we have that, for every € > 0 there is a 6 > 0 such that
if |t —to| < 6, there exists exactly m roots of

det |A(t, \)| = 0

in the interval (A\g — €, \g +¢€). O

Proposition 1. Let M™ n > 2 be a compact, oriented smooth manifold and
let g(t) be a real analytic One-parameter family of Riemannian metrics on M"
with g(0) = go. Assume A is an eigenvalue of multiplicity m for the Laplace-
Neumann operator A,. Then there exists an € > 0 and a set of functions \;(?)
analytic in ¢ and ¢;(t), i = 1, ..., m such that

(@i(t), 05(0)) L2 (arm dug) = - (52)
As well the following hold for every t in |¢| < e:

@) By il = NOBD, G e =0 ) A©) =X
(53)
Moreover (i) holds in M™ and (ii) holds on OM in (53).
Proof: Suppose the same conditions as those of the previous result hold.
It must be shown that there exist m analytic curves of eigenvalues \;(t) for
(35) associated with m-analytic eigenfunctions ¢;(t). The idea is to reduce the
problem to one that is finite-dimensional and then apply a Theorem of Kato
often called the Selection theorem [6]. For this a slightly different construction
shall be given from that used before.
Let {¢;(t)} be orthonormal eigenfunctions of the Laplace-Neumann system

associated to A;. For each k = 1,...,m consider the following problem
(A + )\o)u = 0,
0
— = o4
(e ) = 54
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The first of these holds in M™ as well as the third, while the second holds on
OM . Consider the orthogonal complement {(p; }* of ker(A+Xg) in L*(M™, dp,,)
and define the function

F: (=0,8) x H*(M", dpg,) — {i0j}* x R(P) x H**(M",dpg,),  (55)

by

F(t,w) = (A+ X)w, Pw, aiyt(s@k + w)). (56)

Exactly as before 0F /0w (0, 0) is an isomorphism. The Implicit Function The-
orem asserts that there exists a 0 > 0 and functions w;(¢, ) such that for any
tin |t —to| < ¢ and every A in |A — A\g| < 4, the equality G;(¢, \, w;(t,\)) =
(0,0,0) holds. Now A is an eigenvalue for (35) if and only if there exists a
non-zero m-tuple ¢ = (¢, ..., ¢,,) of real numbers such that

A(t,\)c =0,

where the matrix elements of A are calculated by means of the integrals

At N = [ OB N0 + st N duge. (57

As before, A is an eigenvalue of (35) if and only if det(A(¢,\)) = 0.

By Rouché’s Theorem there must exist m roots near Ay counting multi-
plicities for each t. Hence [7] there exist m analytic functions ¢ — A;(¢) which
locally solve the equation det(A(t,\)) = 0. It can easily be seen that A is
symmetric and so Kato’s Theorem ensures an analytic curve ¢'(t) € R™ such
that A(t, \;(t)c'(t)) = 0 for each ¢ = 1,...,m. Consequently,

m

Y(t) = ) (g +w;i(t, \e(t))) (58)

is an analytic curve of eigenfunctions for (35) associated with A;(¢). Now with
the same reasoning as Kato, m analytic curves of eigenfunctions {y;(¢)}1*, can
be obtained such that

| w000 dugy = 5 (59)

O

In the particular case in which m = m()\g) = 1, the existence of a dif-
ferentiable curve of eigenvalues through g follows from the Implicit Function
Theorem applied to the mapping

F:S% x H*(M",du,,) x R (60)
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defined by

Fg,u,N) = ((Ag+ A) u,/ u® dpig, ). (61)
The corresponding formulas for the derivative )\(t) can be obtained by letting
i=j=11in (28).
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