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Abstract

A Laplace-Neumann problem is introduced and developed in a novel
way. Important results are presented which are very important for
studying this type of problem on a compact manifold. An existence
theorem applicable to eigenvalue curves is also proved.
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Introduction and Preliminary Notes

1. Some properties of eigenvalues and eigenfunctions of the Laplace-Beltrami
operator a compact Riemannian manifolds subjected to Neumann boundary
conditions are investigated [1-3]. Difficulties can appear in dealing with g is
allowed to vary through the space of metrics. Some Laplace-Neumann operator
problems are formulated on compact manifolds. Every metric g determines a
sequence 0 = λ0(g) < λ1(g) < λ2(g) < · · · < λk(g) < · · · of eigenvalues of ∆g

counted with their multiplicities Each eigenvalue can be regarded as a function
of g ∈ M, the space of all Ck Riemannian metrics on Mn. The main result
is to establish an existence result for the Laplace-Neumann operator. There
exist analytic curves of eigenvalues for a Laplace-Neumann problem associated
to analytic eigenfunction curves [4-5].
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2. Some preliminary essential information which will be required here is
established. Let Mn for n ≥ 2 be a compact, oriented n-dimensional smooth
manifold with boundary ∂M . LetMk be the separable Banach space of all Ck

Riemannian metrics on Mn for any 2 ≤ k < ∞ with Ck topology. The inner
product is denoted 〈T, S〉 = Tr(TS∗) induced by g acting on the space of (0, 2)-
tensors on M , where S∗ denotes the adjoint of S. In local coordinates, we write
〈T, S∗〉 = gikgjl TijSkl. For f ∈ C∞(M) the Laplacian of f is ∆f = 〈∇2f, g〉,
where ∇2f = ∇d f is the Hessian of f . As usual each (0, 2)-tensor T on
(Mn, g) can be associated to a unique (1, 1)-tensor through the inner product
g(T (X), Y ) = T (X, Y ) for all vector fields X, Y ∈ V (Mn), the set of vector
fields on Mn. Writing this (1, 1) tensor as T , the (0, 1) tensor, the divergence
is defined as

(divT )(X)(p) = Tr(Y → (∇Y T )(X)(p)), (1)

with p ∈Mn and X, Y ∈ Vp(Mn).
It may be recalled that if T is a symmetric (0, 2)-tensor on a Riemannian

manifold (Mn, g) and f a smooth function on Mn, then div satisfies

div(T (fX)) = f〈divT,X〉+ f〈∇X,T 〉+ T (∇f,X〉 (2)

for each vector field X and the duality (divT )(X) = 〈divT,X〉 holds.
Let t → g(t) be a smooth variation of g such that (Mn, g(t), dµg(t)) is a

Riemannian manifold. Here dµg(t) is the volume form measure of g(t). Let
dσg(t) be the volume element with respect to g(t) restricted to ∂M . Denote by
H a (0, 2)-tensor defined by

Hij =
d

dt
|t=0 g(t), h = 〈H, g〉. (3)

Let h̃ denote the trace of the (0, 2)-tensor H̃ induced by the derivative of g(t)
restricted to ∂M . The following derivatives will be required as well

d

dt
dµg(t) =

1

2
h dµg,

d

dt
dσg(t) =

1

2
h̃ dσg. (4)

Vector fields X, Y ∈ T (Mn) can be expanded with respect to the basis ∂i
such that X = gijxi(t)∂j and Y = gklyk(t)∂l, where the coefficients in these
expressions are given by xi(t) = 〈X, ∂i〉 and yj(t) = 〈Y, ∂j〉.

It is convenient to write Ẋ = gijẋi(t)∂j and Ẏ = gij ẏi(t)∂j such that
ẋi(t) = dxi(t)/dt and ẏj = dyj(t)/dt. We will use t→ g(t) to denote a smooth
variation of g.

Lemma 1. For every X, Y ∈ V (Mn) and f, g ∈ C∞(Mn), the following
properties hold

(i)
d

dt
〈X, Y 〉 = −H(X, Y ) + 〈Ẋ, Y 〉+ 〈X, Ẏ 〉. (5)
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(ii)
d

dt
〈∇tf,∇tg〉 = −H(∇f,∇g〉. (6)

(iii)
d

dt
〈νt,∇t g(t)〉 = −H(ν,∇g) +

1

2
H(ν, ν)〈ν,∇g〉+ 〈ν,∇ġ〉. (7)

where

νt =
∇tf

|∇tf |
(8)

and ∇t indicates the gradient with respect to g(t).
Proof: The derivative of gij(t), the inverse of gij(t), is required. This can

be obtained by using the fact that gim(t)gmj(t) = δij, differentiating on both
sides with respect to t and then solving

d

dt
〈X,Y 〉 =

d

dt
(gij(t)xi(t)yj(t)) = −gikHkmg

mjxi(t)yj(t) + gij ẋi(t)yj(t) + gij(t)xi(t)ẏj(t)

= −H(X, Y ) + 〈Ẋ, Y 〉+ 〈X, Ẏ 〉. (9)

To get (ii) let X = ∇f so that xi = 〈∇f, ∂i〉 = ∂if which is independent of t,
and similarly for Y = ∇tq. Now substitute into (i).

For (iii) it suffices to note from the definition of νt,

νi =
〈∇tf, ∂i〉
|∇f |

.

Hence

ν̇i =
1

2|∇f |
H(ν, ν)∂if. (10)

Take X = νt in (i) and use (10). �
Lemma 2: If ν is the exterior normal field on ∂M and t → g(t) a smooth

variation of g, then

d

dt
|t=0 ν(t) = −H(ν) +

1

2
H(ν, ν) ν. (11)

Proof: Let f be a smooth function on M such that ν(t) is given by (8).
Then we have

d

dt
∇tf = −Hij∂if∂j = −gikgjsH(∂k, ∂s)∂if ∂j = −gikH(gjs∂if ∂k, ∂s)∂j = −gil〈H(∇tf), ∂l〉 ∂j

≡ −H(∇t f). (12)

Using (6) in the form

d

dt
〈∇tf,∇tf〉 = −H(∇tf,∇tf),
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it follows that

d

dt
ν(t) = − 1

2|∇tf |3
d

dt
〈∇tf,∇tf〉∇tf +

1

|∇tf |
d

dt
∇tf

=
1

2|∇tf |3
H(∇tf,∇tf)∇tf +

1

|∇tf |
H(∇tf) =

1

2|∇tf |3
H(∇tf,∇tf)∇tf −

1

|∇tf |
H(∇tf).

(13)

Letting t go to zero on both sides of (13), result (11)

d

dt
|t=0 ν(t) =

1

2
H(ν, ν) ν −H(ν). (14)

�
Theorem 1: The following integral formula holds for any two functions

f, g ∈ C∞(Mn),∫
Mn

η∆
′
f dµg =

∫
Mn

η
(1

2
〈dh, df〉 − 〈divH, df〉 − 〈H,∇2f〉

)
dµg, (15)

where

∆
′
=

d

dt
|t=0 ∆g(t). (16)

Proof: By Stokes’ Theorem it follows that∫
Mn

η∆g(t)f dµg(t) = −
∫
Mn

〈df, dη〉 dµg(t) +

∫
∂M

η〈νt,∇t f〉 dσg(t). (17)

By making use of (ii) and (iii), it follows from (17) at t = 0,∫
Mn

η∆
′
f dµg +

∫
Mn

h

2
η∆g f dµg =

∫
Mn

H(∇f,∇η) dµg −
∫
Mn

h

2
〈df, dη〉 dµg

+

∫
∂M

η〈−H(ν,∇f) +
1

2
H(ν, ν)

∂f

∂ν
〉 dσg +

∫
∂M

1

2
h̃η〈ν,∇f〉 dσg. (18)

This result can be arranged so that it takes the following form,∫
Mn

η∆
′
f dµg +

1

2

∫
Mn

hη∆f dµg =

∫
Mn

H(∇f,∇η)dµg−
1

2

∫
Mn

h〈df, dη〉 dµg

+

∫
Mn

η
(
−H(ν,∇ν) +

1

2
H(ν, ν)〈ν,∇f〉+ 〈ν,∇f〉

)
dµg +

1

2

∫
∂M

h̃ 〈,∇f, 〉dσg

=

∫
Mn

H(∇f,∇η) dµg−
1

2

∫
Mn

h〈df, dη〉 dµg−
∫
∂M

η
(
H(ν,∇ν)

∂f

∂ν
dσg+

1

2

∫
∂M

h̃ η〈ν,∇f〉 dσg.

(19)
It follows that∫
Mn

η∆
′
f dµg =

∫
Mn

H(∇f,∇η)dµg−
∫
∂M

ηH(ν,∇η) dσg−
1

2

∫
Mn

(h〈df, dη〉+ηh∆f) dµg



An existence result arising from a Laplace-Neumann problem 5

+
1

2

∫
∂M

η(h̃+H(ν, ν))
∂f

∂ν
dσg. (20)

Using h̃ = h−H(ν, ν), (20) can be put in the form∫
Mn

η∆
′
fdµg =

∫
Mn

H(∇f,∇η)dµg −
∫
∂M

ηH(ν,∇f)dµg −
1

2

∫
Mn

h〈df, dη〉+ ηh∆f)dµg

+
1

2

∫
∂M

ηh
∂f

∂ν
dσg. (21)

Set T = H, ϕ = η and X = ∇f in (2), it takes the form

div(H(η∇f)) = η〈divH∇f〉+ η〈∇2f,H〉+H〈∇η,∇f〉. (22)

Substituting (22) implies that the second term on the right of (21) is∫
∂M

ηH(ν,∇f) dµg =

∫
Mn

div(H(η∇f)) dµg

=

∫
Mn

η
(
〈divH,∇2f〉+ 〈H,∇2f〉

)
dµg +

∫
Mn

H(∇f,∇η) dµg. (23)

In addition to the result (23), we have∫
Mn

η∆
′
f dµg =

∫
Mn

(ηh∆f + h〈df, η〉) dµg +

∫
Mn

η〈df, dh〉 dµg. (24)

Substitute (23), (24) into (21) and we arrive at∫
Mn

η∆
′
f dµg =

∫
Mn

H(∇f,∇η) dµg−
∫
Mn

η(〈divH,∇2f〉+〈H,∇2f〉) dµg−
∫
Mn

H(∇f,∇η) dµg

−1

2

∫
Mn

(h〈df, dη〉+hη∆f) dµg +
1

2

∫
Mn

(ηh∆f+h〈df, dη〉) dµg +
1

2

∫
Mn

h〈df, dh〉 dµg, (25)

for all functions η ∈ C∞(Mn). Many of the terms in (25) cancel out and the
desired result (15) remains. �

Theorem 2: Let {ϕi(t)} ⊂ C∞(Mn) be a differentiable family of real func-
tions such that 〈ϕi(t), ϕj(t)〉L2(Mn,dµg(t) = δij for all t, the following system
holds:

−∆g(t)ϕi(t) = λ(t)ϕi(t), (26)

∂

∂νt
ϕi(t) = 0 (27)

where (26) holds on Mn and (27) on ∂M . Then

λ
′
(0)δij =

∫
Mn

〈1
4

∆(ϕiϕj)g − dϕi ⊗ ϕj, H〉 dµg. (28)
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Proof: The derivative with respect to t is taken with respect to t and then
set t = 0 on both sides of the eigenvalue equation

−∆g(t)ϕ(t) = λ(t)ϕ(t).

with the result,

−∆
′

g ϕi(t)−∆gϕ̇(t) = λ̇(t)ϕi(t) + λ(t)ϕ̇i(t). (29)

Substitute for ∆g(t)ϕ(t) from the eigenvalue equation (26), multiply by ϕj(t)
and integrate on both sides of (29) to get

−
∫
M

(ϕj∆
′

g ϕi + ϕj∆gϕ̇i) dµg =

∫
Mn

(λ̇ϕjϕi − ϕ̇i∆gϕj) dµg. (30)

On the boundary, it is the case that

〈νt,∇g(t) ϕi(t)〉 =
∂

∂νt
ϕ(t),

it follows that with t = 0 and (27)

〈ν,∇ϕ̇i〉 = H(ν,∇ϕi)−
1

2
H(ν, ν)〈ν,∇ϕi〉 = H(ν,∇ϕi). (31)

Integrating by parts in (30) and using (31), we obtain

λ̇δij = −
∫
Mn

ϕj∆
′
ϕi dµg −

∫
∂M

ϕj
∂

∂ν
ϕ̇i dµg = −

∫
Mn

ϕj∆
′

gϕi dµg −
∫
∂M

〈ν,∇ϕ̇i〉ϕj dµg

= −
∫
Mn

ϕj∆
′

gϕi dµg −
∫
∂M

ϕjH(ν,∇gϕi) dσg. (32)

Consequently, it follows that

−2λ̇δij =

∫
Mn

ϕj∆
′

gϕi dµg+

∫
Mn

ϕi∆
′
ϕjdµg+

∫
∂M

ϕiH(ν,∇ϕj)dµg+

∫
∂M

ϕjH(ν,∇ϕi)dµg.

(33)

Recall what has been developed already,∫
Mn

ϕj∆
′

gϕi dµg =

∫
Mn

ϕj
(1

2
〈dh, dϕi〉 − 〈divH, dϕi〉 − 〈H,∇2ϕi〉

)
dµg.

Hence (33) takes the form,

−2λ̇δij =

∫
Mn

〈1
2
dh−divH,ϕjdϕi+ϕidϕj〉dµg−

∫
Mn

〈H,ϕj∇2ϕi+ϕi∇2ϕj〉 dµg

+

∫
∂M

ϕiH(ν,∇ϕj)dσg +

∫
∂M

ϕjH(ν,∇ϕi) dσg
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=

∫
Mn

〈1
2
dh, d(ϕiϕj)〉 dµg −

∫
Mn

ϕj(〈divH, dϕi〉+ 〈H,∇2ϕi〉) dµg

+

∫
∂M

ϕjH(ν,∇ϕj〉 dσg −
∫
Mn

ϕi
(
〈divH, dϕj〉+ 〈H,∇2ϕj〉

)
dµg (34)

+

∫
∂M

ϕiH(ν,∇ϕj) dµg.

Since ∫
Mn

divX dµg = 0,

and using (2) adapted to this case

div(H(ϕidϕj)) = ϕi〈divH, dϕi〉+ ϕi〈∇2ϕj, H〉+H〈∇ϕi,∇ϕj〉,

equation (34) drops into the following form,

−2λ̇δij =

∫
Mn

〈1
2
dh, d(ϕiϕj)〉 dµg−div (H(ϕidϕj)) dµg+H(∇ϕj ,∇ϕi) dµg+

∫
∂M

ϕjH(ν,∇ϕi) dµg

−
∫
Mn

div(H(ϕjdϕi)) +H(∇ϕi,∇ϕj) dµg +

∫
∂M

ϕiH(ν, dϕj) dµg

= −
∫
Mn

h

2
∆(ϕiϕj) dµg + 2

∫
Mn

H(∇ϕi,∇ϕj) dµg.

Dividing out the factor of −2, the result in (28) is obtained. �

1 An Existence Result

An existence result is established which makes use of the Lyapunov-Schmidt
procedure. The problem to be considered is the following Neumann problem,

(∆t + λ)u = 0,

∂u

∂νt
= 0.

(35)

The first equation in (35) holds onMn and the second on ∂M . As usual (Mn, g)
is an orientable, compact n-dimensional Remannian manifold with boundary
∂M and ∆t = ∆g(t) so an analytic variation of g0 is associated t → g(t) with
g(0) = g0. Also νt is a one-parameter family of unit exterior vectors along with
(∂M, g(t)).

Theorem 3: Let λ0 be an eigenvalue of the Laplace-Neumann operator of
multiplicity m ≥ 2. For every ε > 0, there exits a δ > 0 such that for each
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|t| < δ, there exist exactly n to (35) eigenvalues including multiplicities in the
interval (λ0 − ε, λ0 + ε).

Proof: Let {ϕk}nk=1 be an orthonormal basis associated to eigenvalue λ0,
and define a projector P such that

P v =
n∑
j=1

ϕj

∫
Mn

ϕj v dµg (36)

is the projection on the corresponding eigenspace. As is well-known, P induces
a splitting of L2 such that

L2(Mn, dµg) = R(P )⊕N (P ).

Any function v ∈ L2(Mn, dµg) can be broken up into a sum of two factors
φ + ψ when φ ∈ R(P ) = ker(∆ + λ0) and ψ ∈ N (P ). Using this fact,
Neumann problem (35) can be expressed equivalently as the following system
of equations:

(I − P )(∆t + λ)(φ+ ψ) = 0,

P (∆t + λ)(φ+ ψ) = 0, (37)

∂

∂νt
(φ+ ψ) = 0.

The first two in (37) pertain to in Mn and the third on ∂M .
The Neumann problem can be decoupled and equivalently considered as a

system of equations
(I − P )(∆t + λ)(φ+ ψ) = 0, (38)

P (∆t + λ)(φ+ ψ) = 0, (39)

∂

∂νt
(φ+ ψ) = 0, (40)

where (38) and (39) apply on Mn and (40) on ∂M . Since φj ∈ R(P ) and ψ
are orthogonal elements, the divergence theorem implies that

P (∆ + λ)ψ =
m∑
j=1

ϕj

∫
Mn

φj(∆ + λ)ψ dµg0 =
m∑
j=1

ϕj

∫
Mn

ϕj
∂ψ

∂ν
dµg0 , (41)

and consequently,

(∆ + λ)ψ = (I − P )
(
(∆ + λ)ψ

)
+

m∑
j=1

ϕj

∫
∂M

ϕj
∂ψ

∂ν
dσg. (42)

It is therefore possible to state that

(∆ + λ)ψ + (I − P )
(
∆t + ∆

)
(φ+ ψ)−

m∑
j=1

ϕj

∫
∂M

∂ψ

∂ν
d σg0 = 0. (43)
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The part which is relevant to ∂M in equations (38)-(40) can be expressed as

∂ψ

∂ν
+ (

∂

∂νt
− ∂

∂ν
)(φ+ ψ) = 0. (44)

Hence solving the first and third equations of (37) is equivalent to finding the
zeros of the following function

F : R× R×R(P )×H2(Mn) ∩N → N (P )×H3/2(Mn),

(t, λ, φ, ψ)→ (F1(t, λ, , φ, ψ), F2(t, λ, φ, ψ)),
(45)

In (41), F1 and F2 are defined to be

F1 = (∆ + λ)ψ + (I − P )(∆t −∆)(φ+ ψ)−
m∑
j=1

ϕj

∫
Mn

ϕj
∂ψ

∂ν
dσg0 , (46)

F2 =
∂ψ

∂ν
+
( ∂
∂νt
− ∂

∂ν

)
(φ+ ψ). (47)

Clearly F depends differentially on the variables λ, t, ψ and φ. The idea is to
use the implicit function theorem to show that F (t, λ, φ, ψ) = (0, 0) admits a
solution which depends on λ, t and φ. To do so, observe that if t = 0, λ = λ0
and ψ = 0,

∂F

∂ψ
(0, λ0, 0, 0)ψ̇ =

(
(∆ + λ0)ψ −

m∑
j=1

ϕj

∫
∂M

ϕj
∂ψ̇

∂ν
dσ0,

∂ψ̇

∂ν

)
. (48)

It is claimed that the map (48) is an isomorphism from H2(Mn)∩N (P ) onto
N (P )×H3/2(Mn).

The implicit function theorem requires that there exist two positive num-
bers δ, ε as well as a function S(t, λ)φ of class C1 of the variables (t, λ) such that
for every |t| < δ and λ ∈ (λ0−ε, λ0+ε), it holds that F (t, λ, φ, S(t, λ)φ) = (0, 0).
Further S(t, λ)φ is analytic at λ and linear in φ. This solves (37) with respect
to ψ.

Now for every φ ∈ R(P ), there exist real numbers c1, . . . , cm such that
φ =

∑m
j=1 cjϕj. The second equation in (37) can be regarded as a system of

equations in variables c1, . . . , cm
m∑
j=1

cj

∫
Mn

ϕk(∆t + λ)(ϕj + S(t, λ)ϕj) dµg0 = 0, (49)

where k = 0, . . . ,m. Thus, λ is an eigenvalue of ∆t if and only if det |A(t, λ)| =
0, where the matrix elements of A(t, λ) are obtained by calculating the integral

Akj(t, λ) =

∫
Mn

ϕk(∆t + λ)(ϕj + S(t, λ)ϕj) dµg. (50)
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The associated eigenfunctions are given by

u(t, λ) =
m∑
j=1

cj(ϕj + S(t, λ)ϕj). (51)

This can be expressed in other words as c = (c1, . . . , cm) must satisfy the
system

A(t, λ)c = 0.

By Rouché’s Theorem we have that, for every ε > 0 there is a δ > 0 such that
if |t− t0| < δ, there exists exactly m roots of

det |A(t, λ)| = 0

in the interval (λ0 − ε, λ0 + ε). �
Proposition 1: Let Mn n ≥ 2 be a compact, oriented smooth manifold and

let g(t) be a real analytic 0ne-parameter family of Riemannian metrics on Mn

with g(0) = g0. Assume λ is an eigenvalue of multiplicity m for the Laplace-
Neumann operator ∆g. Then there exists an ε > 0 and a set of functions λi(t)
analytic in t and ϕi(t), i = 1, . . . ,m such that

(ϕi(t), ϕj(t))L2(Mn,dµg) = δij. (52)

As well the following hold for every t in |t| < ε:

(i) ∆g(t) ϕi(t) = λi(t)ϕi(t), (ii)
∂

∂νt
ϕi(t) = 0, (iii) λi(0) = λ.

(53)
Moreover (i) holds in Mn and (ii) holds on ∂M in (53).

Proof: Suppose the same conditions as those of the previous result hold.
It must be shown that there exist m analytic curves of eigenvalues λj(t) for
(35) associated with m-analytic eigenfunctions ϕj(t). The idea is to reduce the
problem to one that is finite-dimensional and then apply a Theorem of Kato
often called the Selection theorem [6]. For this a slightly different construction
shall be given from that used before.

Let {ϕj(t)} be orthonormal eigenfunctions of the Laplace-Neumann system
associated to λj. For each k = 1, . . . ,m consider the following problem

(∆ + λ0)u = 0,

∂

∂νt
(ϕk + u) = 0, (54)

Pu =
m∑
j=1

ϕj

∫
Mn

ϕju dµg0 = 0.
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The first of these holds in Mn as well as the third, while the second holds on
∂M . Consider the orthogonal complement {ϕj}⊥ of ker(∆+λ0) in L2(Mn, dµg0)
and define the function

F : (−δ, δ)×H2(Mn, dµg0)→ {ϕj}⊥ ×R(P )×H3/2(Mn, dµg0), (55)

by

F (t, w) =
(
∆ + λ0)w,P w,

∂

∂νt
(ϕk + w)

)
. (56)

Exactly as before ∂F/∂w (0, 0) is an isomorphism. The Implicit Function The-
orem asserts that there exists a δ > 0 and functions wj(t, λ) such that for any
t in |t − t0| < δ and every λ in |λ − λ0| < δ, the equality Gj(t, λ, wj(t, λ)) =
(0, 0, 0) holds. Now λ is an eigenvalue for (35) if and only if there exists a
non-zero m-tuple c = (c1, . . . , cm) of real numbers such that

A(t, λ)c = 0,

where the matrix elements of A are calculated by means of the integrals

Aij(t, λ) =

∫
Mn

ϕj(t)(∆t + λ)(ϕj(t) + wj(t, λ)) dµg(t). (57)

As before, λ is an eigenvalue of (35) if and only if det(A(t, λ)) = 0.
By Rouché’s Theorem there must exist m roots near λ0 counting multi-

plicities for each t. Hence [7] there exist m analytic functions t→ λj(t) which
locally solve the equation det(A(t, λ)) = 0. It can easily be seen that A is
symmetric and so Kato’s Theorem ensures an analytic curve ci(t) ∈ Rm such
that A(t, λi(t)c

i(t)) = 0 for each i = 1, . . . ,m. Consequently,

ψk(t) =
m∑
j=1

ckj (t)(ϕj + wj(t, λk(t))) (58)

is an analytic curve of eigenfunctions for (35) associated with λj(t). Now with
the same reasoning as Kato, m analytic curves of eigenfunctions {ϕi(t)}mi=1 can
be obtained such that ∫

Mn

ϕi(t)ϕj(t) dµg(t) = δij. (59)

�
In the particular case in which m = m(λ0) = 1, the existence of a dif-

ferentiable curve of eigenvalues through λ0 follows from the Implicit Function
Theorem applied to the mapping

F : Sk ×H2(Mn, dµg0)× R (60)
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defined by

F (g, u, λ) =
(
(∆g + λ)u,

∫
Mn

u2 dµg0
)
. (61)

The corresponding formulas for the derivative λ̇(t) can be obtained by letting
i = j = 1 in (28).
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