International Journal of Contemporary Mathematical Sciences Vol. 16, 2021, no. 1, 1 - 12 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2021.91464

An Existence Result Arising from a Laplace-Neumann Problem on a Compact Manifold

Paul Bracken

Department of Mathematics University of Texas Edinburg, TX 78541-2999, USA

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2021 Hikari Ltd.

Abstract

A Laplace-Neumann problem is introduced and developed in a novel way. Important results are presented which are very important for studying this type of problem on a compact manifold. An existence theorem applicable to eigenvalue curves is also proved.

Mathematics Subject Classification: 53Z05, 35A01

Introduction and Preliminary Notes

1. Some properties of eigenvalues and eigenfunctions of the Laplace-Beltrami operator a compact Riemannian manifolds subjected to Neumann boundary conditions are investigated [1-3]. Difficulties can appear in dealing with g is allowed to vary through the space of metrics. Some Laplace-Neumann operator problems are formulated on compact manifolds. Every metric g determines a sequence $0 = \lambda_0(g) < \lambda_1(g) < \lambda_2(g) < \cdots < \lambda_k(g) < \cdots$ of eigenvalues of Δ_g counted with their multiplicities Each eigenvalue can be regarded as a function of $g \in \mathcal{M}$, the space of all C^k Riemannian metrics on M^n . The main result is to establish an existence result for the Laplace-Neumann operator. There exist analytic curves of eigenvalues for a Laplace-Neumann problem associated to analytic eigenfunction curves [4-5].

2. Some preliminary essential information which will be required here is established. Let M^n for $n \geq 2$ be a compact, oriented n-dimensional smooth manifold with boundary ∂M . Let \mathcal{M}^k be the separable Banach space of all C^k Riemannian metrics on M^n for any $2 \leq k < \infty$ with C^k topology. The inner product is denoted $\langle T, S \rangle = \text{Tr}(TS^*)$ induced by g acting on the space of (0, 2)-tensors on M, where S^* denotes the adjoint of S. In local coordinates, we write $\langle T, S^* \rangle = g^{ik}g^{jl}T_{ij}S_{kl}$. For $f \in C^{\infty}(M)$ the Laplacian of f is $\Delta f = \langle \nabla^2 f, g \rangle$, where $\nabla^2 f = \nabla d f$ is the Hessian of f. As usual each (0, 2)-tensor f on (M^n, g) can be associated to a unique (1, 1)-tensor through the inner product f(T(X), Y) = f(X, Y) for all vector fields f in f the f in f in

$$(\operatorname{div} T)(X)(p) = \operatorname{Tr}(Y \to (\nabla_Y T)(X)(p)), \tag{1}$$

with $p \in M^n$ and $X, Y \in V_p(M^n)$.

It may be recalled that if T is a symmetric (0,2)-tensor on a Riemannian manifold (M^n,g) and f a smooth function on M^n , then div satisfies

$$\operatorname{div}(T(fX)) = f\langle \operatorname{div} T, X \rangle + f\langle \nabla X, T \rangle + T(\nabla f, X) \tag{2}$$

for each vector field X and the duality $(\operatorname{div} T)(X) = (\operatorname{div} T, X)$ holds.

Let $t \to g(t)$ be a smooth variation of g such that $(M^n, g(t), d\mu_{g(t)})$ is a Riemannian manifold. Here $d\mu_{g(t)}$ is the volume form measure of g(t). Let $d\sigma_{g(t)}$ be the volume element with respect to g(t) restricted to ∂M . Denote by H a (0,2)-tensor defined by

$$H_{ij} = \frac{d}{dt}|_{t=0} g(t), \qquad h = \langle H, g \rangle.$$
 (3)

Let \tilde{h} denote the trace of the (0,2)-tensor \tilde{H} induced by the derivative of g(t) restricted to ∂M . The following derivatives will be required as well

$$\frac{d}{dt} d\mu_{g(t)} = \frac{1}{2} h d\mu_g, \qquad \frac{d}{dt} d\sigma_{g(t)} = \frac{1}{2} \tilde{h} d\sigma_g. \tag{4}$$

Vector fields $X, Y \in T(M^n)$ can be expanded with respect to the basis ∂_i such that $X = g^{ij}x_i(t)\partial_j$ and $Y = g^{kl}y_k(t)\partial_l$, where the coefficients in these expressions are given by $x_i(t) = \langle X, \partial_i \rangle$ and $y_j(t) = \langle Y, \partial_j \rangle$.

It is convenient to write $\dot{X} = g^{ij}\dot{x}_i(t)\partial_j$ and $\dot{Y} = g^{ij}\dot{y}_i(t)\partial_j$ such that $\dot{x}_i(t) = dx_i(t)/dt$ and $\dot{y}_j = dy_j(t)/dt$. We will use $t \to g(t)$ to denote a smooth variation of g.

Lemma 1. For every $X,Y\in V(M^n)$ and $f,g\in C^\infty(M^n)$, the following properties hold

(i)
$$\frac{d}{dt}\langle X, Y \rangle = -H(X, Y) + \langle \dot{X}, Y \rangle + \langle X, \dot{Y} \rangle. \tag{5}$$

(ii)
$$\frac{d}{dt}\langle \nabla_t f, \nabla_t g \rangle = -H(\nabla f, \nabla g). \tag{6}$$

(iii)
$$\frac{d}{dt}\langle \nu_t, \nabla_t g(t) \rangle = -H(\nu, \nabla g) + \frac{1}{2}H(\nu, \nu)\langle \nu, \nabla g \rangle + \langle \nu, \nabla \dot{g} \rangle. \tag{7}$$

where

$$\nu_t = \frac{\nabla_t f}{|\nabla_t f|} \tag{8}$$

and ∇_t indicates the gradient with respect to g(t).

Proof: The derivative of $g^{ij}(t)$, the inverse of $g_{ij}(t)$, is required. This can be obtained by using the fact that $g^{im}(t)g_{mj}(t) = \delta^i_j$, differentiating on both sides with respect to t and then solving

$$\frac{d}{dt}\langle X,Y\rangle = \frac{d}{dt}(g^{ij}(t)x_i(t)y_j(t)) = -g^{ik}H_{km}g^{mj}x_i(t)y_j(t) + g^{ij}\dot{x}_i(t)y_j(t) + g^{ij}(t)x_i(t)\dot{y}_j(t)$$

$$= -H(X,Y) + \langle \dot{X}, Y \rangle + \langle X, \dot{Y} \rangle. \tag{9}$$

To get (ii) let $X = \nabla f$ so that $x_i = \langle \nabla f, \partial_i \rangle = \partial_i f$ which is independent of t, and similarly for $Y = \nabla_t q$. Now substitute into (i).

For (iii) it suffices to note from the definition of ν_t ,

$$\nu_i = \frac{\langle \nabla_t f, \partial_i \rangle}{|\nabla f|}.$$

Hence

$$\dot{\nu}_i = \frac{1}{2|\nabla f|} H(\nu, \nu) \partial_i f. \tag{10}$$

Take $X = \nu_t$ in (i) and use (10). \square

Lemma 2: If ν is the exterior normal field on ∂M and $t \to g(t)$ a smooth variation of g, then

$$\frac{d}{dt}|_{t=0}\nu(t) = -H(\nu) + \frac{1}{2}H(\nu,\nu)\nu. \tag{11}$$

Proof: Let f be a smooth function on M such that $\nu(t)$ is given by (8). Then we have

$$\frac{d}{dt}\nabla_t f = -H^{ij}\partial_i f \partial_j = -g^{ik}g^{js}H(\partial_k,\partial_s)\partial_i f \partial_j = -g^{ik}H(g^{js}\partial_i f \partial_k,\partial_s)\partial_j = -g^{il}\langle H(\nabla_t f),\partial_l\rangle \partial_j$$

$$\equiv -H(\nabla_t f). \tag{12}$$

Using (6) in the form

$$\frac{d}{dt}\langle \nabla_t f, \nabla_t f \rangle = -H(\nabla_t f, \nabla_t f),$$

it follows that

$$\frac{d}{dt}\nu(t) = -\frac{1}{2|\nabla_t f|^3} \frac{d}{dt} \langle \nabla_t f, \nabla_t f \rangle \nabla_t f + \frac{1}{|\nabla_t f|} \frac{d}{dt} \nabla_t f$$

$$= \frac{1}{2|\nabla_t f|^3} H(\nabla_t f, \nabla_t f) \nabla_t f + \frac{1}{|\nabla_t f|} H(\nabla_t f) = \frac{1}{2|\nabla_t f|^3} H(\nabla_t f, \nabla_t f) \nabla_t f - \frac{1}{|\nabla_t f|} H(\nabla_t f). \tag{13}$$

Letting t go to zero on both sides of (13), result (11)

$$\frac{d}{dt}|_{t=0} \nu(t) = \frac{1}{2} H(\nu, \nu) \nu - H(\nu). \tag{14}$$

Theorem 1: The following integral formula holds for any two functions $f, g \in C^{\infty}(M^n)$,

$$\int_{M^n} \eta \, \Delta' \, f \, d\mu_g = \int_{M^n} \eta \left(\frac{1}{2} \langle dh, df \rangle - \langle \operatorname{div} H, df \rangle - \langle H, \nabla^2 f \rangle \right) d\mu_g, \tag{15}$$

where

$$\Delta' = \frac{d}{dt}|_{t=0} \,\Delta_{g(t)}.\tag{16}$$

Proof. By Stokes' Theorem it follows that

$$\int_{M^n} \eta \Delta_{g(t)} f \, d\mu_{g(t)} = -\int_{M^n} \langle df, d\eta \rangle \, d\mu_{g(t)} + \int_{\partial M} \eta \langle \nu_t, \nabla_t f \rangle \, d\sigma_{g(t)}. \tag{17}$$

By making use of (ii) and (iii), it follows from (17) at t = 0,

$$\int_{M^n} \eta \Delta' f \, d\mu_g + \int_{M^n} \frac{h}{2} \, \eta \Delta_g \, f \, d\mu_g = \int_{M^n} H(\nabla f, \nabla \eta) \, d\mu_g - \int_{M^n} \frac{h}{2} \, \langle df, d\eta \rangle \, d\mu_g + \int_{\partial M} \eta \langle -H(\nu, \nabla f) + \frac{1}{2} H(\nu, \nu) \frac{\partial f}{\partial \nu} \rangle \, d\sigma_g + \int_{\partial M} \frac{1}{2} \tilde{h} \eta \langle \nu, \nabla f \rangle \, d\sigma_g. \tag{18}$$

This result can be arranged so that it takes the following form,

$$\int_{M^{n}} \eta \Delta' f \, d\mu_{g} + \frac{1}{2} \int_{M^{n}} h \eta \Delta f \, d\mu_{g} = \int_{M^{n}} H(\nabla f, \nabla \eta) d\mu_{g} - \frac{1}{2} \int_{M^{n}} h \langle df, d\eta \rangle \, d\mu_{g}
+ \int_{M^{n}} \eta \left(-H(\nu, \nabla \nu) + \frac{1}{2} H(\nu, \nu) \langle \nu, \nabla f \rangle + \langle \nu, \nabla f \rangle \right) d\mu_{g} + \frac{1}{2} \int_{\partial M} \tilde{h} \, \langle, \nabla f, \rangle d\sigma_{g}
= \int_{M^{n}} H(\nabla f, \nabla \eta) \, d\mu_{g} - \frac{1}{2} \int_{M^{n}} h \langle df, d\eta \rangle \, d\mu_{g} - \int_{\partial M} \eta \left(H(\nu, \nabla \nu) \frac{\partial f}{\partial \nu} \, d\sigma_{g} + \frac{1}{2} \int_{\partial M} \tilde{h} \, \eta \langle \nu, \nabla f \rangle \, d\sigma_{g}.$$
(19)

It follows that

$$\int_{M^n} \eta \Delta^{'} f \, d\mu_g = \int_{M^n} H(\nabla f, \nabla \eta) d\mu_g - \int_{\partial M} \eta H(\nu, \nabla \eta) \, d\sigma_g - \frac{1}{2} \int_{M^n} \left(h \langle df, d\eta \rangle + \eta h \Delta f \right) d\mu_g$$

$$+\frac{1}{2}\int_{\partial M}\eta(\tilde{h}+H(\nu,\nu))\frac{\partial f}{\partial \nu}\,d\sigma_g. \tag{20}$$

Using $\tilde{h} = h - H(\nu, \nu)$, (20) can be put in the form

$$\int_{M^n} \eta \Delta^{'} f d\mu_g = \int_{M^n} H(\nabla f, \nabla \eta) d\mu_g - \int_{\partial M} \eta H(\nu, \nabla f) d\mu_g - \frac{1}{2} \int_{M^n} h \langle df, d\eta \rangle + \eta h \Delta f) d\mu_g$$

$$+\frac{1}{2}\int_{\partial M} \eta h \, \frac{\partial f}{\partial \nu} \, d\sigma_g. \tag{21}$$

Set T = H, $\varphi = \eta$ and $X = \nabla f$ in (2), it takes the form

$$\operatorname{div}(H(\eta \nabla f)) = \eta \langle \operatorname{div} H \nabla f \rangle + \eta \langle \nabla^2 f, H \rangle + H \langle \nabla \eta, \nabla f \rangle. \tag{22}$$

Substituting (22) implies that the second term on the right of (21) is

$$\int_{\partial M} \eta H(\nu, \nabla f) \, d\mu_g = \int_{M^n} \operatorname{div}(H(\eta \nabla f)) \, d\mu_g$$

$$= \int_{M^n} \eta \left(\langle \operatorname{div} H, \nabla^2 f \rangle + \langle H, \nabla^2 f \rangle \right) d\mu_g + \int_{M^n} H(\nabla f, \nabla \eta) \, d\mu_g. \tag{23}$$

In addition to the result (23), we have

$$\int_{M^n} \eta \Delta' f \, d\mu_g = \int_{M^n} (\eta h \Delta f + h \langle df, \eta \rangle) \, d\mu_g + \int_{M^n} \eta \langle df, dh \rangle \, d\mu_g. \tag{24}$$

Substitute (23), (24) into (21) and we arrive at

$$\int_{M^n} \eta \Delta^{'} f \, d\mu_g = \int_{M^n} H(\nabla f, \nabla \eta) \, d\mu_g - \int_{M^n} \eta(\langle \operatorname{div} H, \nabla^2 f \rangle + \langle H, \nabla^2 f \rangle) \, d\mu_g - \int_{M^n} H(\nabla f, \nabla \eta) \, d\mu_g$$

$$-\frac{1}{2}\int_{M^n} (h\langle df, d\eta\rangle + h\eta\Delta f) d\mu_g + \frac{1}{2}\int_{M^n} (\eta h\Delta f + h\langle df, d\eta\rangle) d\mu_g + \frac{1}{2}\int_{M^n} h\langle df, dh\rangle d\mu_g,$$
 (25)

for all functions $\eta \in C^{\infty}(M^n)$. Many of the terms in (25) cancel out and the desired result (15) remains. \square

Theorem 2: Let $\{\varphi_i(t)\}\subset C^{\infty}(M^n)$ be a differentiable family of real functions such that $\langle \varphi_i(t), \varphi_j(t)\rangle_{L^2(M^n, d\mu_{g(t)})} = \delta_{ij}$ for all t, the following system holds:

$$-\Delta_{g(t)}\varphi_i(t) = \lambda(t)\varphi_i(t), \qquad (26)$$

$$\frac{\partial}{\partial \nu_t} \varphi_i(t) = 0 \tag{27}$$

where (26) holds on M^n and (27) on ∂M . Then

$$\lambda'(0)\delta_{ij} = \int_{M^n} \langle \frac{1}{4}\Delta(\varphi_i \varphi_j)g - d\varphi_i \otimes \varphi_j, H \rangle d\mu_g.$$
 (28)

Proof: The derivative with respect to t is taken with respect to t and then set t = 0 on both sides of the eigenvalue equation

$$-\Delta_{g(t)}\varphi(t) = \lambda(t)\varphi(t).$$

with the result,

$$-\Delta_{q}' \varphi_{i}(t) - \Delta_{g} \dot{\varphi}(t) = \dot{\lambda}(t) \varphi_{i}(t) + \lambda(t) \dot{\varphi}_{i}(t). \tag{29}$$

Substitute for $\Delta_{g(t)}\varphi(t)$ from the eigenvalue equation (26), multiply by $\varphi_j(t)$ and integrate on both sides of (29) to get

$$-\int_{M} (\varphi_{j} \Delta_{g}' \varphi_{i} + \varphi_{j} \Delta_{g} \dot{\varphi}_{i}) d\mu_{g} = \int_{M^{n}} (\dot{\lambda} \varphi_{j} \varphi_{i} - \dot{\varphi}_{i} \Delta_{g} \varphi_{j}) d\mu_{g}.$$
(30)

On the boundary, it is the case that

$$\langle \nu_t, \nabla_{g(t)} \varphi_i(t) \rangle = \frac{\partial}{\partial \nu_t} \varphi(t),$$

it follows that with t = 0 and (27)

$$\langle \nu, \nabla \dot{\varphi}_i \rangle = H(\nu, \nabla \varphi_i) - \frac{1}{2} H(\nu, \nu) \langle \nu, \nabla \varphi_i \rangle = H(\nu, \nabla \varphi_i). \tag{31}$$

Integrating by parts in (30) and using (31), we obtain

$$\dot{\lambda}\delta_{ij} = -\int_{M^n} \varphi_j \Delta' \varphi_i \, d\mu_g - \int_{\partial M} \varphi_j \frac{\partial}{\partial \nu} \dot{\varphi}_i \, d\mu_g = -\int_{M^n} \varphi_j \Delta'_g \varphi_i \, d\mu_g - \int_{\partial M} \langle \nu, \nabla \dot{\varphi}_i \rangle \varphi_j \, d\mu_g$$

$$= -\int_{M^{n}} \varphi_{j} \Delta_{g}' \varphi_{i} d\mu_{g} - \int_{\partial M} \varphi_{j} H(\nu, \nabla_{g} \varphi_{i}) d\sigma_{g}. \tag{32}$$

Consequently, it follows that

$$-2\dot{\lambda}\delta_{ij} = \int_{M^n} \varphi_j \Delta_g^{'} \varphi_i \, d\mu_g + \int_{M^n} \varphi_i \Delta^{'} \varphi_j d\mu_g + \int_{\partial M} \varphi_i H(\nu, \nabla \varphi_j) d\mu_g + \int_{\partial M} \varphi_j H(\nu, \nabla \varphi_i) d\mu_g.$$
(33)

Recall what has been developed already,

$$\int_{M^n} \varphi_j \Delta_g' \varphi_i \, d\mu_g = \int_{M^n} \varphi_j \left(\frac{1}{2} \langle dh, d\varphi_i \rangle - \langle \text{div} H, d\varphi_i \rangle - \langle H, \nabla^2 \varphi_i \rangle \right) d\mu_g.$$

Hence (33) takes the form,

$$-2\dot{\lambda}\delta_{ij} = \int_{M^n} \langle \frac{1}{2}dh - \text{div}H, \varphi_j d\varphi_i + \varphi_i d\varphi_j \rangle d\mu_g - \int_{M^n} \langle H, \varphi_j \nabla^2 \varphi_i + \varphi_i \nabla^2 \varphi_j \rangle d\mu_g$$
$$+ \int_{\partial M} \varphi_i H(\nu, \nabla \varphi_j) d\sigma_g + \int_{\partial M} \varphi_j H(\nu, \nabla \varphi_i) d\sigma_g$$

$$= \int_{M^n} \langle \frac{1}{2} dh, d(\varphi_i \varphi_j) \rangle d\mu_g - \int_{M^n} \varphi_j (\langle \operatorname{div} H, d\varphi_i \rangle + \langle H, \nabla^2 \varphi_i \rangle) d\mu_g$$

$$+ \int_{\partial M} \varphi_j H(\nu, \nabla \varphi_j) d\sigma_g - \int_{M^n} \varphi_i (\langle \operatorname{div} H, d\varphi_j \rangle + \langle H, \nabla^2 \varphi_j \rangle) d\mu_g \qquad (34)$$

$$+ \int_{\partial M} \varphi_i H(\nu, \nabla \varphi_j) d\mu_g.$$

Since

$$\int_{M^n} \operatorname{div} X \, d\mu_g = 0,$$

and using (2) adapted to this case

$$\operatorname{div}(H(\varphi_i d\varphi_j)) = \varphi_i \langle \operatorname{div} H, d\varphi_i \rangle + \varphi_i \langle \nabla^2 \varphi_j, H \rangle + H \langle \nabla \varphi_i, \nabla \varphi_j \rangle,$$

equation (34) drops into the following form,

$$-2\dot{\lambda}\delta_{ij} = \int_{M^n} \langle \frac{1}{2} dh, d(\varphi_i \varphi_j) \rangle d\mu_g - \operatorname{div}(H(\varphi_i d\varphi_j)) d\mu_g + H(\nabla \varphi_j, \nabla \varphi_i) d\mu_g + \int_{\partial M} \varphi_j H(\nu, \nabla \varphi_i) d\mu_g$$

$$- \int_{M^n} \operatorname{div}(H(\varphi_j d\varphi_i)) + H(\nabla \varphi_i, \nabla \varphi_j) d\mu_g + \int_{\partial M} \varphi_i H(\nu, d\varphi_j) d\mu_g$$

$$= - \int_{M^n} \frac{h}{2} \Delta(\varphi_i \varphi_j) d\mu_g + 2 \int_{M^n} H(\nabla \varphi_i, \nabla \varphi_j) d\mu_g.$$

Dividing out the factor of -2, the result in (28) is obtained. \square

1 An Existence Result

An existence result is established which makes use of the Lyapunov-Schmidt procedure. The problem to be considered is the following Neumann problem,

$$(\Delta_t + \lambda)u = 0,$$

$$\frac{\partial u}{\partial \nu_t} = 0.$$
(35)

The first equation in (35) holds on M^n and the second on ∂M . As usual (M^n, g) is an orientable, compact n-dimensional Remannian manifold with boundary ∂M and $\Delta_t = \Delta_{g(t)}$ so an analytic variation of g_0 is associated $t \to g(t)$ with $g(0) = g_0$. Also ν_t is a one-parameter family of unit exterior vectors along with $(\partial M, g(t))$.

Theorem 3: Let λ_0 be an eigenvalue of the Laplace-Neumann operator of multiplicity $m \geq 2$. For every $\epsilon > 0$, there exits a $\delta > 0$ such that for each

 $|t| < \delta$, there exist exactly n to (35) eigenvalues including multiplicities in the interval $(\lambda_0 - \epsilon, \lambda_0 + \epsilon)$.

Proof: Let $\{\varphi_k\}_{k=1}^n$ be an orthonormal basis associated to eigenvalue λ_0 , and define a projector P such that

$$P v = \sum_{j=1}^{n} \varphi_j \int_{M^n} \varphi_j v \, d\mu_g \tag{36}$$

is the projection on the corresponding eigenspace. As is well-known, P induces a splitting of L^2 such that

$$L^2(M^n, d\mu_q) = \mathcal{R}(P) \oplus \mathcal{N}(P).$$

Any function $v \in L^2(M^n, d\mu_g)$ can be broken up into a sum of two factors $\phi + \psi$ when $\phi \in \mathcal{R}(P) = \ker(\Delta + \lambda_0)$ and $\psi \in \mathcal{N}(P)$. Using this fact, Neumann problem (35) can be expressed equivalently as the following system of equations:

$$(I - P)(\Delta_t + \lambda)(\phi + \psi) = 0,$$

$$P(\Delta_t + \lambda)(\phi + \psi) = 0,$$

$$\frac{\partial}{\partial \nu_t}(\phi + \psi) = 0.$$
(37)

The first two in (37) pertain to in M^n and the third on ∂M .

The Neumann problem can be decoupled and equivalently considered as a system of equations

$$(I - P)(\Delta_t + \lambda)(\phi + \psi) = 0, \tag{38}$$

$$P(\Delta_t + \lambda)(\phi + \psi) = 0, \tag{39}$$

$$\frac{\partial}{\partial \nu_t} \left(\phi + \psi \right) = 0, \tag{40}$$

where (38) and (39) apply on M^n and (40) on ∂M . Since $\phi_j \in \mathcal{R}(P)$ and ψ are orthogonal elements, the divergence theorem implies that

$$P(\Delta + \lambda)\psi = \sum_{j=1}^{m} \varphi_j \int_{M^n} \phi_j(\Delta + \lambda)\psi \, d\mu_{g_0} = \sum_{j=1}^{m} \varphi_j \int_{M^n} \varphi_j \frac{\partial \psi}{\partial \nu} \, d\mu_{g_0}, \quad (41)$$

and consequently,

$$(\Delta + \lambda)\psi = (I - P)((\Delta + \lambda)\psi) + \sum_{j=1}^{m} \varphi_j \int_{\partial M} \varphi_j \frac{\partial \psi}{\partial \nu} d\sigma_g.$$
 (42)

It is therefore possible to state that

$$(\Delta + \lambda)\psi + (I - P)(\Delta_t + \Delta)(\phi + \psi) - \sum_{i=1}^{m} \varphi_i \int_{\partial M} \frac{\partial \psi}{\partial \nu} d\sigma_{g_0} = 0.$$
 (43)

The part which is relevant to ∂M in equations (38)-(40) can be expressed as

$$\frac{\partial \psi}{\partial \nu} + \left(\frac{\partial}{\partial \nu_t} - \frac{\partial}{\partial \nu}\right)(\phi + \psi) = 0. \tag{44}$$

Hence solving the first and third equations of (37) is equivalent to finding the zeros of the following function

$$F: \mathbb{R} \times \mathbb{R} \times \mathcal{R}(P) \times H^{2}(M^{n}) \cap \mathcal{N} \to \mathcal{N}(P) \times H^{3/2}(M^{n}),$$

$$(t, \lambda, \phi, \psi) \to (F_{1}(t, \lambda, \phi, \psi), F_{2}(t, \lambda, \phi, \psi)),$$

$$(45)$$

In (41), F_1 and F_2 are defined to be

$$F_1 = (\Delta + \lambda)\psi + (I - P)(\Delta_t - \Delta)(\phi + \psi) - \sum_{j=1}^m \varphi_j \int_{M^n} \varphi_j \frac{\partial \psi}{\partial \nu} d\sigma_{g_0}, \quad (46)$$

$$F_2 = \frac{\partial \psi}{\partial \nu} + \left(\frac{\partial}{\partial \nu_t} - \frac{\partial}{\partial \nu}\right)(\phi + \psi). \tag{47}$$

Clearly F depends differentially on the variables λ , t, ψ and ϕ . The idea is to use the implicit function theorem to show that $F(t, \lambda, \phi, \psi) = (0, 0)$ admits a solution which depends on λ , t and ϕ . To do so, observe that if t = 0, $\lambda = \lambda_0$ and $\psi = 0$,

$$\frac{\partial F}{\partial \psi}(0, \lambda_0, 0, 0)\dot{\psi} = \left((\Delta + \lambda_0)\psi - \sum_{j=1}^m \varphi_j \int_{\partial M} \varphi_j \frac{\partial \dot{\psi}}{\partial \nu} d\sigma_0, \frac{\partial \dot{\psi}}{\partial \nu}\right). \tag{48}$$

It is claimed that the map (48) is an isomorphism from $H^2(M^n) \cap \mathcal{N}(P)$ onto $\mathcal{N}(P) \times H^{3/2}(M^n)$.

The implicit function theorem requires that there exist two positive numbers δ , ϵ as well as a function $S(t,\lambda)\phi$ of class C^1 of the variables (t,λ) such that for every $|t| < \delta$ and $\lambda \in (\lambda_0 - \epsilon, \lambda_0 + \epsilon)$, it holds that $F(t,\lambda,\phi,S(t,\lambda)\phi) = (0,0)$. Further $S(t,\lambda)\phi$ is analytic at λ and linear in ϕ . This solves (37) with respect to ψ .

Now for every $\phi \in \mathcal{R}(P)$, there exist real numbers c_1, \ldots, c_m such that $\phi = \sum_{j=1}^m c_j \varphi_j$. The second equation in (37) can be regarded as a system of equations in variables c_1, \ldots, c_m

$$\sum_{j=1}^{m} c_j \int_{M^n} \varphi_k(\Delta_t + \lambda)(\varphi_j + S(t, \lambda)\varphi_j) d\mu_{g_0} = 0,$$
 (49)

where k = 0, ..., m. Thus, λ is an eigenvalue of Δ_t if and only if $\det |A(t, \lambda)| = 0$, where the matrix elements of $A(t, \lambda)$ are obtained by calculating the integral

$$A_{kj}(t,\lambda) = \int_{M^n} \varphi_k(\Delta_t + \lambda)(\varphi_j + S(t,\lambda)\varphi_j) \, d\mu_g.$$
 (50)

The associated eigenfunctions are given by

$$u(t,\lambda) = \sum_{j=1}^{m} c_j(\varphi_j + S(t,\lambda)\varphi_j).$$
 (51)

This can be expressed in other words as $\mathbf{c} = (c_1, \dots, c_m)$ must satisfy the system

$$A(t,\lambda)\mathbf{c} = \mathbf{0}.$$

By Rouché's Theorem we have that, for every $\epsilon > 0$ there is a $\delta > 0$ such that if $|t - t_0| < \delta$, there exists exactly m roots of

$$\det |A(t,\lambda)| = 0$$

in the interval $(\lambda_0 - \epsilon, \lambda_0 + \epsilon)$. \square

Proposition 1: Let M^n $n \geq 2$ be a compact, oriented smooth manifold and let g(t) be a real analytic 0ne-parameter family of Riemannian metrics on M^n with $g(0) = g_0$. Assume λ is an eigenvalue of multiplicity m for the Laplace-Neumann operator Δ_g . Then there exists an $\epsilon > 0$ and a set of functions $\lambda_i(t)$ analytic in t and $\varphi_i(t)$, $i = 1, \ldots, m$ such that

$$(\varphi_i(t), \varphi_j(t))_{L^2(M^n, d\mu_q)} = \delta_{ij}. \tag{52}$$

As well the following hold for every t in $|t| < \epsilon$:

(i)
$$\Delta_{g(t)} \varphi_i(t) = \lambda_i(t)\varphi_i(t)$$
, (ii) $\frac{\partial}{\partial \nu_t} \varphi_i(t) = 0$, (iii) $\lambda_i(0) = \lambda$. (53)

Moreover (i) holds in M^n and (ii) holds on ∂M in (53).

Proof: Suppose the same conditions as those of the previous result hold. It must be shown that there exist m analytic curves of eigenvalues $\lambda_j(t)$ for (35) associated with m-analytic eigenfunctions $\varphi_j(t)$. The idea is to reduce the problem to one that is finite-dimensional and then apply a Theorem of Kato often called the Selection theorem [6]. For this a slightly different construction shall be given from that used before.

Let $\{\varphi_j(t)\}\$ be orthonormal eigenfunctions of the Laplace-Neumann system associated to λ_j . For each $k=1,\ldots,m$ consider the following problem

$$(\Delta + \lambda_0)u = 0,$$

$$\frac{\partial}{\partial \nu_t}(\varphi_k + u) = 0,$$

$$Pu = \sum_{j=1}^m \varphi_j \int_{M^n} \varphi_j u \, d\mu_{g_0} = 0.$$
(54)

The first of these holds in M^n as well as the third, while the second holds on ∂M . Consider the orthogonal complement $\{\varphi_j\}^{\perp}$ of $\ker(\Delta+\lambda_0)$ in $L^2(M^n,d\mu_{g_0})$ and define the function

$$F: (-\delta, \delta) \times H^2(M^n, d\mu_{g_0}) \to \{\varphi_j\}^{\perp} \times \mathcal{R}(P) \times H^{3/2}(M^n, d\mu_{g_0}),$$
 (55)

by

$$F(t, w) = (\Delta + \lambda_0)w, Pw, \frac{\partial}{\partial \nu_t}(\varphi_k + w).$$
 (56)

Exactly as before $\partial F/\partial w$ (0,0) is an isomorphism. The Implicit Function Theorem asserts that there exists a $\delta > 0$ and functions $w_j(t,\lambda)$ such that for any t in $|t-t_0| < \delta$ and every λ in $|\lambda - \lambda_0| < \delta$, the equality $G_j(t,\lambda,w_j(t,\lambda)) = (0,0,0)$ holds. Now λ is an eigenvalue for (35) if and only if there exists a non-zero m-tuple $\mathbf{c} = (c_1, \ldots, c_m)$ of real numbers such that

$$A(t,\lambda)\mathbf{c} = 0,$$

where the matrix elements of A are calculated by means of the integrals

$$A_{ij}(t,\lambda) = \int_{M^n} \varphi_j(t)(\Delta_t + \lambda)(\varphi_j(t) + w_j(t,\lambda)) d\mu_{g(t)}.$$
 (57)

As before, λ is an eigenvalue of (35) if and only if $\det(A(t,\lambda)) = 0$.

By Rouché's Theorem there must exist m roots near λ_0 counting multiplicities for each t. Hence [7] there exist m analytic functions $t \to \lambda_j(t)$ which locally solve the equation $\det(A(t,\lambda)) = 0$. It can easily be seen that A is symmetric and so Kato's Theorem ensures an analytic curve $c^i(t) \in \mathbb{R}^m$ such that $A(t,\lambda_i(t)c^i(t)) = 0$ for each $i = 1,\ldots,m$. Consequently,

$$\psi_k(t) = \sum_{j=1}^m c_j^k(t)(\varphi_j + w_j(t, \lambda_k(t)))$$
(58)

is an analytic curve of eigenfunctions for (35) associated with $\lambda_j(t)$. Now with the same reasoning as Kato, m analytic curves of eigenfunctions $\{\varphi_i(t)\}_{i=1}^m$ can be obtained such that

$$\int_{M^n} \varphi_i(t)\varphi_j(t) \, d\mu_{g(t)} = \delta_{ij}. \tag{59}$$

In the particular case in which $m = m(\lambda_0) = 1$, the existence of a differentiable curve of eigenvalues through λ_0 follows from the Implicit Function Theorem applied to the mapping

$$F: S^k \times H^2(M^n, d\mu_{q_0}) \times \mathbb{R}$$
(60)

defined by

$$F(g, u, \lambda) = \left(\left(\Delta_g + \lambda \right) u, \int_{M^n} u^2 d\mu_{g_0} \right). \tag{61}$$

The corresponding formulas for the derivative $\dot{\lambda}(t)$ can be obtained by letting i = j = 1 in (28).

References

- [1] L. C. Evans, *Partial Differential Equations*, Graduate Student Texts, vol. 19, AMS, Providence, 2010. https://doi.org/10.1090/gsm/019
- [2] L. Hörmander, *The Analysis of Partial Differential Operators*, Springer Verlag, 1985.
- [3] A. M. Micheletti, A. Pistoia, Multiple Eigenvalues of the Laplace-Beltrami operator and deformations of the Riemannian metric, *Discrete and Continuous Dynamical Systems*, 4 (1998), 709-720. https://doi.org/10.3934/dcds.1998.4.709
- [4] K. Uhlenbeck, Generic properties of eigenvalues, Amer. J. Math., 98 (4) (1976), 1059-1078. https://doi.org/10.2307/2374041
- [5] J. Gomez, A. A. M. Marrocos, On eigenvalue generic properties of the Laplace-Neumann operator, 135 (2019), 21-31. https://doi.org/10.1016/j.geomphys.2018.08.017
- [6] T. Kato, Perturbation Theory of Linear Operators, Springer-Verlag, 1980.
- [7] C. T. C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts, 2004. https://doi.org/10.1017/cbo9780511617560

Received: January 8, 2021; Published: January 21, 2021