
International Journal of Contemporary Mathematical Sciences
Vol. 16, 2021, no. 1, 13 - 20

HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ijcms.2021.91466

n-Open Sets and n-Continuous Functions

C. W. Baker

Department of Mathematics
Indiana University Southeast

New Albany, IN 47150-6405, USA

This article is distributed under the Creative Commons by-nc-nd Attribution License.

Copyright c© 2021 Hikari Ltd.

Abstract

The collection of subsets of a topological space which satisfy the
condition that their interior is not equal to their closure is investigated.
The basic properties of this collection of sets, which we call n-open
sets, are developed. These sets are used to define the concept of an
n-continuous function. The basic properties are these functions are
established.
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1 Introduction

Popa and Noiri developed the concept of a minimal structure [2] and used it
to develop unified theories of continuity and various types of weak continuity
[3]. In this paper we investigate the properties of the collection of subsets
of a topological space which satisfy the condition that their interior is not
equal to their closure. This collection of sets, which we call n-open sets, does
not satisfy the conditions of a minimal structure but can be used as a gen-
eralization of a topology. The basic properties and relationships for n-open
sets are investigated. For example, it is shown that the n-open sets are not
closed under either union or intersection but are closed under complements.
The collection of n-open sets is used to define the concept of n-continuity and
the basic properties of these functions are established. Relationships between
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these functions and connected spaces are developed. In particular it is shown
that connectedness can be characterized in terms of n-continuity. Also it is
established that n-continuity is independent of continuity.

The symbols X and Y represent topological spaces with no separation prop-
erties assumed unless explicitly stated. All sets are considered to be subsets of
topological spaces. The closure and interior of a set A are signified by Cl(A)
and Int(A), respectively.

Definition 1.1 A function f : X → Y is said to be contra-continuous [1]
if f−1(V ) is closed for every open subset V of Y .

2 n-open sets

Definition 2.1 A subset A of a space X is said to be n-open if Int(A) 6=
Cl(A). A subset of X is called n-closed if its complement is n-open.

Theorem 2.2 A subset A of a space X is n-open if and only if A is not
clopen.

Proof. Let A ⊆ X. The set A is not n-open if and only if Int(A) = Cl(A) if
and only if A = Int(A) and A = Cl(A) if and only if A is open and A is closed
if and only if A is clopen.

Corollary 2.3 A subset A of a space X is n-open if and only if X − A is
n-open.

Thus the n-open sets coincide with the n-closed sets.

Corollary 2.4 A proper dense subset of a space X is n-open.

Definition 2.5 Let A be a subset of a space X. The n-interior of A is de-
noted by nInt(A) and given by nInt(A) = ∪{U ⊆ X : U ⊆ A and U is n-open}.
The n-closure of A is denoted by nCl(A) and given by nCl(A) = ∩{F ⊆ X :
A ⊆ F and F is n-closed}.

Example 2.6 Let X = {a, b, c} have the topology τ = {X, ∅, {a, b}, {c}}.
The n-open sets are {a}, {b}, {a, c}, and {b, c}. Then nInt({a, b}) = {a}∪{b},
which is not n-open and nCl({c}) = {a, c}∩{b, c} = {c}, which is not n-closed
(hence also not n-open).

It follows from Example (2.6) that for a set A, nInt(A) may not be n-open
and nCl(A) may not be n-closed. Also the n-open sets are not closed under
either union or intersection. It follows from the definitions that, if U is n-open,
then nInt(U) = U and, if F is n-closed, then nCl(F ) = F.
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Lemma 2.7 A space X has an n-open subset if and only if it is not discrete.

Proof. A space X is not discrete if and only if there exists a non-clopen set
if and only if there exists an n-open set.

Remark 2.8 Obviously a space is discrete if and only if there are no n-open
sets.

Theorem 2.9 If X is not discrete, then for every x ∈ X there exists an
n-open set containing x.

Proof. Let x ∈ X. Then by Lemma 2.7 there exists an n-open set U .
Either x ∈ U or x ∈ X − U , both of which are n-open.

Since ∅ and X are not n-open, the values of the operators nInt and nCl on
the sets ∅ and X may depend on the space X.

Theorem 2.10 If X is a space, then

(a) nCl(X) = X.

(b) nInt(∅) = ∅.

Proof. (a) nCl(X) = ∩{F ⊆ X : F is n-closed and X ⊆ F} = X, since it
is an intersection of an empty collection of sets.

(b) nInt(∅) = ∪{U ⊆ X : U is n-open and U ⊆ ∅} = ∅, since it is a union
of an empty collection of sets.

Theorem 2.11 If X is a discrete space,then

(a) nInt(A) = ∅ for every set A ⊆ X.

(b) nCl(A) = X for every set A ⊆ X.

Proof. (a) LetA ⊆ X. Then nInt(A) = ∪{U ⊆ X : U ⊆ A and U is n-open} =
∅, since the collection of sets is empty.

(b) Let A ⊆ X. Then nCl(A) = ∩{F ⊆ X : A ⊆ F and F is n-closed} =
X, since the collection of sets is empty.

Theorem 2.12 If X is an indiscrete space with at least two points, then

(a) nInt(A) = A for every set A ⊆ X.

(b) nCl(A) = A for every set A ⊆ X.
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Proof. By Theorem 2.10 nInt(∅) = ∅ and nCl(X) = X. Since X has at
least two points, the singleton sets are n-open (hence also n-closed) and thus
X = ∪{{x} : x ∈ X} ⊆ nInt(X) and nCl(∅) ⊆ ∩{{x} : x ∈ X} = ∅. Therefore
nInt(X) = X and nCl(∅) = ∅. Since every proper nonempty subset of X is
non-clopen and therefore n-open and n-closed, nInt(A) = A and nCl(A) = A
for every proper nonempty set A ⊆ X.

Theorem 2.13 The following statements hold for every set A ⊆ X:

(a) nInt(X − A) = X − nCl(A).

(b) nCl(X − A) = X − nInt(A).

(c) x ∈ nCl(A) if and only if U ∩ A 6= ∅ for every n-open set U containing
x.

Proof. (a) Assume x ∈ X and A ⊆ X. Then x ∈ nInt(X − A) if and only
if there exists an n-open set U ⊆ X such that x ∈ U ⊆ X − A if and only if
there exists an n-closed set F ⊆ X such that A ⊆ F and x /∈ F if and only if
x /∈ nCl(A) if and only if x ∈ X − nCl(A).

(b) Let x ∈ X and let A ⊆ X. Then x ∈ nCl(X−A) if and only if for every
n-open set U , whenever X − A ⊆ X − U , then x ∈ X − U if and only if for
every n-open set U , whenever U ⊆ A, then x /∈ U if and only if x /∈ nInt(A) if
and only if x ∈ X − nInt(A)

(c) Let x ∈ X and let A ⊆ X. Then x ∈ nCl(A) if and only if for every
n-open set U , whenever A ⊆ X−U , then x /∈ U if and only if for every n-open
set U , whenever x ∈ U , then A ∩ U 6= ∅.

Definition 2.14 A space X is said to be n-discrete if every proper nonempty
set is n-open and n-indiscrete provided there are no n-open sets.

Theorem 2.15 A space X is connected if and only if it is n-discrete.

Proof. A space X is connected if and only if there are no proper nonempty
clopen sets if and only if every proper nonempty set is n-open.

Definition 2.16 A space X is said to be n-disconnected if it is the union
of two disjoint n-open sets. A space is called n-connected if it is not n-
disconnected

Corollary 2.17 If a space X is connected and has at least two points, then
X is n-disconnected

Theorem 2.18 A space X is n-connected if and only if X is n-indiscrete.
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Proof. Let X be a space. Then X is not n-indiscrete if and only if there
exists an n-open set U if and only if there exists an n-open set U such that
X = U ∪ (X − U) if and only if X is not n-connected.

The next result is a consequence of Remark 2.8.

Corollary 2.19 A space X is n-connected if and only if X is discrete.

Theorem 2.20 Let U ⊆ X and V ⊆ Y be nonempty sets. Then U × V is
n-open in X × Y if and only if U is n-open in X or V is n-open in Y .

Proof. U × V is not n-open in X × Y if and only if U × V is clopen in
X × Y if and only if U is clopen in X and V is clopen in Y if and only if U
is not n-open in X and V is not n-open in Y . It then follows that U × V is
n-open in X × Y if and only if U is n-open in X or V is n-open in Y .

Corollary 2.21 If U and V are n-open sets in X and Y , respectively, then
U × V is n-open in X × Y .

Definition 2.22 A space X is said to be

(a) an nT0-space if, whenever x and y are distinct points of X, there exists
an n-open set containing one point but not the other.

(b) an nT1-space if, whenever x and y are distinct points of X, each point is
contained in an n-open set that does not contain the other.

(c) an nT2-space if, whenever x and y are distinct points of X, there exist
disjoint n-open sets U and V containing x and y, respectively.

Lemma 2.23 If U is an n-open set and U = A∪B, then either A is n-open
or B is n-open.

Proof. Since U = A ∪ B and U is non-clopen, either A is non-clopen or B
is non-clopen. Hence either A is n-open or B is n-open.

Theorem 2.24 If X is not discrete, then X is an nT0-space.

Proof. Assume x and y are distinct points of X. By Theorem 2.9 there
exists an n-open set U containing x. If y /∈ U , then U is an n-open set
containing x but not y. Assume y ∈ U . Then U = (U − {x}) ∪ (U − {y}).
Therefore by Lemma 2.23 either U −{x} is an n-open set containing y but not
x or U − {y} is an n-open set containing x but not y. It follows that X is an
nT0-space.
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Remark 2.25 The process used in the proof of Theorem 2.24 can be used
to construct a nested sequence of n-open subsets of an n-open set containing
at least two points.

As we see in the following example, U − {x}, where U is an n-open set
containing x, is not necessarily n-open.

Example 2.26 Let (X, τ) be the space in Example 2.6. The set U = {a, c}
is n-open, but U − {a} = {c} is not n-open.

Theorem 2.27 If X is not discrete, then X is an nT2-space.

Proof Assume x and y are distinct points of X. By Theorem 2.24 X is an
nT0-space. Therefore there exists an n-open set containing x but not y or there
exists an n-open set containing y but not x. If there exists an n-open set U
containing x but not y, then U and X −U are disjoint n-open sets containing
x and y, respectively. Similarly, if there exists an n-open set V containing y
but not x, then V and X − V are disjoint n-open sets containing y and x,
respectively. Therefore X is an nT2-space.

Corollary 2.28 The separation properties nT0, nT1, and nT2 are equiva-
lent.

3 n-continuous functions

Definition 3.1 A function f : X → Y is said to be n-continuous if f−1(V )
is n-open in X for every proper nonempty open set V ⊆ Y

Example 3.2 Let X = {a, b, c} have the topology τ = {X, ∅, {a}} and let
f : (X, τ)→ (X, τ) be given by f(a) = b, f(b) = a, and f(c) = a. Then, since
f−1({a}) = {b, c} which is not open and thus n-open, f is n-continuous.

Example 3.3 Let X = {a, b, c} have the topologies τ = {X, ∅, {a, b}, {c}}
and σ = {X, ∅, {c}} The identity mapping f : (X, τ) → (X, σ) is not n-
continuous because f−1({c}) = {c}, which is clopen and therefor not n-open.

These two examples together show that n-continuity is independent of con-
tinuity. The proof of the following theorem is straightforward.

Theorem 3.4 A function f : X → Y is n-continuous if and only if f−1(F )
is n-closed in X for every proper nonempty closed set F ⊆ Y .

Remark 3.5 If Y is not indiscrete and X is discrete, then there is no n-
continuous function f : X → Y .
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Theorem 3.6 A space X is connected if and only if the identity mapping
f : X → X is n-continuous.

Proof. Let X be a space and let f : X → X be the identity mapping.
Then X is connected if and only if every proper nonempty open subset V of
X is non-clopen if and only if for every proper nonempty open subset V of X,
f−1(V ) is n-open if and only if f is n-continuous.

An analogous proof yields the next result.

Theorem 3.7 A space X is connected if and only if for every space Y every
function f : X → Y with the property that f−1(V ) is a proper nonempty set
for every proper nonempty open subset V of Y is n-continuous.

Lemma 3.8 If f : X → Y is surjective, then f−1(V ) is a proper nonempty
set for every proper nonempty subset V of Y .

Corollary 3.9 A space X is connected if and only if for every space Y
every surjective function f : X → Y is n-continuous.

Theorem 3.10 If Y is not indiscrete and f : X → Y is n-continuous, then
either f is not continuous or f is not contra-continuous.

Proof. Since Y is not indiscrete, Y has a proper nonempty open set V .
Because f is n-continuous, f−1(V ) is n-open and hence not clopen. Therefore
f−1(V ) is either not open or not closed. Thus f either not continuous or not
contra-continuous.

Example 3.11 Let X = {a, b, c} have the topologies τ = {X, ∅, {a}, {b, c}}
and σ = {X, ∅, {b}, {c}, {b, c}} The function f : (X, τ) → (X, σ) given by
f(a) = c, f(b) = b, and f(c) = a is neither continuous nor contra-continuous,
nor n-continuous. Note that f−1({b}) is neither open nor closed and f−1({c})
is not n-open.

Thus the converse of Theorem 3.10 is does not hold.

Theorem 3.12 If f : X → Y is n-continuous, then the following equivalent
conditions hold:

(a) nInt(f−1(V )) = f−1(V ) for every proper open set V ⊆ Y .

(b) nCl(f−1(F )) = f−1(F ) for every nonempty closed set F ⊆ Y .
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Proof. Parts (a) and (b) follow from the definitions of the n-interior and
the n-closure of a set and Theorem 2.10. The equivalence of (a) and (b) follows
from Theorem 2.13.

As we see in the following example, neither (a) nor (b) of Theorem 3.12
implies n-continuity.

Example 3.13 Let X = {a, b, c} have the topologies τ = {X, ∅, {a, b}, {c}}
and σ = {X, ∅, {a, b}} The identity mapping f : (X, τ)→ (X, σ) satisfies both
(a) and (b) of Theorem 3.12 but is not n-continuous, since f−1({a, b}) is not
n-open.

Recall that the graph of a function f : X → Y is given by G(f) = {(x, y) ∈
X × Y : y = f(x)}.

Theorem 3.14 If Y is T1 and f : X → Y is n-continuous, then X × Y −
G(f) is a union of n-open sets.

Proof. Let (x, y) ∈ X × Y − G(f). Since y 6= f(x), there exists an open
set V ⊆ Y such that f(x) ∈ V and y /∈ V . Then (x, y) ∈ f−1(V )× (Y − V ) ⊆
X × Y −G(f). Since V is a proper nonempty open set and f is n-continuous,
f−1(V ) is n-open. It then follows from Theorem 2.20 that f−1(V )× (Y − V )
is n-open in X × Y and therefore X × Y −G(f) is a union of n-open sets.
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