International Journal of Contemporary Mathematical Sciences Vol. 16, 2021, no. 4, 149 - 155 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2021.91611

Generalized *n*-Closed Sets and Generalized *n*-Continuous Functions

C. W. Baker

Department of Mathematics Indiana University Southeast New Albany, IN 47150-6405, USA

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2021 Hikari Ltd.

Abstract

The notion of a generalized n-closed set is introduced and the basic properties of these sets are established. A useful characterization of the generalized n-closed sets and a new property of the n-closure operator are proved. The concept of a generalized n-continuous function along with two related classes functions are developed.

Mathematics Subject Classification: 54C10, 54D10

Keywords: gn-open set, n-open set, gn-continuous function, n-continuous function, n-closure, n-interior.

1 Introduction

The concept of an n-open set was introduced in [1]. In this note we continue this line of investigation by introducing generalized n-closed (briefly, gn-closed) sets. A useful characterization of these sets is proved. Specifically we show that a set A is gn-closed if and only if nCl(A) = A. In general the gn-closed sets are better behaved and more useful than the n-open sets, although the sets do not necessarily form a minimal structure. Also a useful property of the n-closure operator is established. It is proved that for every subset A of a topological space X nCl(A) = A or nCl(A) = X. The notion of a gn-continuous function is defined and the basic properties of these functions are

150 C. W. Baker

developed. Conditions equivalent to gn-continuity are established. Also two classes of related functions, gn-closed functions and gn-irresolute functions, are introduced.

2 Preliminaries

The symbols X and Y represent topological spaces with no separation properties assumed unless explicitly stated. All sets are considered to be subsets of topological spaces. The closure and interior of a set A are signified by Cl(A) and Int(A), respectively.

Definition 2.1 Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily m_X of $\mathcal{P}(X)$ is called a minimal structure (briefly an m-structure) on X [2], if $\emptyset \in m_X$ and $X \in m_X$.

Definition 2.2 A subset A of a space X is said to be n-open [1] if $Int(A) \neq Cl(A)$. A subset of X is called n-closed if its complement is n-open.

Theorem 2.3 [1] A subset A of a space X is n-open if and only if A is not clopen.

Corollary 2.4 [1] A subset A of a space X is n-open if and only if X - A is n-open.

Thus the n-open sets coincide with the n-closed sets.

Definition 2.5 Let A be a subset of a space X. The n-interior of A [1] is denoted by nInt(A) and given by $nInt(A) = \bigcup \{U \subseteq X : U \subseteq A \text{ and } U \text{ is } n\text{-open}\}$. The n-closure of A [1] is denoted by nCl(A) and given by $nCl(A) = \bigcap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } n\text{-closed}\}$.

Theorem 2.6 [1] The following statements hold for every set $A \subseteq X$:

- (a) nInt(X A) = X nCl(A).
- (b) nCl(X A) = X nInt(A).
- (c) $x \in nCl(A)$ if and only if $U \cap A \neq \emptyset$ for every n-open set U containing x.

Theorem 2.7 [1] If X is a space, then

- (a) nCl(X) = X.
- (b) $nInt(\emptyset) = \emptyset$.

Theorem 2.8 [1] If X is a discrete space, then

- (a) $nInt(A) = \emptyset$ for every set $A \subseteq X$.
- (b) nCl(A) = X for every set $A \subseteq X$.

Theorem 2.9 [1] If U is an n-open set and $U = A \cup B$, then either A is n-open or B is n-open.

Definition 2.10 A function $f: X \to Y$ is said to be n-continuous [1] if $f^{-1}(V)$ is n-open in X for every proper nonempty open set $V \subseteq Y$.

See [1] for additional properties and notation concerning n-open sets.

3 Generalized n-Closed Sets

Definition 3.1 A subset A of a space X is said to be generalized n-closed (briefly gn-closed) if whenever $A \subseteq U$ and U is open, then $nCl(A) \subseteq U$. A subset of X is called generalized n-open (briefly gn-open) if its complement is gn-closed.

The collection of gn-closed sets may not form a minimal structure since it may not contain \emptyset .

Theorem 3.2 Let A be a subset of a space X. Then A is gn-open if and only if $F \subseteq nInt(A)$ whenever $F \subseteq A$ and F is closed.

Example 3.3 Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a, b\}, \{c\}\}$. The n-closed sets are $\{a\}, \{b\}, \{a, c\}$, and $\{b, c\}$. The gn-closed sets are $\{a\}, \{b\}, \{a, c\}, \{b, c\}, \{c\}, X$, and \emptyset . The set $\{c\}$ is gn-closed but not n-closed and the set $\{a, b\}$ is closed but not gn-closed.

Obviously n-closed sets are gn-closed. Example 3.3 shows that in general the two collections are not equal. Also from Example 3.3 the gn-closed sets and the gn-open sets do not coincide and the gn-closed sets are not in general closed under union. The fact that n-open sets are not closed under either union or intersection is illustrated by Example 3.3.

Example 3.4 Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a\}\}$. All sets in X are gn-closed.

Example 3.5 If X is a discrete space, then X is the only gn-closed set.

152 C. W. Baker

Example 3.6 Let X denote the real numbers with the usual topology. Since there are no proper nonempty clopen sets, all proper nonempty sets are n-closed and hence all sets are gn-closed.

Theorem 3.7 Let A be a subset of a space X. Then A is gn-closed if and only if nCl(A) = A.

Proof. For the sufficiency assume that A is gn-closed. If A is open, then $nCl(A) \subseteq A$ and hence nCl(A) = A. If A is not open, then A is not clopen and hence A is n-closed. Thus it follows from the definition of the n-closure operator that nCl(A) = A.

The necessity follows immediately from the definition.

Corollary 3.8 Let A be a subset of a space X. Then A is gn-open if and only if nInt(A) = A.

Theorem 3.9 The gn-closed sets in a space X are closed under arbitrary intersection.

Proof. Let A_{α} be a gn-closed set for every $\alpha \in \mathcal{A}$. Then using Theorem 3.7 we obtain $\mathrm{nCl}(\bigcap_{\alpha \in \mathcal{A}} A_{\alpha}) \subseteq \bigcap_{\alpha \in \mathcal{A}} \mathrm{nCl}(A_{\alpha}) = \bigcap_{\alpha \in \mathcal{A}} A_{\alpha}$ and hence $\mathrm{nCl}(\bigcap_{\alpha \in \mathcal{A}} A_{\alpha}) = \bigcap_{\alpha \in \mathcal{A}} A_{\alpha}$. Thus $\bigcap_{\alpha \in \mathcal{A}} A_{\alpha}$ is gn-closed.

Remark 3.10 If X is discrete, then X is the only gn-closed set in X and hence in the above proof $A_{\alpha} = X$ for every $\alpha \in A$.

Corollary 3.11 The gn-open sets in a space X are closed under arbitrary union.

Theorem 3.12 Let A be a subset of a space X. Then nCl(A) = A or nCl(A) = X.

Proof. If A is n-closed, then by the definition of n-closure $\operatorname{nCl}(A) = A$. Assume A is not n-closed. If there is no n-closed set that contains A, then $\operatorname{nCl}(A) = X$. Assume F is an n-closed set such that $A \subseteq F$. Then $F = A \cup (F - A)$. Since F is n-closed and A is not n-closed, it follows from Theorem 2.9 that F - A is n-closed. (Recall that a set is n-closed if and only if it is n-open.) Since it's complement X - (F - A) is also n-closed and $A \subseteq F \cap (X - (F - A))$, it follows from the definition of the n-closure operator that $\operatorname{nCl}(A) \subseteq F \cap (X - (F - A))$. Since $F \cap (X - (F - A)) = A$, it follows that $\operatorname{nCl}(A) = A$.

Corollary 3.13 Let A be a subset of a space X. Then nCl(nCl(A)) = nCl(A).

Corollary 3.14 Let A be a subset of a space X. Then nCl(A) is gn-closed.

Corollary 3.15 If A is a subset of a space X, then A is gn-closed if and only if A = nCl(B) for some set $B \subseteq X$.

Corollary 3.16 If A is a proper subset of a space X, then A is gn-closed if and only if $nCl(A) \neq X$.

Corollary 3.17 The collection of all gn-closed sets of a space X is the set $\{A \subseteq X : nCl(A) \neq X\} \cup \{X\}.$

Corollary 3.18 Let A be a subset of a space X. If A is proper, gn-closed, and not n-closed, then A is the intersection of two n-closed sets.

4 Generalized n-Continuous Functions

Definition 4.1 A function $f: X \to Y$ is said to be generalized n-continuous (briefly gn-continuous) if $f^{-1}(F)$ is gn-closed in X for every closed set $F \subseteq Y$.

Remark 4.2 If X is a discrete space, then for every space Y there is no gn-continuous function $f: X \to Y$. Note that $f^{-1}(\emptyset) = \emptyset$, which is not gn-closed in X.

Theorem 4.3 The following conditions are equivalent for a function $f: X \to Y$:

- (a) f is gn-continuous.
- (b) $f^{-1}(V)$ is gn-open for every open set $V \subseteq Y$.
- (c) $f^{-1}(Int(B)) \subseteq nInt(f^{-1}(B))$ for every set $B \subseteq Y$.
- $(\mathrm{d})\ \mathit{nCl}(f^{-1}(B))\subseteq f^{-1}(\mathit{Cl}(B))\ \mathit{for\ every\ set}\ B\subseteq Y.$

Proof. (a) \Rightarrow (b) Let $V \subseteq Y$ be open. Then, using (a) and Teorem 3.7, we have $X - f^{-1}(V) = f^{-1}(Y - V) = \text{nCl}(f^{-1}(Y - V)) = \text{nCl}(X - f^{-1}(V)) = X - \text{nInt}(f^{-1}(V))$. Thus $f^{-1}(V) = \text{nInt}(f^{-1}(V))$ and by Corollary 3.8 $f^{-1}(V)$ is gn-open.

(b) \Rightarrow (c) Let $B \subseteq Y$. By (b) $f^{-1}(\operatorname{Int}(B))$ is gn-open. Hence by Corollary 3.8 $f^{-1}(\operatorname{Int}(B)) = \operatorname{nInt}(f^{-1}(\operatorname{Int}(B))) \subseteq \operatorname{nInt}(f^{-1}(B))$.

(c)
$$\Rightarrow$$
 (d) Let $B \subseteq Y$. Then $X - f^{-1}(Cl(B)) = f^{-1}(Y - Cl(B)) = f^{-1}(Int(Y - B)) \subseteq nInt(f^{-1}(Y - B)) = nInt(X - f^{-1}(B)) = X - nCl(f^{-1}(B))$.

154 C. W. Baker

Therefore $\operatorname{nCl}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{Cl}(B))$.

(d) \Rightarrow (a) Let $F \subseteq Y$ be closed. It follows from (d) that $\mathrm{nCl}(f^{-1}(F)) \subseteq f^{-1}(\mathrm{Cl}(F)) = f^{-1}(F)$. By Theorem 3.7 $f^{-1}(F)$ is gn-closed and hence f is gn-continuous.

Theorem 4.4 Assume X is not discrete. If $f: X \to Y$ is n-continuous, then f is gn-continuous.

Remark 4.5 If X is discrete and Y is indiscrete, then every function $f: X \to Y$ is n-continuous but not qn-continuous.

Example 4.6 Let $X = \{a, b, c\}$ have the topologies $\tau = \{X, \emptyset, \{a, b\}, \{c\}\}$ and $\sigma = \{X, \emptyset, \{a, b\}\}$. The identity function $f : (X, \tau) \to (X, \sigma)$ is gn-continuous but not n-continuous. Note that $f^{-1}(\{c\})$ is gn-closed but not n-closed.

Definition 4.7 A function $f: X \to Y$ is said to be generalized n-closed (briefly gn-closed) if f(F) is gn-closed in Y for every gn-closed set $F \subseteq X$.

Theorem 4.8 The following conditions are equivalent for a function $f: X \to Y$:

- (a) f is gn-closed.
- (b) f(nCl(A)) is gn-closed for every set $A \subseteq X$.
- (c) $nCl(f(A)) \subseteq f(nCl(A))$ for every set $A \subseteq X$. Proof. (a) \Rightarrow (b) By Corollary 3.14 nCl(A) gn-closed for every set $A \subseteq X$.
 - (b) \Rightarrow (c) Let $A \subseteq X$. Then $\mathrm{nCl}(f(A)) \subseteq \mathrm{nCl}(f(\mathrm{nCl}(A))) = f(\mathrm{nCl}(A))$.
- (c) \Rightarrow (a) $A \subseteq X$ be gn-closed. Then using (c) we obtain $\operatorname{nCl}(f(A)) \subseteq f(\operatorname{nCl}(A)) = f(A)$. Therefore $f(A) = \operatorname{nCl}(f(A))$ and hence f(A) is gn-closed and f is gn-closed.

Definition 4.9 A function $f: X \to Y$ is said to be generalized n-irresolute (briefly gn-irresolute) if $f^{-1}(F)$ is gn-closed in X for every gn-closed set $F \subseteq Y$.

The proof of the following theorem is analogous to that of Theorem 4.8.

Theorem 4.10 The following conditions are equivalent for a function $f: X \to Y$:

- (a) f is gn-irresolute.
- (b) $f^{-1}(nCl(A))$ is gn-closed for every set $A \subseteq Y$.
- (c) $nCl(f^{-1}(A)) \subseteq f^{-1}(nCl(A))$ for every set $A \subseteq Y$.

References

- [1] C.W. Baker, n-open sets and n-continuous functions, *Int. J. Contemp. Math. Sci.*, **16** (2021), 13-20. https://doi.org/10.12988/ijcms.2021.91466
- [2] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18 (2000), 31–41.

Received: September 21, 2021; Published: October 9, 2021