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Abstract

In this paper, the concept of meet countably approximating posets
via the σ-Scott topology is introduced. Properties and characteriza-
tions of meet countably approximating posets are presented. The main
results are: (1) a poset having countably directed joins is meet count-
ably approximating iff its lattice of all σ-Scott-closed sets is a complete
Heyting algebra; (2) a poset having countably directed joins is countably
approximating iff it is meet countably approximating and generalized
countably approximating.

Mathematical Subject Classifications: 06A11; 06B35; 54C35; 54D45

Keywords: countably directed set; σ-Scott topology; countably approx-
imating poset; meet countably approximating poset; generalized countably
approximating poset

1 Introduction

In 1972, Dana Scott introduced the notion of continuous lattices in order to
provide models for the semantics of programming languages (see [10]). Later,
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a more general notion of continuous directed complete partially ordered sets
(i.e., continuous dcpos or domains) was introduced and extensively studied
(see [1]-[12]). It should be noted that a distinctive feature of the theory of
continuous domains is that many of the considerations are closely interlinked
with topological ideas. The Scott topology, as an order-theoretical topology, is
of fundamental importance in domain theory. Lawson in [6] gave a remarkable
characterization that a dcpo L is continuous iff the lattice σ∗(L) of all Scott-
closed subsets of L is completely distributive. Gierz, Lawson and Stralka in
[2] introduced quasicontinuous domains, the most successful generalizations
of continuous domains, and proved that quasicontinuous domains equipped
with the Scott topologies are precisely spectra of hypercontinuous distributive
lattices. A meet continuous lattice is a complete lattice in which the binary
meet operation distributes over directed suprema (see [3]). This algebraic
notion has a purely topological characterization that can be generalized to
the setting of dcpos by the Scott topology in [3, 5] without involving the
meet operations: A dcpo L is called meet continuous if for any x ∈ L and
any directed subset D with supD > x, one has x ∈ clσ(↓ D∩ ↓ x), where
clσ(↓ D∩ ↓ x) is the Scott closure of the set ↓D∩ ↓x. It is well-known that a
dcpo is continuous iff it is quasicontinuous and meet continuous.

On the other hand, Lee in [7] introduced the concept of countably approxi-
mating lattices, a generalization of continuous lattices. In [4], Han, Hong, Lee
and Park further generalized the concept of countably approximating lattices
to the concept of countably approximating posets and characterized countably
approximating posets via the σ-Scott topology. Yang and Liu in [12] introduced
the concept of generalized countably approximating posets and presented some
properties of generalized countably approximating posets.

In this paper, we introduce the concept of meet countably approximating
posets via the σ-Scott topology. Properties and characterizations of meet
countably approximating posets are presented. With the obtained results, we
are able to give some new characterizations of countably approximating posets.

2 Preliminaries

We quickly recall some basic notions and results (see, e.x., [3], [4] or [12]).
Let (L, 6) be a poset. Then L with the dual order is also a poset and

denoted by Lop. A principal ideal (resp., principal filter) is a set of the form
↓x = {y ∈ L | y 6 x} (resp., ↑ x = {y ∈ L | x 6 y}). For X ⊆ L, we write
↓X = {y ∈ L | ∃ x ∈ X, y 6 x} and ↑X = {y ∈ L | ∃ x ∈ X, x 6 y}. A
subset X is a(n) lower set (resp., upper set) if X =↓X (resp., X =↑X). The
supremum of X is the least upper bound of X and denoted by ∨X or supX.
A subset D of L is directed if every finite subset of D has an upper bound
in D. A subset D is countably directed if every countable subset of D has an
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upper bound in D. Clearly every countably directed set is directed but not
vice versa. A poset L is a directed complete partially ordered set (dcpo, for
short) if every directed subset of L has a supremum. A poset is said to have
countably directed joins if every countably directed subset has a supremum.

It is clear that if D is countably directed and D is also countable, then
D has a maximal element. By this observation, we see that every countable
poset has countably directed joins and thus a poset having countably directed
joins needn’t be a dcpo.

Definition 2.1. (see [3, 11]) Let L be a poset and x, y ∈ L. We say that x is
way-below y or x approximates y, written x � y if whenever D is a directed
set that has a supremum supD > y, then there is some d ∈ D with x 6 d. For
each x ∈ L, we write ⇓x = {y ∈ L | y � x}. A poset is said to be continuous
if every element is the directed supremum of elements that approximate it. A
continuous poset which is also a complete lattice is called a continuous lattice.

Definition 2.2. (see [4]) Let L be a poset and x, y ∈ L. We say that x is
countably way-below y, written x �c y if for any countably directed subset
D of L with supD > y, there is some d ∈ D with x 6 d. For each x ∈ L,
we write ⇓c x = {y ∈ L | y �c x} and ⇑c x = {y ∈ L | x �c y}. A
poset L having countably directed joins is called a countably approximating
poset if for each x ∈ L, the set ⇓c x is countably directed and x = ∨ ⇓c x.
A countably approximating poset which is also a complete lattice is called a
countably approximating lattice.

In a poset L, since every singleton set is countably directed, it is clear that
x�c y implies that x 6 y. Note that every countably directed set is directed,
we have that x � y implies x �c y for all x, y ∈ L. In other words, we have
⇓ y ⊆⇓c y for each y ∈ L. However, the following example shows that the
reverse implication need not be true.

Example 2.3. Let L be the unit interval [0, 1]. For all x, y ∈ [0, 1], it is easy
to check that x�c y ⇔ x 6 y, and that x� y ⇔ x = 0 = y or x < y.

It is clear that every countable poset is a countably approximating poset
since every countably directed subset of a countable poset has a maximal
element.

Proposition 2.4. Let L be a poset and S a countable subset of L such that
∨S exists. If s�c x for all s ∈ S, then ∨S �c x.

Proof. Let D be a countably directed subset of L with supD > x. For all
s ∈ S, it follows from s �c x that there is ds ∈ D such that s 6 ds. Since S
is a countable subset of L, the set {ds | s ∈ S} is a countable subset of D. By
the countable directedness of D, the set {ds | s ∈ S} has an upper bound d0
in D. Thus s 6 ds 6 d0 for all s ∈ S. This shows that ∨S 6 d0 and hence
∨S �c x.
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By Proposition 2.4, in a complete lattice L, the set ⇓c x is automatically
countably directed for each x ∈ L. So, a complete lattice L is countably
approximating iff for each x ∈ L, x = ∨ ⇓cx. Thus every continuous lattice is
a countably approximating lattice.

For a set X, we use P(X) to denote the power set of X and Pfin(X) to
denote the set of all nonempty finite subsets of X. For a poset L, define a
preorder ≤ (sometimes called Smyth preorder) on P(L)\{∅} by G ≤ H iff
↑H ⊆↑G for all G,H ⊆ L. That is, G ≤ H iff for each y ∈ H there is an
element x ∈ G with x 6 y. We say that a nonempty family F of subsets of
L is (countably) directed if it is (countably) directed in the Smyth preorder.
More precisely, F is directed if for all F1, F2 ∈ F , there exists F ∈ F such
that F1, F2 ≤ F , i.e., F ⊆↑F1∩ ↑F2.

Generalizing the relation �c on points of L to the nonempty subsets of L,
one obtains the concept of generalized countably approximating posets.

Definition 2.5. (see [12]) Let L be a poset having countably directed joins.
A binary relation �c on P(L)\{∅} is defined as follows: A �c B iff for any
countably directed set D ⊆ L, ∨D ∈↑ B implies D∩ ↑ A 6= ∅. We write
F �c x for F �c {x} and y �c H for {y} �c H. If for each x ∈ L, the family
ω(x) = {F | F ∈ Pfin(L) and F �c x} is countably directed and ↑ x = ∩{↑
F | F ∈ ω(x)}, then L is called a generalized countably approximating poset.

By [12, Remark 2.12], every countably approximating poset is a generalized
countably approximating poset.

Definition 2.6. (see [3, 11]) A subset U of a poset L is Scott-open if ↑ U = U
and for any directed set D ⊆ L, supD ∈ U implies U ∩D 6= ∅. All the Scott-
open sets of L forms a topology, called the Scott topology and denoted by σ(L).
The complement of a Scott-open set is called a Scott-closed set. The collection
of all Scott-closed sets of L is denoted by σ∗(L). The topology generated by
the complements of all principal filters ↑ x (resp., principal ideals ↓ x) is called
the lower topology (resp., upper topology) and denoted ω(L) (resp., ν(L)). The
common refinement σ(L)∨ω(L) of the Scott topology and the lower topology
is called the Lawson topology, denoted λ(L).

Replacing directed sets with countably directed sets in Definition 2.6, we
can get the concept of σ-Scott-open sets.

Definition 2.7. (see [4]) Let L be a poset. A subset U of L is called σ-Scott-
open if ↑ U = U and for any countably directed set D ⊆ L, supD ∈ U implies
U ∩D 6= ∅. All the σ-Scott-open sets of L forms a topology, called the σ-Scott
topology and denoted by σc(L). The complement of a σ-Scott-open set is called
a σ-Scott-closed set. The collection of all σ-Scott-closed sets of L is denoted
by σ∗c (L).
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Remark 2.8. (see [4, Remark 2.1]) (1) For a poset L, the σ-Scott topology
σc(L) is closed under countably intersections and the Scott topology σ(L) is
coarser than σc(L), i.e., σ(L) ⊆ σc(L).

(2) A subset F of a poset L is σ-Scott-closed if and only if F is a lower set
and for any countably directed set D ⊆ F , supD ∈ F whenever supD exists.

Definition 2.9. Let L be a poset having countably directed joins. The com-
mon refinement σc(L) ∨ ω(L) of the σ-Scott topology and the lower topology
is called the σ-Lawson topology, denoted λc(L).

Lemma 2.10. (see [12, Theorem 3.5]) Let L be a poset having countably
directed joins. Then L is a countably approximating poset iff the lattice σc(L)
is a completely distributive lattice.

3 Meet countably approximating posets

In this section, in terms of the σ-Scott topology, the notion of meet countably
approximating posets is introduced. Some properties and characterizations of
meet countably approximating posets are presented. As one of main results,
it is proved that a poset having countably directed joins is countably ap-
proximating iff it is meet countably approximating and generalized countably
approximating.

Definition 3.1. Let L be a poset having countably directed joins. If for
any x ∈ L and any countably directed subset D with supD > x, one has
x ∈ clσc(↓ D∩ ↓ x), where clσc(↓ D∩ ↓ x) is the σ-Scott closure of the set
↓D∩ ↓x, then L is called a meet countably approximating poset.

Proposition 3.2. If L is a countably approximating poset, then L is a meet
countably approximating poset.

Proof. Let x ∈ L and D a countably directed set with supD > x. It is clear
that ⇓cx ⊆↓D and ⇓cx ⊆↓D∩ ↓x. By the countably approximating property
of L and the σ-Scott-closedness of clσc(↓D∩ ↓x), we have x = sup ⇓cx ∈ clσc(↓
D∩ ↓x). This shows that L is a meet countably approximating poset.

Theorem 3.3. Let L be a poset having countably directed joins. Then the
following statements are equivalent:

(1) L is a meet countably approximating poset;
(2) ∀ U ∈ σc(L), ∀ x ∈ L, ↑(U∩ ↓x) ∈ σc(L);
(3) ∀ U ∈ σc(L), for any lower set C ⊆ L, ↑(U ∩ C) ∈ σc(L).

Proof. (1) ⇒ (2): Let x ∈ L and U ∈ σc(L). Suppose that D is a countably
directed subset with supD ∈↑ (U∩ ↓ x). Then there is y ∈ U∩ ↓ x such that
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y 6 supD. By the meet countably approximating property of L, we have
↓D∩ ↓ y ∩ U 6= ∅. So, D∩ ↑ (U∩ ↓x) ⊇ D∩ ↑ (U∩ ↓ y) 6= ∅. This shows that
↑(U∩ ↓x) is σ-Scott-open.

(2)⇒ (3): ∀ U ∈ σc(L), for any lower set C ⊆ L,

↑(U ∩ C) =↑(U ∩ (
⋃
x∈C

↓x)) =↑(
⋃
x∈C

(U∩ ↓x)) =
⋃
x∈C

↑(U∩ ↓x).

By (2), one has ↑(U ∩ C) ∈ σc(L).
(3) ⇒ (1): Let x ∈ L and D a countably directed subset with supD > x.

If x is not in clσc(↓D∩ ↓ x), then there is U ∈ σc(L) such that x ∈ U and
U∩ ↓ D∩ ↓ x = ∅. This implies ↑ (U∩ ↓ x) ∩ D = ∅. It is clear that
supD ∈↑(U∩ ↓x). Then by (3), we see that ↑(U∩ ↓x) is σ-Scott-open, there
is d ∈↑ (U∩ ↓x) ∩D, a contradiction. This shows that x ∈ clσc(↓D∩ ↓x) and
hence L is meet countably approximating.

We now arrive at a characterization of meet countably approximating
posets via the lattice of σ-Scott-closed subsets.

Theorem 3.4. Let L be a poset having countably directed joins. Then the
following conditions are equivalent:

(1) L is a meet countably approximating poset;
(2) σ∗c (L) is a complete Heyting algebra.

Proof. (1) ⇒ (2): Clearly, σ∗c (L) is a complete lattice. So, it suffices to show
the frame distributive law

F ∧ (
∨
i∈I

Fi) =
∨
i∈I

(F ∧ Fi)

holds for σ∗c (L), where F , Fi ∈ σ∗c (L) (i ∈ I). Clearly, F ∧(
∨
i∈I Fi) ⊇

∨
i∈I(F ∧

Fi). To show F ∧ (
∨
i∈I Fi) ⊆

∨
i∈I(F ∧ Fi), let x ∈ F ∧ (

∨
i∈I Fi) = F ∩

(
∨
i∈I Fi) = F ∩ clσc(

⋃
i∈I Fi). Then for all U ∈ σc(L) with x ∈ U , we have

x ∈ U ∩ F and x ∈↑ (U ∩ F ) ∈ σc(L) by Theorem 3.3 (3). And then there is
i0 ∈ I such that ↑ (U∩F )∩Fi0 6= ∅. So, (U∩F )∩ ↓ Fi0 = U∩(F ∩Fi0) 6= ∅. By
the arbitrariness of U ∈ σ(L), we have x ∈ clσ(

⋃
i∈I(F ∩ Fi)) =

∨
i∈I(F ∧ Fi).

The frame distributivity of σ∗c (L) is thus proved. Hence, σ∗c (L) is a complete
Heyting algebra.

(2) ⇒ (1): Let x ∈ L and D a countably directed subset with supD > x.
Then {↓ d | d ∈ D} is a countably directed set of σ∗c (L). By Remark 2.8 (2),
supD ∈ clσc(↓ D) =

∨
d∈D ↓ d and thus ↓ x ⊆

∨
d∈D ↓ d. By (2),

x ∈↓ x =↓ x∩(
∨
d∈D

↓ d) =
∨
d∈D

(↓ d∩ ↓ x) = clσ(
⋃
d∈D

(↓ d∩ ↓ x)) = clσ(↓ D∩ ↓ x).

Thus L is a meet countably approximating poset.
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Recall that a poset L is called a hypercontinuous poset (see [9]) if for all
x ∈ L, the set {y ∈ L | y ≺ν(L) x} is directed and x = sup{y ∈ L | y ≺ν(L) x},
where y ≺ν(L) x ⇔ x ∈ intν(L) ↑ y. A hypercontinuous poset which is also a
complete lattice is called a hypercontinuous lattice.

Lemma 3.5. (see [12, Theorem 3.4]) Let L be a poset having countably di-
rected joins. Then L is a generalized countably approximating poset iff the
lattice σc(L) is a hypercontinuous lattice.

With the above results, we have the following characterization of countably
approximating property of posets via meet countably approximating property.

Theorem 3.6. Let L be a poset having countably directed joins. The following
statements are equivalent:

(1) L is a countably approximating poset;
(2) L is a meet countably approximating and generalized countably approx-

imating poset.

Proof. (1)⇒ (2): By [12, Remark 2.12] and Proposition 3.2.
(2)⇒ (1): By Lemma 2.10, we need only to show the completely distributiv-
ity of σc(L). By the generalized countably approximating property of L and
Lemma 3.5, σc(L) is a hypercontinuous lattice and thus σ∗c (L) is a generalized
continuous lattice (see [1, Theorem 6.4]). Since L is also meet countably ap-
proximating, σ∗c (L) is a complete Heyting algebra by Theorem 3.4. Noticing
that a complete Heyting algebra is precisely a meet continuous lattice, so by
we see that σ∗c (L) is thus a continuous lattice. By [3, Theorem I-3.16], we
see that σc(L) is a completely distributive lattice. By Lemma 2.10, L is a
countably approximating poset.
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