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Abstract

In this paper, meet countably approximating posets are revisited. In
terms of the σ-measurement topology and principal ideals, some topo-
logical and order-theoretical characterizations of meet countably ap-
proximating posets are presented. The main results are: (1) A poset L
having countably directed joins is meet countably approximating iff for
any open set U in the σ-measurement topology, ↑U is σ-Scott-open; (2)
Meet countably approximating posets are hereditary to σ-Scott-open
and to σ-Scott-closed subsets; (3) A poset L having countably directed
joins is meet countably approximating iff every principal ideal is meet
countably approximating; (4) Lifts and retracts of meet countably ap-
proximating posets are still meet countably approximating.
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1 Introduction

In 1972, Dana Scott introduced the notion of continuous lattices in order to
provide models for the semantics of programming languages [8]. Later, a more
general notion of continuous directed complete partially ordered sets (i.e., con-
tinuous dcpos or domains) was introduced and extensively studied [1, 5]. It
should be noted that a distinctive feature of domain theory is that many of
the considerations are closely linked with topological ideas.

Lee in [4] introduced the concept of countably approximating lattices, a
generalization of continuous lattices. Han, etc, in [2] generalized the concept
of countably approximating lattices to the concept of countably approximat-
ing posets and characterized countably approximating posets via the σ-Scott
topology. Yang and Liu in [10] introduced generalized countably approximat-
ing posets and presented some properties of them. Recently, Mao and Xu in [6]
introduced the concept of meet countably approximating posets and showed
that a poset having countably directed joins is countably approximating iff it
is meet countably approximating and generalized countably approximating.

In this paper, in terms of the σ-measurement topology, some further topo-
logical characterizations of meet countably approximating posets are presented.
Some operational properties of meet countably approximating posets are ex-
plored. We will see that meet countably approximating posets are hereditary
to σ-Scott-open sets and to σ-Scott-closed subsets. A characterization theo-
rem of meet countably approximating posets by principal ideals is also given.
It is proved that meet countably approximating property is invariant under
operations of coverings, liftings and retractions.

2 Preliminaries

We quickly recall some basic notions and results (see, e.x., [1], [2], [6]).
Let (L, 6) be a poset. Then L with the dual order is also a poset and

denoted by Lop. A principal ideal (resp., principal filter) is a set of the form
↓x = {y ∈ L | y 6 x} (resp., ↑ x = {y ∈ L | x 6 y}). A closed interval [x, y]
is a set of the form ↑ x∩ ↓ y for x 6 y. For X ⊆ L, we write ↓X = {y ∈ L |
∃ x ∈ X, y 6 x} and ↑X = {y ∈ L | ∃ x ∈ X, x 6 y}. A subset X is a(n)
lower set (resp., upper set) if X =↓X (resp., X =↑X). The supremum of X
is the least upper bound of X and denoted by ∨X or supX. A subset D of L
is directed if every finite subset of D has an upper bound in D. A subset D
is countably directed if every countable subset of D has an upper bound in D.
Clearly every countably directed set is directed but not vice versa. A poset L
is a directed complete partially ordered set (dcpo, for short) if every directed
subset of L has a supremum. A poset is said to have countably directed joins
if every countably directed subset has a supremum.
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It is clear that if D is countably directed and D is also countable, then
D has a maximal element. By this observation, we see that every countable
poset has countably directed joins and thus a poset having countably directed
joins needn’t be a dcpo.

Recall that the topology on a poset L whose open sets are upper/lower
sets is called the Alexandrov topology/dual Alexandrov topology and denoted
by α(L)/α∗(L). The topology generated by the complements of all principal
filters ↑x (resp., principal ideals ↓x) is called the lower topology (resp., upper
topology) and denoted by ω(L) (resp., ν(L)).

Definition 2.1. (cf. [2, 6]) Let L be a poset. A subset U of L is called σ-Scott-
open if ↑ U = U and for any countably directed set D ⊆ L, supD ∈ U implies
U ∩D 6= ∅. All the σ-Scott-open sets of L forms a topology, called the σ-Scott
topology and denoted by σc(L). The complement of a σ-Scott-open set is called
a σ-Scott-closed set. The collection of all σ-Scott-closed sets of L is denoted
by σ∗c (L). The common refinement σc(L) ∨ ω(L) of the σ-Scott topology and
the lower topology is called the σ-Lawson topology, denoted λc(L).

Remark 2.2. (cf. [2, Remark 2.1]) A subset F of a poset L is σ-Scott-closed
iff F is a lower set and supD ∈ F for any countably directed set D ⊆ F .

Definition 2.3. (see [2]) Let P and Q be posets. A function f : P → Q
is called σ-Scott-continuous if it is continuous with respect to the σ-Scott
topologies on P and Q.

Proposition 2.4. (see [2, Remark 2.1]) Let L and M be posets having count-
ably directed joins. A function f : L→M is σ-Scott-continuous iff it is order-
preserving and f(supD) = sup f(D) whenever D is a countably directed set
in L.

Definition 2.5. (see [6]) Let L be a poset having countably directed joins.
If for any x ∈ L and any countably directed subset D with supD > x, one
has x ∈ clσc(↓D∩ ↓ x), where clσc(↓D∩ ↓ x) is the σ-Scott closure of the set
↓D∩ ↓x, then L is called a meet countably approximating poset.

Lemma 2.6. (see [6]) Let L be a poset having countably directed joins. Then
the following conditions are equivalent:

(1) L is a meet countably approximating poset;
(2) σ∗c (L) is a complete Heyting algebra.

3 The σ-measurement topology

In this section, in terms of the σ-measurement topology, some further charac-
terizations of meet countably approximating posets are presented.
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Definition 3.1. Let L be a poset. The common refinement σc(L) ∨ α∗(L)
of the σ-Scott topology and the dual Alexandrov topology is called the σ-
measurement topology and is denoted by µc(L).

Recall that for any topology τ on a set X, the collection {O∩C | O,X\C ∈
τ} forms a basis of a topology, the so-called b-topology for τ (see [9]).

Proposition 3.2. Let L be a poset. Then the σ-measurement topology µc(L)
is the b-topology for the σ-Scott topology σc(L).

Proof. Straightforward.

Theorem 3.3. Let L be a poset having countably directed joins. Then the
following statements are equivalent:

(1) L is a meet countably approximating poset;
(2) ∀ U ∈ σc(L), ∀ x ∈ L, ↑(U∩ ↓x) ∈ σc(L);
(3) ∀ U ∈ σc(L), for any lower set C ⊆ L, ↑(U ∩ C) ∈ σc(L);
(4) ∀ U ∈ µc(L), one has ↑U ∈ σc(L), i.e., ↑µ(L) = {↑U | U ∈ µc(L)} ⊆

σc(L).

Proof. (1)⇔ (2)⇔ (3): Follows from [6, Theorem 3.3].
(3) ⇒ (4): Suppose U ∈ µc(L). For all t ∈↑U , there are V ∈ σc(L) and

C ∈ α∗(L) such that t ∈↑ (V ∩ C) ⊆↑U . By (3), one has ↑ (V ∩ C) ∈ σc(L).
This shows that t is in the σ-Scott interior of ↑ U . By the arbitrariness of
t ∈↑U , one has ↑ U ∈ σc(L).

(4) ⇒ (2): ∀ U ∈ σc(L), ∀ x ∈ L, one has U∩ ↓ x ∈ µc(L). By (4),
↑(U∩ ↓x) ∈ σc(L).

Corollary 3.4. Let L be a meet countably approximating poset.
(i) If X is an upper set, then intσcX = intλcX = intµcX;
(ii) If X is a lower set, then clσcX = clλcX = clµcX.

Proof. (i) Suppose X is an upper set. Then intσcX ⊆ intλcX ⊆ intµcX since
σc(L) ⊆ λc(L) ⊆ µc(L). By Theorem 3.3(4), intµcX ⊆↑ intµcX = intσc(↑
intµcX) ⊆ intσc ↑X = intσcX. Hence, intσcX = intλcX = intµcX.

The equivalence of (i) and (ii) is straightforward.

Recall that in a poset L, a nonempty subset F is filtered if for all x, y ∈ F ,
there is z ∈ F such that z 6 x and z 6 y. In this case, if F =↑F , then F is
called a filter. We say that a poset L with a topology has small open filtered
sets iff each point has a neighborhood basis of open filtered sets (see [1, 3]).

Proposition 3.5. Let L be a poset having countably directed joins. The fol-
lowing statements are equivalent:

(1) The σ-Scott topology σc(L) has a basis of open filters;
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(2) L is meet countably approximating and λc(L) has small open filtered
sets;

(3) L is meet countably approximating and µc(L) has small open filtered
sets.

Proof. (1) ⇒ (2): Let x ∈ L and D a countably directed set with supD > x.
Then for all σ-Scott-open set U ∈ σc(L) with x ∈ U , by (1) there is a σ-
Scott-open filter V such that x ∈ V ⊆ U . By the σ-Scott-openness of V , we
have that D ∩ V 6= ∅. Pick a ∈ D ∩ V . Since V is a filter, there is b ∈ V
such that b 6 x and b 6 a. This shows that b ∈ U∩ ↓ x∩ ↓ D 6= ∅. Hence,
x ∈ clσ(↓ x∩ ↓ D). By Definition 2.5, L is meet countably approximating. To
show that λc(L) has small open filtered sets, suppose that W is a σ-Lawson-
open neighborhood of t. By (1), there are σ-Scott-open filter H and finite set
F such that t ∈ H\ ↑F ⊆ W . Obviously, H\ ↑F is σ-Lawson-open. For all v,
w ∈ H\ ↑F , there is h ∈ H such that h 6 v and h 6 w since H is a filter. It
follows from v, w 6∈↑F that h 6∈↑F and h ∈ H\ ↑F . This shows that H\ ↑F
is filtered. Thus, H\ ↑ F is σ-Lawson-open filtered. By the arbitrariness of
t ∈ W , λc(L) has small open filtered sets.

(2)⇒ (1): Suppose x ∈ U ∈ σc(L). It follows from σc(L) ⊆ λc(L) and (2)
that there is a σ-Lawson-open filtered set V such that x ∈ V ⊆ U . Hence,
x ∈↑ V ⊆↑U = U and ↑ V is a filter. By the meet countably approximating
property of L, λc(L) ⊆ µc(L) and Theorem 3.3(4), ↑V is a σ-Scott-open filter.
By the arbitrariness of x ∈ U , the σ-Scott topology σc(L) has a basis of open
filters.

(1)⇒ (3): Clearly, L is meet countably approximating by that (1)⇔ (2).
Let x ∈ W ∈ µc(L). By Definition 3.1 and (1), there is a σ-Scott-open filter
V such that x ∈ V ∩ ↓ x ⊆ W . Since V is a σ-Scott-open filter, it is easy to
check that V ∩ ↓ x is µc(L)-open filtered. By the arbitrariness of x ∈ W , µc(L)
has small open filtered sets.

(3) ⇒ (1): Suppose x ∈ U ∈ σ(L). It follows from σc(L) ⊆ µc(L) and
(3) that there is a µ(L)-open filtered set V such that x ∈ V ⊆ U . Hence,
x ∈↑ V ⊆↑ U = U and ↑ V is a filter. By the meet countably approximat-
ing property of L and Theorem 3.3(4), ↑ V is a σ-Scott-open filter. By the
arbitrariness of x ∈ U , µc(L) has small open filtered sets.

4 Heredity and Invariance

In this section, some operational properties of meet countably approximating
posets are discussed. It will be established that a poset having countably
directed joins is meet countably approximating iff every principal ideal is meet
countably approximating.



220 Xuxin Mao and Luoshan Xu

Lemma 4.1. (see [5, Lemma 2.1]) Let L be a poset and U ⊆ L an upper set.
Then for all ∅ 6= A ⊆ U , supA = supU A whenever one of them exists, where
supU A denotes the supremum of A in U (with the relative order).

Lemma 4.2. Let L be a poset and U ⊆ L an upper set. Then σc(L)|U :=
{W ∩ U | W ∈ σc(L)} ⊆ σc(U). If U ∈ σc(L), then σc(L)|U = σc(U).

Proof. Let W ∈ σc(L). Trivially, W∩U is an upper set of U . For any countably
directed D ⊆ U with supU D ∈ W ∩ U , by Lemma 4.1, supD = supU D ∈
W ∩ U . By the σ-Scott openness of W , D ∩ W 6= ∅ and D ∩ W ∩ U 6= ∅.
This shows that W ∩ U ∈ σc(U). So, the relative σ-Scott topology on U is
contained in the σ-Scott topology of the poset U .

If U ∈ σc(L), then we show the converse containment is also true. Let
V ∈ σc(U). Trivially, V is an upper set of L. For any countably directed
D ⊆ L with supD ∈ V , by the σ-Scott-openness of U , D ∩ U 6= ∅. Pick
d0 ∈ D ∩ U . By Lemma 4.1 and the countably directedness of D, we have
supD = sup(↑ d0 ∩ D) = supU(↑ d0 ∩ D) ∈ V . Since V is σ-Scott-open in
U , ↑ d0 ∩ D ∩ V 6= ∅ and hence D ∩ V 6= ∅. This shows that V ∈ σc(L), as
desired.

Proposition 4.3. Let L be a meet countably approximating poset and U ⊆ L
a σ-Scott-open set. Then U in the inherited order is meet countably approxi-
mating.

Proof. Let L be a meet countably approximating poset. By Lemma 4.1, the
subset U in the inherited order has countably directed joins. It follows from
the meet countably approximating property of L and Lemma 2.6 that σ∗c (L)
is a complete Heyting algebra. Thus it is straightforward to show that σ∗c (U)
is a complete Heyting algebra by Lemma 4.2. Hence U in the inherited order
is also meet countably approximating by Lemma 2.6.

Lemma 4.4. Let L be a poset having countably directed joins and F ⊆ L a
σ-Scott-closed set. Then σc(L)|F = σc(F ).

Proof. By Remark 2.2(2), it is straightforward to show that σ∗c (L)|F = σ∗c (F ).
Hence, σc(L)|F = σc(F ).

Proposition 4.5. Let L be a meet countably approximating poset and F ⊆ L
a σ-Scott-closed set. Then F in the inherited order is also meet countably
approximating. In particular, every principal ideal of L is a meet countably
approximating poset.

Proof. By Remark 2.2(2), the σ-Scott-closed set F in the inherited order has
countably directed joins. It follows from the meet countably approximating
property of L and Lemma 2.6 that σ∗c (L) is a complete Heyting algebra. Thus it
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is straightforward to show that σ∗c (F ) is a complete Heyting algebra by Lemma
4.4. Hence F in the inherited order is also meet countably approximating by
Lemma 2.6.

Propositions 4.3 and 4.5 reveal that meet countably approximating prop-
erty is hereditary to σ-Scott-open sets and to σ-Scott-closed sets.

Theorem 4.6. Let L be a poset having countably directed joins. Then L is a
meet countably approximating poset iff every principal ideal is a meet countably
approximating poset.

Proof. ⇒: Follows from Proposition 4.5.
⇐: Assume each principal ideal of L is meet countably approximating. Let

x ∈ L and D a countably directed set with supD := h > x. Then F =↓h is
a meet countably approximating poset and hence x ∈ clσc(F )(↓F D∩ ↓F x) by
Definition 2.5. It follows from ↓F D =↓LD, ↓F x =↓L x and Lemma 4.4 that
x ∈ clσc(F )(↓F D∩ ↓F x) ⊆ clσc(L)(↓LD∩ ↓L x). By Definition 2.5, L is a meet
countably approximating poset.

Corollary 4.7. Let L be a poset having countably directed joins. Then L is
meet countably approximating iff every σ-Scott-closed set in the inherited order
is meet countably approximating.

Proof. Apply Proposition 4.5 and Theorem 4.6.

Corollary 4.8. Let L be a poset having countably directed joins. Then every
closed interval of L is meet countably approximating iff each principal filer ↑x
is meet countably approximating.

Proof. Applying Theorem 4.6 to the principal filters of L.

Let L be a poset. Adjoining an identity to L and forming poset L1 = L∪{1}
with 1 6∈ L and x < 1 for all x ∈ L is called the covering of L. The poset
L1 is called the cover of L. Adjoining a new bottom to L and forming poset
L⊥ = L ∪ {⊥} with x > ⊥ for all x ∈ L is called the lifting of L. The poset
L⊥ is called the lift of L.

Proposition 4.9. Let L be a poset having countably directed joins. Then L is
meet countably approximating iff L1 = L∪{1} is meet countably approximating.

Proof. ⇐: Let L1 = L∪{1} is a meet countably approximating poset. Clearly,
the singleton {1} ∈ σc(L

1). Hence, L is a σ-Scott-closed subset of L1. By
Proposition 4.5, L is meet countably approximating.
⇒: Let L be a meet countably approximating poset. To show that L1 =

L∪ {1} is meet countably approximating, by Definition 2.5 it suffices to show
that for any x ∈ L1 and any countably directed subset D with supD > x, one
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has x ∈ clσc(L1)(↓D∩ ↓x). We divide the proof into three cases.
Case 1: x = 1. It follows from x 6 supD that 1 ∈ D. Then ↓D∩ ↓x = L1

and hence x ∈ clσc(L1)(↓D∩ ↓x).
Case 2: x ∈ L and 1 ∈ D. Then ↓D∩ ↓x =↓x. Thus, x ∈ clσc(L1)(↓D∩ ↓

x).
Case 3: x ∈ L and 1 6∈ D ⊂ L. By the meet countably approximating

property of L, one has x ∈ clσc(L)(↓D∩ ↓x). Since L is a σ-Scott-closed subset
of L1, x ∈ clσc(L)(↓D∩ ↓x) = clσc(L1)(↓D∩ ↓x).

To sum up, in all cases, x ∈ clσc(L1)(↓D∩ ↓x) and hence L1 = L ∪ {1} is
meet countably approximating.

Lemma 4.10. Let L be a poset having countably directed joins and 0 ∈ L a
bottom. Then σc(L) = σc(L\{0}) ∪ {L}.

Proof. Suppose U ∈ σc(L). Then U = L or U ⊂ L. If U = L, then U ∈
σc(L\{0}) ∪ {L}. If U ⊂ L, then 0 6∈ U . Since the singleton {0} is σ-Scott-
closed, one has L\{0} ∈ σc(L). By Lemma 4.2 and U ∈ σc(L), we have
U = U ∩ (L\{0}) ∈ σc(L\{0}). So, σc(L) ⊆ σc(L\{0}) ∪ {L}.

Conversely, suppose V ∈ σc(L\{0}) ∪ {L}. If V = L, then V ∈ σc(L). If
V 6= L, then V ∈ σc(L\{0}). By the σ-Scott-openness of L\{0} and Lemma
4.2, one has V ∈ σc(L). This shows that σc(L\{0}) ∪ {L} ⊆ σc(L). So,
σc(L) = σc(L\{0}) ∪ {L}.

Proposition 4.11. Let L be a poset having countably directed joins and 0 ∈ L
a bottom. Then L is meet countably approximating iff L\{0} is meet countably
approximating.

Proof. ⇒: Suppose that L is a meet countably approximating poset. Since
the singleton {0} is σ-Scott-closed, one has L\{0} ∈ σc(L). By the meet
countably approximating property of L and Proposition 4.3, L\{0} is meet
countably approximating.
⇐: Suppose that L\{0} is meet countably approximating. To show that

L is meet countably approximating, by Theorem 3.3(2) it suffices to show
that ∀U ∈ σc(L), ∀ x ∈ L, one has ↑L (U∩ ↓L x) ∈ σc(L). If U = L, then
↑L (U∩ ↓Lx) =↑L (↓Lx) = L ∈ σc(L). If U 6= L and x = 0, then ↑L (U∩ ↓Lx) =
∅ ∈ σc(L). If U 6= L and x 6= 0, then U ∈ σc(L\{0}) by Lemma 4.10. It follows
from the meet countably approximating property of L\{0} and U 6= L that
↑L (U∩ ↓L x) =↑L (U∩ ↓L\{0} x) =↑L\{0} (U∩ ↓L\{0} x) ∈ σc(L\{0} ⊆ σc(L). To
sum up, in all cases, ∀U ∈ σc(L), ∀ x ∈ L, one has ↑L (U∩ ↓L x) ∈ σc(L), as
desired.

Apply Proposition 4.11, we immediately have

Corollary 4.12. Let L be a poset having countably directed joins. Then L is
meet countably approximating iff the lift L⊥ is meet countably approximating.
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Let L and M be posets having countably directed joins. M is called a
retract of L if there exist σ-Scott-continuous functions r : L → M and j :
M → L such that rj = 1M (see [2]). In this case, the function r is called a
retraction.

Proposition 4.13. Let L be a meet countably approximating poset. If M is a
retract of L, then M is also meet countably approximating.

Proof. To prove the meet countably approximating property of M by Defini-
tion 2.5, it suffices to show that for any x ∈ M and any countably directed
subset D ⊆ M with supM D > x, one has x ∈ clσc(M)(↓M D∩ ↓M x). To this
end, suppose U ∈ σc(M) with x ∈ U . Since M is a retract of L, there exist
σ-Scott-continuous functions r : L → M and j : M → L such that rj = 1M .
By the σ-Scott-continuity of j and Proposition 2.4, j(D) ⊆ L is countably
directed and j(x) 6 j(supD) = sup j(D). Since x = rj(x) ∈ U and r is
σ-Scott-continuous, one has j(x) ∈ r−1(U) and r−1(U) ∈ σc(L). It follows
from the meet countably approximating property of L and Definition 2.5 that
j(x) ∈ clσc(L)(↓L j(D)∩ ↓L j(x)). So, r−1(U) ∩ (↓L j(D)∩ ↓L j(x)) 6= ∅. Pick
a ∈ r−1(U) ∩ (↓L j(D)∩ ↓L j(x)). Then r(a) ∈ U ⊆ M , a 6 j(x) and there
is d ∈ D such that a 6 j(d). Since r is σ-Scott-continuous, r(a) 6 rj(x) = x
and r(a) 6 rj(d) = d ∈ D. Hence, r(a) ∈ U ∩ (↓MD∩ ↓M x) 6= ∅. This shows
that x ∈ clσc(M)(↓MD∩ ↓M x).

Propositions 4.9, 4.13 and Corollary 4.12 reveal that meet countably ap-
proximating property is invariant under operations of coverings, liftings and
retractions.
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