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Abstract. Given 𝑘 ∈ ℕ, 𝑘 ≥ 2 we give two recursion formulas for the elements in 

solution classes of our Pell equation 𝑥2 − (𝑘2 − 1)𝑦2 = 𝑘2 with parameter 𝑘. One 

of these recursions leads to a representation of the elements of each solution class 

by Chebshev polynomials and extends a result in [5] related only to the trivial 

solution class. 
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1 Preliminaries 

 

For the following theorems and definitions see [1] and [2]. 

Given parameter 𝑘 ∈ ℕ, 𝑘 > 1, then our subject are the Pell equations 

𝑥2 − (𝑘2 − 1)𝑦2 = 𝑘2                          (1) 

and to each its related Pell equation  

𝑥2 − (𝑘2 − 1)𝑦2 = 1                               (2) 

which is also called Pell’s resolvent [1]. 
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If there are 𝑥, 𝑦 ∈ ℤ with 𝑥2 − (𝑘2 − 1)𝑦2 = 𝑘2 then (𝑥, 𝑦) is a solution to (1), for 

which we interchangeably write 𝑥 + 𝑦√𝑘2 − 1. This can be traced back to the 

equation 𝑥2 − (𝑘2 − 1)𝑦2 = (𝑥 + 𝑦√𝑘2 − 1)(𝑥 − 𝑦√𝑘2 − 1). A solution (𝑥, 𝑦) 

to (1) with 𝑥, 𝑦 > 0 is called positive solution. If 𝑔𝑐𝑑(𝑥, 𝑦) = 1 then (𝑥, 𝑦) is called 

primitive solution to (1), otherwise imprimitive solution. 

Our Pell equation (1) is always solvable by the trivial solution (𝑘, 0). The related 

Pell equation (2) is solvable with minimal positive primitive solution (𝑘, 1), and 

has infinitely many primitive solutions. It is well known that if (𝑥, 𝑦) is any positive 

solution to (2) then there is 𝑚 ∈ ℕ such that 

 

𝑥 + 𝑦√𝑘2 − 1 = (𝑘 + 1√𝑘2 − 1)
𝑚

 

 

Multiplication principle (MP). Let (𝑎, 𝑏) be a solution to (2). If (𝑥, 𝑦) is a solution 

to (1), then 

                      𝑥′ + 𝑦′√𝑘2 − 1 = (𝑥 + 𝑦√𝑘2 − 1)(𝑎 + 𝑏√𝑘2 − 1) = 

 (𝑥𝑎 + 𝑦𝑏(𝑘2 − 1) + (𝑥𝑏 + 𝑦𝑎)√𝑘2 − 1, 

which means 

 

(𝑥′, 𝑦′) = (𝑥𝑎 + 𝑦𝑏(𝑘2 − 1), 𝑥𝑏 + 𝑦𝑎) 

 

is also a solution to (1), which can be easily checked. Solution (𝑥′, 𝑦′) to (1) is 

obtained by the multiplication principle MP, which shows furthermore, that (1) has 

infinitely many solutions. 

 

Remark. If we look at the more general Pell equation 𝑥2 − 𝑑𝑦2 = 𝑘2, where  

𝑑 ∈ ℕ  is a non-square number and 𝑘 ∈ ℕ, 𝑘 ≥ 2, then this equation is also always 

trivially solvable by (𝑘, 0). Let (𝑢, 𝑣) be the fundamental solution to the related 

Pell equation 𝑥2 − 𝑑𝑦2 = 1, then, by MP, (𝑥𝑛, 𝑦𝑛), where  

𝑥𝑛 + 𝑦𝑛√𝑑 = (𝑘 + 0√𝑑)(𝑢 + 𝑣√𝑑)
𝑛

, 𝑛 ∈ ℕ is a solution to (1) and it is easily 

seen that 𝑘|(𝑥𝑛 + 𝑦𝑛√𝑑) but 𝑘𝑚 ∤ (𝑥𝑛 + 𝑦𝑛√𝑑), 𝑚 > 1.  

Equivalent solutions ES. Let 𝑘 ∈ ℕ, 𝑘 > 1, the infinite set 𝐿𝑘 of solutions to (1) can 

be partitioned into a finite number of classes in the following way.  

Solutions 𝑥 + 𝑦√𝑘2 − 1, 𝑥′ + 𝑦′√𝑘2 − 1 to (1) are equivalent if and only if there 

is a solution 𝑎 + 𝑏√𝑘2 − 1 to (2) such that 

 

𝑥 + 𝑦√𝑘2 − 1 = (𝑥′ + 𝑦′√𝑘2 − 1)(𝑎 + 𝑏√𝑘2 − 1). 
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In this case we write (𝑥, 𝑦)~(𝑥′, 𝑦′) or 𝑥 + 𝑦√𝑘2 − 1~𝑥′ + 𝑦′√𝑘2 − 1.  

The relation ~ is an equivalence relation in the set 𝐿𝑘 and can be characterized in 

the following way, see [2].  

Equivalent solutions criterion ESC (this criterion indeed holds for a much wider 

class of Pell equations). 

 

Theorem 1.1 Let (𝑥, 𝑦), (𝑥′, 𝑦′) be solutions to (1), then (𝑥, 𝑦)~(𝑥′, 𝑦′) if and only 

if 

𝑥𝑥′ ≡ 𝑦𝑦′(𝑘2 − 1) 𝑚𝑜𝑑 𝑘2 and 𝑥𝑦′ ≡ 𝑥′𝑦 𝑚𝑜𝑑 𝑘2 

 

Proof. See [2]. 

 

Let (𝑥, 𝑦) a solution to (1), then (𝑥, 𝑦)~(−𝑥, −𝑦), (𝑥, −𝑦)~(−𝑥, 𝑦). 

The class which contains solution (𝑥, 𝑦) of (1) is denoted by 𝐾(𝑥, 𝑦) and we call it 

solution class. The theorem above shows that, given (1), there are only a finite 

number of solution classes to (1). 

In general 𝐾(𝑥, 𝑦) ≠ 𝐾(−𝑥, 𝑦), if not, 𝐾(𝑥, 𝑦) resp. 𝐾(−𝑥, 𝑦) is called ambiguous 

class. 

Each solution class can be represented by any of its elements but it is comfortable 

to choose in each solution class as a representative the solution (𝑥, 𝑦) with minimal 

nonnegative y, which is called fundamental solution of its class (see [2]). If 𝐾(𝑥, 𝑦) 

is ambiguous we furthermore prescribe 𝑥 > 0 for its fundamental solution.  

Let (𝑥0, 𝑦0) be the fundamental solution in the solution class 𝐾(𝑥0, 𝑦0) and (𝑥, 𝑦) 

any solution to (1) in 𝐾(𝑥0, 𝑦0) then according to MP and ES there is 𝑚 ∈ ℕ such 

that  

𝑥 + 𝑦√𝑘2 − 1 = (𝑥0 + 𝑦0√𝑘2 − 1)(𝑘 + 1√𝑘2 − 1)𝑚 

 

The finitely many fundamental solutions to (1) can be found “in principle” in a 

bounded region.  

 

Bounds on fundamental solutions BFS. 

  

Theorem 1.3 Let  𝑥 + 𝑦√𝑘2 − 1 be a fundamental solution to  

𝑥2 − (𝑘2 − 1)𝑦2 = 𝑘2 and 𝑘 + √𝑘2 − 1 the fundamental solution to the related 

Pell equation 𝑥2 − (𝑘2 − 1)𝑦2 = 1, then 

0 < |𝑥| ≤ 𝑘√
1

2
(𝑘 + 1)  and 0 ≤ 𝑦 ≤

1

√2(𝑘+1)
𝑘 
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Proof. See [1], [2] for a more general assertion. 

 

2 Recursion I 

 

We use the multiplication principle in order to get an idea for the recursive 

computation of solutions to (1). 

 

Let (𝑥𝑛, 𝑦𝑛), resp. 𝑥𝑛 + 𝑦𝑛√𝑘2 − 1 be any positive solution to (1), and  

𝑘 + √𝑘2 − 1 the fundamental solution to (2), then MP together with the definition 

of equivalent solutions tells us that 

 

(𝑥𝑛 + 𝑦𝑛√𝑘2 − 1) (𝑘 + √𝑘2 − 1) = 

= (𝑘𝑥𝑛 + (𝑘2 − 1)𝑦𝑛) + (𝑥𝑛 + 𝑘𝑦𝑛)√𝑘2 − 1 =: 𝑥𝑛+1 + 𝑦𝑛+1√𝑘2 − 1, 

 

which means (𝑥𝑛+1, 𝑦𝑛+1), is another solution to (1) in the same solution class in 

which (𝑥𝑛, 𝑦𝑛) is. 

  

From this observation we get the linear second order homogeneous recursion 𝑅 

 

𝑥𝑛+1 = 𝑘𝑥𝑛 + 𝑦𝑛1(𝑘2 − 1)      

𝑦𝑛+1 = 1𝑥𝑛 + 𝑘𝑦𝑛,  𝑛 ≥ 0     

 

with initial values 𝑥0, 𝑦0, where (𝑥0, 𝑦0) ∈ 𝐿𝑘. 

Let 𝐾(𝑥, 𝑦) a solution class to (1). To get recursively the positive solutions in 

𝐾(𝑥, 𝑦) it is obvious to choose the fundamental solution (𝑥0, 𝑦0) ∈ 𝐾(𝑥, 𝑦) as 

initial values for recursion 𝑅.  

 

Theorem 2.1 Let 𝑘 ∈ ℕ, 𝑘 > 1 and (𝑥0, 𝑦0) be the fundamental solution in the 

solution class 𝐾(𝑥, 𝑦) of the Pell equation 𝑥2 − (𝑘2 − 1)𝑦2 = 𝑘2   (1)  then: 

1. The linear recursion 𝑅 with initial values 𝑥0, 𝑦0 yields the solutions in 𝐾(𝑥, 𝑦): 

𝑥𝑛+1 = 𝑘𝑥𝑛 + 𝑦𝑛1(𝑘2 − 1), initial values 𝑥0, 𝑦0, 𝑛 ≥ 0   𝑅1   

𝑦𝑛+1 = 𝑥𝑛 + 𝑘𝑦𝑛,  initial values 𝑥0, 𝑦0,  𝑛 ≥ 0.                    𝑅2 
 

2. Recursion 𝑅 can be represented with the unimodular matrix  

𝑀 = (𝑘 𝑘2 − 1
1 𝑘

)  by 

 

(𝑥𝑛+1
𝑦𝑛+1

) = (𝑘 𝑘2 − 1
1 𝑘

) (𝑥𝑛
𝑦𝑛

), with initial value (𝑥0
𝑦0

). 
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Proof. 1. We use induction. Let (𝑥0, 𝑦0) the fundamental solution in the solution 

class 𝐾(𝑥, 𝑦). According to 𝑅 

(𝑥1, 𝑦1) = (𝑘𝑥0 + (𝑘2 − 1)𝑦0, 𝑥0 + 𝑘𝑦0). 

 

On the other hand the multiplication principle, with fundamental solution  

𝑘 + √(𝑘2 − 1) to  (2) yields  

 

(𝑥0 + 𝑦0√(𝑘2 − 1)) (𝑘 + √(𝑘2 − 1)) = 

= (𝑘𝑥0 + (𝑘2 − 1)𝑦0) + (𝑥0 + 𝑘𝑦0)√(𝑘2 − 1) = (𝑥1, 𝑦1). 

 

The definition of equivalent solutions to (1) shows that (𝑥1, 𝑦1)~(𝑥0, 𝑦0), hence  

(𝑥1, 𝑦1) ∈ 𝐾(𝑥0, 𝑦0).  

Let 𝑛 ≥ 1, (𝑥𝑛, 𝑦𝑛) given by 𝑅, and let (𝑥𝑛, 𝑦𝑛)~(𝑥0, 𝑦0). 

In order to show (𝑥𝑛+1, 𝑦𝑛+1)~(𝑥0, 𝑦0) we first show (𝑥𝑛+1, 𝑦𝑛+1)~(𝑥𝑛, 𝑦𝑛).  

According to ESC it is sufficient to show  

a) 𝑥𝑛+1𝑥𝑛 − (𝑘2 − 1)𝑦𝑛+1𝑦𝑛 ≡ 0 𝑚𝑜𝑑 𝑘2 and 

b) 𝑥𝑛+1𝑦𝑛 − 𝑦𝑛+1𝑥𝑛 ≡ 0 𝑚𝑜𝑑 𝑘2. 

a) With 𝑅 we get 

 

𝑥𝑛+1𝑥𝑛 − (𝑘2 − 1)𝑦𝑛+1𝑦𝑛 = (𝑘𝑥𝑛 + 𝑦𝑛(𝑘2 − 1))𝑥𝑛 − (𝑘2 − 1)(𝑥𝑛 + 𝑘𝑦𝑛)𝑦𝑛 =

⋯ = 𝑘(𝑥𝑛
2 − (𝑘2 − 1)𝑦𝑛

2) = 𝑘𝑘2 ≡ 0 𝑚𝑜𝑑 𝑘2. 

 

Since (𝑥𝑛+1, 𝑦𝑛+1)~(𝑥𝑛, 𝑦𝑛) and (𝑥𝑛, 𝑦𝑛)~(𝑥0, 𝑦0) we have(𝑥𝑛+1, 𝑦𝑛+1)~(𝑥0, 𝑦0), 

hence (𝑥𝑛+1, 𝑦𝑛+1) ∈ 𝐾(𝑥0, 𝑦0). 

    

b) Similar to a).  

 

2. The matrix representation of 𝑅 is obvious. ∎ 

 

Repeated application of 𝑅 in matrix form brings powers 𝑀𝑛 of 𝑀 = (𝑘 𝑘2 − 1
1 𝑘

) 

into play. 

 

According to the inductive definition of powers of 𝑀, 

 

𝑀1 ≔ 𝑀, 𝑀𝑛+1 ≔ 𝑀𝑛𝑀, 𝑛 ∈ ℕ we get, for example, 

𝑀2 = (
2𝑘2 − 1 2𝑘(𝑘2 − 1)

2𝑘 2𝑘2 − 1
), 𝑀3 = (

4𝑘3 − 3𝑘 (4𝑘2 − 1)(𝑘2 − 1)

4𝑘2 − 1 4𝑘3 − 3𝑘
).  
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The polynomials in the cells of the matrices are Chebyshev polynomials 𝑇𝑛(𝑘) of 

the first kind and 𝑈𝑛(𝑘) of the second kind. 

 

Chebyshev Polynomials of the first kind 𝑇𝑛(𝑘) resp. second kind 𝑈𝑛(𝑘)  are defined 

recursively in the following way [3]: 

  

𝑇𝑛+1(𝑘) = 2𝑘𝑇𝑛(𝑘) − 𝑇𝑛−1(𝑘),    𝑇0(𝑘) = 1, 𝑇1(𝑘) = 𝑘    

𝑈𝑛+1(𝑘) = 2𝑘𝑈𝑛(𝑘) − 𝑈𝑛−1(𝑘),    𝑈0(𝑘) = 1, 𝑈1(𝑘) = 2𝑘   

 

Hence 

𝑇0(𝑘) = 1, 𝑇1(𝑘) = 𝑘, 𝑇2(𝑘) = 2𝑘2 − 1, 𝑇3(𝑘) = 4𝑘3 − 3𝑘, 𝑇4(𝑘) = 

8𝑘4 − 8𝑘2 + 1, …     

𝑈0(𝑘) = 1, 𝑈1(𝑘) = 2𝑘, 𝑈2(𝑘) = 4𝑘2 − 1, 𝑈3(𝑘) = 8𝑘3 − 4𝑘, 𝑈4(𝑘) = 

16𝑘4 − 12𝑘2 + 1, …  

 

In the following we shortly write e.g. 𝑇𝑛, 𝑈𝑛 instead of 𝑇𝑛(𝑘) and 𝑈𝑛(𝑘).  

If we compare, for example, matrix 𝑀3 with Chebyshev polynomials then  

 

𝑀3 = (
4𝑘3 − 3𝑘 (4𝑘2 − 1)(𝑘2 − 1)

4𝑘2 − 1 4𝑘3 − 3𝑘
) = (

𝑇3 𝑈2(𝑘2 − 1)
𝑈2 𝑇3

) 

 

This observation will be generalized in theorem 2.2. 

 

First of all, we indicate the following lemma, whose assertions on Chebyshev 

polynomials will partially be used in proving theorem 2.2 but are also interesting, 

taken by itself.  

 

Lemma 2.1 Let 𝑘 ∈ ℕ, 𝑘 ≥ 2 then 

a) 𝑈𝑛 = 𝑈𝑛−1𝑘 + 𝑇𝑛, 𝑛 ∈ ℕ,  

b) 𝑇𝑛 = 𝑈𝑛−1𝑘 − 𝑈𝑛−2, 𝑛 ≥ 2, 

c) 𝑇𝑛+1 = 𝑇𝑛𝑘 + 𝑈𝑛−1(𝑘2 − 1), 𝑛 ∈ ℕ. 

d) 2𝑇𝑛 = 𝑈𝑛 − 𝑈𝑛−2, 𝑛 ≥ 2, 

 

Proof. We use induction to prove the three assertions. For c) we need a) and b). 

a) Let 𝑛 = 1 then 𝑈0𝑘 + 𝑇1 = 1𝑘 + 𝑘 = 2𝑘 = 𝑈1. Let 𝑛 ≥ 1 and a) be proven for 

each 𝑚 with 1 ≤ 𝑚 ≤ 𝑛. 

  

From this and the recursive definition of 𝑇𝑛 follows  

 



Pell equations                                                                                                                                            67 

 

 

𝑇𝑛+1 = 2𝑘𝑇𝑛 − 𝑇𝑛−1 = 2𝑘(𝑈𝑛 − 𝑈𝑛−1𝑘) − (𝑈𝑛−1 − 𝑈𝑛−2𝑘) = 

2𝑘𝑈𝑛 − 𝑈𝑛−1 − 𝑘(2𝑘𝑈𝑛−1 − 𝑈𝑛−2) = 𝑈𝑛+1 − 𝑘𝑈𝑛 . 

 

Hence 𝑈𝑛+1 = 𝑘𝑈𝑛 + 𝑇𝑛+1. 

b) Let 𝑛 = 2 then 𝑈1𝑘 − 𝑈0 = 2𝑘2 − 1 = 𝑇2. Let 𝑛 ≥ 2 and b) be proven for each 

𝑚 with 2 ≤ 𝑚 ≤ 𝑛. From this and the recursive definition of 𝑈𝑛 follows 

 

𝑇𝑛+1 = 2𝑘𝑇𝑛 − 𝑇𝑛−1 = 2𝑘(𝑈𝑛−1𝑘 − 𝑈𝑛−2) − (𝑈𝑛−2𝑘 − 𝑈𝑛−3) = 

2𝑘2𝑈𝑛−1 − 2𝑘𝑈𝑛−2 − 𝑘𝑈𝑛−2 + 𝑈𝑛−3 = 

𝑘(2𝑘𝑈𝑛−1 − 𝑈𝑛−2) − (2𝑘𝑈𝑛−2 − 𝑈𝑛−3) = 𝑘𝑈𝑛 − 𝑈𝑛−1 . 

 

Finally 𝑇𝑛+1 = 𝑘𝑈𝑛 − 𝑈𝑛−1. 

 

c) Let 𝑛 = 1 then 𝑇1𝑘 + 𝑈0(𝑘2 − 1) = 𝑘𝑘 + 1(𝑘2 − 1) = 2𝑘2 − 1 = 𝑇2. 

 From b) 𝑇𝑛+1 = 𝑈𝑛𝑘 − 𝑈𝑛−1 and with a) we get 

 

𝑇𝑛+1 = 𝑈𝑛𝑘 − 𝑈𝑛−1 = (𝑇𝑛 + 𝑘𝑈𝑛−1)𝑘 − 𝑈𝑛−1 = 𝑇𝑛𝑘 + 𝑈𝑛−1(𝑘2 − 1) 

 

and finally 𝑇𝑛+1 = 𝑇𝑛𝑘 + 𝑈𝑛−1(𝑘2 − 1). 

 

d) Let 𝑛 = 2 then 𝑈2 − 𝑈0 = (4𝑘2 − 1) − 1 = 4𝑘2 − 2 = 2𝑇2. 

Let 𝑛 ≥ 2 and d) be proven for each 𝑚 with 2 ≤ 𝑚 ≤ 𝑛. From this and the recursive 

definition of 𝑇𝑛 we get 

 

2𝑇𝑛+1 = 2(2𝑘𝑇𝑛 − 𝑇𝑛−1) = 4𝑘𝑇𝑛 − 2𝑇𝑛−1 = 2𝑘(𝑈𝑛 − 𝑈𝑛−2) − (𝑈𝑛−1 −

𝑈𝑛−3) = (2𝑘𝑈𝑛 − 𝑈𝑛−1) − (2𝑘𝑈𝑛−2 − 𝑈𝑛−3) = 𝑈𝑛+1 − 𝑈𝑛−1. 

 

Hence 2𝑇𝑛+1 = 𝑈𝑛+1 − 𝑈𝑛−1. ∎ 

 

Theorem 2.2 1. Let 𝑘 ∈ ℕ, 𝑘 ≥ 2, and 𝑀 = (𝑘 𝑘2 − 1
1 𝑘

) = (
𝑇1 𝑈0(𝑘2 − 1)
𝑈0 𝑇1

), 

then  

𝑀𝑛 = (
𝑇𝑛 𝑈𝑛−1(𝑘2 − 1)

𝑈𝑛−1 𝑇𝑛
) for 𝑛 ∈ ℕ. 

 

2. Let (𝑥0
𝑦0

) be the fundamental solution in the solution class 𝐾(𝑥, 𝑦) of 

𝑥2 − (𝑘2 − 1)𝑦2 = 𝑘2  then for the n-th solution (𝑥𝑛, 𝑦𝑛) in 𝐾(𝑥, 𝑦), 𝑛 ≥ 1  
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(
𝑥𝑛

𝑦𝑛
) = (

𝑇𝑛 𝑈𝑛−1(𝑘2 − 1)
𝑈𝑛−1 𝑇𝑛

) (
𝑥0

𝑦0
) 

 

3. With (𝑥0
𝑦0

) = (𝑘
0
) the trivial, imprimitive solutions in 𝐾(𝑘, 0) ∖ {(𝑘, 0)} can be 

represented as  

 

(𝑥𝑛
𝑦𝑛

) = (
𝑇𝑛 𝑈𝑛−1(𝑘2 − 1)

𝑈𝑛−1 𝑇𝑛
) (𝑘

0
) = ( 𝑘𝑇𝑛

𝑘𝑈𝑛−1
) , 𝑛 ≥ 1.   

 

Proof. 1. We use induction. Let 𝑛 = 1 then the assertion is true. 

 Let the assertion be true for an 𝑛 ∈ ℕ, then we have to show that  

 

𝑀𝑛+1 = 𝑀𝑛𝑀 = (
𝑇𝑛 𝑈𝑛−1(𝑘2 − 1)

𝑈𝑛−1 𝑇𝑛
) (𝑘 𝑘2 − 1

1 𝑘
) =

(
𝑇𝑛𝑘 + 𝑈𝑛−1(𝑘2 − 1) (𝑈𝑛−1𝑘 + 𝑇𝑛)(𝑘2 − 1)

𝑈𝑛−1𝑘 + 𝑇𝑛 𝑇𝑛𝑘 + 𝑈𝑛−1(𝑘2 − 1)
). 

 

In order to prove 

 

(
𝑇𝑛+1 𝑈𝑛(𝑘2 − 1)
𝑈𝑛 𝑇𝑛+1

) = (
𝑇𝑛𝑘 + 𝑈𝑛−1(𝑘2 − 1) (𝑈𝑛−1𝑘 + 𝑇𝑛)(𝑘2 − 1)

𝑈𝑛−1𝑘 + 𝑇𝑛 𝑇𝑛𝑘 + 𝑈𝑛−1(𝑘2 − 1)
)  

 

we need that 

 

i) 𝑈𝑛 = 𝑈𝑛−1𝑘 + 𝑇𝑛, 𝑛 ∈ ℕ  

ii) 𝑇𝑛+1 = 𝑇𝑛𝑘 + 𝑈𝑛−1(𝑘2 − 1), 𝑛 ∈ ℕ, 

 

which has been proven in Lemma 2.1 where i) corresponds to a) and ii) to c).  

 

2. We know from theorem 2.1 that (𝑥𝑛+1
𝑦𝑛+1

) = (𝑘 𝑘2 − 1
1 𝑘

) (𝑥𝑛
𝑦𝑛

), 

 

Let (𝑥0
𝑦0

) be the fundamental solution in the solution class 𝐾(𝑥, 𝑦) of 

𝑥2 − (𝑘2 − 1)𝑦2 = 𝑘2 then a simple inductive argument, using 1., shows that for 

the n-th solution (𝑥𝑛, 𝑦𝑛) in 𝐾(𝑥, 𝑦), 𝑛 ≥ 1    

 

(𝑥𝑛
𝑦𝑛

) = (
𝑇𝑛 𝑈𝑛−1(𝑘2 − 1)

𝑈𝑛−1 𝑇𝑛
) (𝑥0

𝑦0
). 
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3. With (𝑥0
𝑦0

) = (𝑘
0
) the trivial, imprimitive solutions in 𝐾(𝑘, 0) ∖ {(𝑘, 0)} can be 

represented as  

(
𝑥𝑛

𝑦𝑛
) = (

𝑇𝑛 𝑈𝑛−1(𝑘2 − 1)
𝑈𝑛−1 𝑇𝑛

) (
𝑘

0
) = (

𝑘𝑇𝑛

𝑘𝑈𝑛−1
) , 𝑛 ≥ 1 

which is a direct consequence of 2. ∎ 

 

3 Recursion II 

 

By means of the multiplication principle we get another linear recursion for the 

solutions to the Pell equation 𝑥2 − (𝑘2 − 1)𝑦2 = 𝑘2, 𝑘 ∈ ℕ, 𝑘 ≥ 2                 (1).  

 

Theorem 3.1. Let (𝑥0, 𝑦0) the fundamental solution in the solution class 𝐾(𝑥0, 𝑦0) 

of (1) and 𝑥1 + 𝑦1√𝑘2 − 1 = (𝑥0 + 𝑦0√𝑘2 − 1)(𝑘 + √𝑘2 − 1) , which means  

(𝑥1, 𝑦1) = (𝑘𝑥0 + 𝑦0(𝑘2 − 1), 𝑥0 + 𝑘𝑦0). 

The other solutions in 𝐾(𝑥0, 𝑦0) are supplied by the recursion 𝑆: 

𝑥𝑛+1 = 2𝑘𝑥𝑛 − 𝑥𝑛−1, 𝑛 ≥ 1, initial values  𝑥0, 𝑥1     (𝑆1) 

𝑦𝑛+1 = 2𝑘𝑦𝑛 − 𝑦𝑛−1 , 𝑛 ≥ 1, initial values 𝑦0, 𝑦1.    (𝑆2) 

The initial values 𝑥0, 𝑥1 and 𝑦0, 𝑦1 arise from the solutions (𝑥0, 𝑦0) und (𝑥1, 𝑦1).  

 

Proof. We use recursion I. According to 𝑅 we have 

𝑥𝑛+1 = 𝑘𝑥𝑛 + 𝑦𝑛(𝑘2 − 1)         𝑅1    

 𝑦𝑛+1 = 𝑥𝑛 + 𝑘𝑦𝑛,  𝑛 ≥ 0          𝑅2              

The fundamental solution (𝑥0, 𝑦0) of the solution class 𝐾(𝑥0, 𝑦0) yields the initial 

values for recursion 𝑅. 

Substituting 𝑅2, 𝑦𝑛 = 1𝑥𝑛−1 + 𝑘𝑦𝑛−1, 𝑛 ≥ 1 into 𝑅1 we get  

𝑥𝑛+1 = 𝑘𝑥𝑛 + 𝑦𝑛1(𝑘2 − 1) = 𝑘𝑥𝑛 + (𝑥𝑛−1 + 𝑘𝑦𝑛−1)(𝑘2 − 1) = 

𝑘𝑥𝑛 + 𝑥𝑛−1(𝑘2 − 1) + 𝑘(𝑥𝑛−1 + 𝑘𝑥𝑛−1) = 2𝑘𝑥𝑛 + (𝑥𝑛−1(𝑘2 − 1) − 𝑥𝑛−1𝑘2) =

2𝑘𝑥𝑛 − 𝑥𝑛−1.   

Hence 𝑥𝑛+1 = 2𝑘𝑥𝑛 − 𝑥𝑛−1  (𝑆1). 

In order to get (𝑆2), 𝑦𝑛+1 = 2𝑘𝑦𝑛 − 𝑦𝑛−1 from (𝑅) we proceed in a similar way. 

Substituting (𝑅1), 𝑥𝑛 = 𝑘𝑥𝑛−1 + 𝑦𝑛−1(𝑘2 − 1) into (𝑅2), 𝑦𝑛+1 = 𝑥𝑛 + 𝑘𝑦𝑛  yields  

𝑦𝑛+1 = 𝑥𝑛 + 𝑘𝑦𝑛 = 𝑘𝑥𝑛−1 + 𝑦𝑛−1(𝑘2 − 1) + 𝑘𝑦𝑛. 

From (𝑅2) we get 𝑘𝑥𝑛−1 = 𝑘𝑦𝑛 − 𝑘2𝑦𝑛−1. Hence 

 

𝑦𝑛+1 =   𝑘𝑥𝑛−1 + 𝑦𝑛−1(𝑘2 − 1) + 𝑘𝑦𝑛 = 

𝑘𝑦𝑛 − 𝑘2𝑦𝑛−1 + (𝑦𝑛−1(𝑘2 − 1) + 𝑘𝑦𝑛) = 2𝑘𝑦𝑛 − 𝑦𝑛−1.  

 

Hence 𝑦𝑛+1 = 2𝑘𝑦𝑛 − 𝑦𝑛−1   (𝑆2). ∎ 
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Recursion II can be used to get explicit formulas for (𝑥𝑛, 𝑦𝑛). It is a standard way 

to go from a linear, homogenous recursion of second order to an explicit formula 

(see [4]).  

 

Theorem 3.2 Let (𝑥0, 𝑦0) the fundamental solution in the solution class 𝐾(𝑥0, 𝑦0) 

of (1) and (𝑥1, 𝑦1) = (𝑘𝑥0 + 𝑦0(𝑘2 − 1), 𝑥0 + 𝑘𝑦0) as in theorem 3.1. 

Recursion 𝑆: 

 

𝑥𝑛+1 = 2𝑘𝑥𝑛 − 𝑥𝑛−1, 𝑛 ≥ 1, initial values 𝑥0, 𝑥1     𝑆1 

𝑦𝑛+1 = 2𝑘𝑦𝑛 − 𝑦𝑛−1, 𝑛 ≥ 1, initial values 𝑦0, 𝑦1, 𝑛 = 0,1, …  𝑆2 

 

leads to the following explicit solutions to 𝑆: 

 

𝑥𝑛 =
𝑦0√𝑘2−1+𝑥0

2
(𝑘 + √𝑘2 − 1)𝑛 −

𝑦0√𝑘2−1−𝑥0

2
(𝑘 − √𝑘2 − 1)𝑛, 

𝑦𝑛 =
𝑦0√𝑘2−1+𝑥0

2√𝑘2−1
(𝑘 + √𝑘2 − 1)𝑛 +

𝑦0√𝑘2−1−𝑥0

2√𝑘2−1
(𝑘 − √𝑘2 − 1)𝑛. 

 

On the other hand: given these explicit formulas, where (𝑥0, 𝑦0) is a solution to (1), 

then (𝑥𝑛, 𝑦𝑛) is a solution to (1). 

 

Proof. Recursion (𝑆1) 𝑥𝑛+1 = 2𝑘𝑥𝑛 − 𝑥𝑛−1, 𝑛 ≥ 1, initial values 𝑥0,  

𝑥1 = 𝑘𝑥0 + 𝑦0(𝑘2 − 1) leads to the characteristic equation 𝑡2 − 2𝑘𝑡 + 1 = 0 with 

solutions 𝛼 = 𝑘 + √𝑘2 − 1, 𝛽 = 𝑘 − √𝑘2 − 1. Since 𝛼 ≠ 𝛽, 𝛼 > 𝛽 we have 

𝑥𝑛 = A𝛼𝑛 − 𝐵𝛽𝑛, where 

A =
𝑥1 − (𝑘 − √𝑘2 − 1)𝑥0

2√𝑘2 − 1
, B =

𝑥1 − (𝑘 + √𝑘2 − 1)𝑥0

2√𝑘2 − 1
 

Using 𝑥1 = 𝑘𝑥0 + 𝑦0(𝑘2 − 1) we get 

A =
𝑦0√𝑘2 − 1 + 𝑥0

2
, B =

𝑦0√𝑘2 − 1 − 𝑥0

2
 

A similar procedure works for (𝑆2). We have 

𝑦𝑛 = A′𝛼𝑛 − 𝐵′𝛽𝑛, where 

A′ =
𝑦1 − (𝑘 − √𝑘2 − 1)𝑦0

2√𝑘2 − 1
, B′ =

𝑦1 − (𝑘 + √𝑘2 − 1)𝑦0

2√𝑘2 − 1
 

Using 𝑦1 = 𝑥0 + 𝑘𝑦0 we get 

A′ =
𝑦0√𝑘2 − 1 + 𝑥0

2√𝑘2 − 1
, B′ =

−𝑦0√𝑘2 − 1 + 𝑥0

2√𝑘2 − 1
 

Altogether we get the explicit solution formulas for solutions to 𝑆:   
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𝑥𝑛 =
𝑦0√𝑘2−1+𝑥0

2
(𝑘 + √𝑘2 − 1)𝑛 −

𝑦0√𝑘2−1−𝑥0

2
(𝑘 − √𝑘2 − 1)𝑛, 

𝑦𝑛 =
𝑦0√𝑘2−1+𝑥0

2√𝑘2−1
(𝑘 + √𝑘2 − 1)𝑛 +

𝑦0√𝑘2−1−𝑥0

2√𝑘2−1
(𝑘 − √𝑘2 − 1)𝑛, 𝑛 = 0,1, ... 

Now we show, that given these explicit formulas, where (𝑥0, 𝑦0) is a solution to 

(1), not necessarily a fundamental solution, then (𝑥𝑛, 𝑦𝑛) is a solution to (1). 

We use the following shortcuts 

U = A𝛼𝑛, 𝑉 = 𝐵𝛽𝑛 

then 𝑥𝑛 = 𝑈 − 𝑉, 𝑦𝑛 =
1

√𝑘2−1
(𝑈 + 𝑉)  

and it can easily be checked that (𝑥𝑛, 𝑦𝑛), 𝑛 = 0,1, … is a solution to (1). 

Furthermore we show that (𝑥𝑛, 𝑦𝑛) not only is a solution to (1) but is in the solution 

class 𝐾(𝑥0, 𝑦0), which means (𝑥𝑛, 𝑦𝑛)~(𝑥0, 𝑦0), 𝑛 = 0,1, …  

The proof is by induction.  

From the explicit formula we get 

 𝑥1 =
𝑦0√𝑘2−1+𝑥0

2
(𝑘 + √𝑘2 − 1)

1

−
𝑦0√𝑘2−1−𝑥0

2
(𝑘 − √𝑘2 − 1)

1
= 

𝑥0𝑘 + 𝑦0(𝑘2 − 1) 

𝑦1 =
𝑦0√𝑘2 − 1 + 𝑥0

2√𝑘2 − 1
(𝑘 + √𝑘2 − 1)1 +

𝑦0√𝑘2 − 1 − 𝑥0

2√𝑘2 − 1
(𝑘 − √𝑘2 − 1)1

= 𝑥0 + 𝑘𝑦0 

Hence (see theorem 3.1) (𝑥1, 𝑦1)~(𝑥0, 𝑦0), which means (𝑥1, 𝑦1) ∈ 𝐾(𝑥0, 𝑦0). 

Suppose (𝑥𝑛, 𝑦𝑛)~(𝑥0, 𝑦0) for 𝑛 ∈ ℕ, then we show (𝑥𝑛+1, 𝑦𝑛+1)~(𝑥𝑛, 𝑦𝑛), which 

finally yields (𝑥𝑛+1, 𝑦𝑛+1)~(𝑥0, 𝑦0).  

 

We show (𝑥𝑛+1, 𝑦𝑛+1) = (𝑘𝑥𝑛 + 𝑦𝑛(𝑘2 − 1), 𝑥𝑛 + 𝑘𝑦𝑛). For that we use  

𝑥𝑛 = A𝛼𝑛 − 𝐵𝛽𝑛 and 𝑦𝑛 =
A𝛼𝑛−𝐵𝛽𝑛

√𝑘2−1
 and get 

𝑘𝑥𝑛 + 𝑦𝑛(𝑘2 − 1) = 𝑘A𝛼𝑛 − 𝑘𝐵𝛽𝑛 +
A𝛼𝑛 − 𝐵𝛽𝑛

√𝑘2 − 1
(𝑘2 − 1)

= 𝑘A𝛼𝑛 − 𝑘𝐵𝛽𝑛 + (A𝛼𝑛 − 𝐵𝛽𝑛)√𝑘2 − 1

= A𝛼𝑛 (𝑘 + √𝑘2 − 1) − 𝐵𝛽𝑛 (𝑘 − √𝑘2 − 1) = A𝛼𝑛+1 − 𝐵𝛽𝑛+1

= 𝑥𝑛+1 

Similarly, we have  

𝑥𝑛 + 𝑘𝑦𝑛 = A𝛼𝑛 − 𝐵𝛽𝑛 +
kA𝛼𝑛 + 𝑘𝐵𝛽𝑛

√𝑘2 − 1

= A𝛼𝑛 (1 +
𝑘

√𝑘2 − 1
) + 𝐵𝛽𝑛 (−1 +

𝑘

√𝑘2 − 1
)

=
A𝛼𝑛+1

√𝑘2 − 1
+

𝐵𝛽𝑛+1

√𝑘2 − 1
= 𝑦𝑛+1 
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Altogether (𝑥𝑛+1, 𝑦𝑛+1)~(𝑥𝑛, 𝑦𝑛), and with (𝑥𝑛, 𝑦𝑛)~(𝑥0, 𝑦0) we get 

(𝑥𝑛+1, 𝑦𝑛+1)~(𝑥0, 𝑦0), which shows that (𝑥𝑛+1, 𝑦𝑛+1) ∈ 𝐾(𝑥0, 𝑦0). ∎ 
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