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Abstract
In this article, the problem of simple step—stress accelerated life tests when the
life time follows the exponentiated Rayleigh distribution is considered. Based on
type—Il hybrid censoring scheme, the maximum Likelihood and Bayes methods of
estimation are used for estimating the distribution parameters and acceleration factor.
A Monte Carlo simulation study is carried out to examine the performance of
obtained estimates.
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(1) Introduction

The recent reliability levels attained by many electromechanically materials
and items make it infeasible to test their failure times under normal use operating
conditions science items tend to have a long life and lengthy applied tests tend to
be far too expensive. For this reason, accelerated life tests (ALTS) are performed
to be used in manufacturing industries to obtain enough failure data, in a short
period of time; necessary to make inferences regarding its relationship with
external variables. In ALTs, the test items are tested only at accelerated condition,
via; higher than normal level of stress, to induce early failures. Data collected at
such accelerated conditions are then extrapolated through a physically appropriate
statistical model to estimate the life time distribution at a normal use conditions.
Some key references in the area of accelerated testing included [Wang and
Balakrishnan (2008)], [Pascual (2008)]. A special class of the ALT is called the
step—stress (SS) testing which allows the experiments to choose one or more stress



38 R. E. Ibrahim and H. E. Semary

factors in a life-testing experiment. Stress factors can include humidity,
temperature, vibration, voltage load or any other factor that directly affects the life
of the products.

We consider here a Simple Step—Stress (SSS) model with only two stress
levels. This model has been extensively in the literature. In 1980 Nelson proposed
the Cumulative Exposure (CE) model, while Miller and Nelson (1983) and Baiet,
et. al. (1989) discussed the determination of optimal time at which to change the
stress level from S, to S,. Balakrishnan and Xie (2007) derived the exact

inference for a simple step—stress model with type—Il hybrid censored data from
the exponential distribution. Type—Il HCS was discussed by more recent research
on ALTs, see Chils et. al. (2003) and Chandrasekar et. al. (2004). Exponentiated
Rayleigh (ER) distribution as a special case from Kumaraswamy Weibull
distribution, is one of the most popular models, it has been extensively used for
modeling data in reliability, engineering and biological studies.

In this paper, SSS is applied to ER distribution. The cumulative distribution
function (CDF) and the probability density function (pdf) of ER distribution are
obtained as follows;

-1
f(x;z,e)zzm.xe“2.(1—e“2) x>0 , 2,050 1)
and,
2\0
F(x;l,@)z(l—e“) x>0 , 1,050 (2)

Where @ is a shape parameter and A is a scale parameter. The reliability
(RF) and hazard rate function (hrf) of ER distribution are;

R(X:1,6) :{1—(1—e‘“2 ﬂ 3)
and,

6-1
29,1.xe—“2.(1—e—“2)

T

Here A is the scale parameter and & is the shape parameter. The behavior
of the distribution or its failure rate function depends on the shape parameter 4.
For any 4 the ER distribution has an increasing hrf if (6>1), it has a decreasing
hrfif (0 <1 and if (6=1) hrf is constant.

In this paper, we consider a SSS model in which the life testing experiment
gets terminated either at a pre fixed time (say, z,,,,) or at a random time ensuring

at least a specified number of failure (say, r out of n). Under this model in
which the data obtained are type—Il HCS, we consider the case of two stress levels
with underlying life-times being ER distribution.

The model considered here is discussed in section (2). Due to the form of
time constraint, the MLEs of the unknown parameters are discussed in section (3).

h(x;4,0) =

(4)
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In section (4), we discussed the Bayesian estimation under Gamma prior
distribution and using square error loss function (SEL), weighted loss function
(WL), linear exponential loss function (LINEX) and general entropy loss function
(GEL). Monte Carlo simulation results are presented in section (5). Finally
conclusion is presented in section (6).

(2) Model Description

During the simple step stress (SSS) Alts, units are subjected to successively
high levels of stress. After a units is used to normal levels of stress S, it is
subjected to an initial level of stress S; for a predetermined time z; at the first
step in the test. If it does not fail, it is subjected to a higher level stress S, for a
predetermined z, at the next step. In analogy, it is repeatedly subjected to higher

levels of stress until it fails. The other units are tested similarly. The pattern of
stress levels and time intervals is the all units. The model assumptions for
SSSALTS procedures will be described as follows;

Based on type—Il HCS SSALTSs has the following assumptions;

1. There are two levels of stress S; and S, where, S; <S,, are applied such
that each units is initially put under stress S, .
2. The experiment begins with n identical units under an initial stress S; .

The stress level is raised to S, at time z;, and the life testing is terminated at a
random time 7, . Here 7, =max (x, ,7,), where;

(1) r(<n) and 0<7 <7, <oo are fixed in advance,

(i) Xy <X, <...<X, denote the order failure times of n units under test,
(iii) 7, denotes a fixed time at which the stress level is changed from S; to S,
(iv)x, denotes the time when the r'" failure occurs,

(V) 7, denotes a fixed time before which if the r' failure occurs the experiment is
terminated at time 7.
(vi)z, denotes the random time when the life-testing experiment is terminated.
when, n; = number of units that fail before time 7, n, = number of units that

fail before time 7, at stress level S; and n: = number of units that fail before

time 7, atstress level S,. Then, it is evident that;
r-n , if x,.,>7 X it x,>7,
n, = S =
n, ,If X, <1, 7, , If X, <7

3. The ER scale parameters 4;,j=1,2 of the underlying life time
distribution is assumed to have an inverse power function of stress level i. e.;
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A =cSP , j=12 , c,p>0 , S;=— |
Vi
2 n.
* j _ J ; . .
v _ij , by == , C is the constant power function and p is the
j=1
: 2N
j=1

power of applied stress.

To analyze the data from SSSALTs, a model in needed to relate the
distribution under SS to the distribution under constant stress. The most
commonly used model is cumulative exposure (CE) model proposed by Nelson
(1980). The basic idea of the CE model starts from the fact that, a SSSALTs model
must explain the cumulative effect of the applied stresses. The CE model assumed
that the remaining test units are failed according to the CDF of current stress
levels. According to Nelson (1990), the CE model G(x) with k SSSALTS is

given as;

G(x)=F;(x"ic,p,0) C =12,k (5)

where X :[(xij —rj_1)+Uj_1J for i=12,..,k,i=12,.,n; and
o2\

F; (x;}):Ll—ecsj i ] the CDF of the failure at stress S ,u;_, is the solution

of the equation F; (Uj_l,Sj)=Fj_1(r}‘_1,8j_1). Therefore the general form

S.
solution is given as U ; =7; S’—_l Note that, U, =0, 7; =(z; —7; 1) +U 4,
j
and 7, =0 where, z; is the time of changing stress. Also F; () is as given in (2).
Thus the corresponding pdf will be as follows;
g(X):fJ(X*) y j:1,2,...,k y ijlﬁxij <Tj (6)
(3) Maximum Likelihood Estimation:

The likelihood function based on type—Il HSC is then given by;
The likelihood function based on type—Il HSC is then given by;

n! k r* * * n_r*
Lc,p,0:x)= * Hng(Xij)[l_Gk(Tk)} (7
(N=r)jaia
where (n—r*) is the number of surviving units r* =n, +n;; from CED in

(5) and corresponding pdf in (6), we obtain the likelihood function for 2—
parameter ER distribution for 2-SSALT with type—Il HCS, as follows;
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L(c,p,0:x)=(c6) Zs ’p{iiLX PRt j(D‘“(c p))}

j=li=l
.(1— D/ (c, p))n_r* 8)

<SP «2 W2
where DnJ (C , p) :(1_e C-SJ Xjj ] and Dk :[1_e—c.slf_rk ] for

j =1,2,...,k . The MLEs of the unknown parameters are obtained by maximizing
the logarithm of the likelihood function expressed in the following form;

[fn(c)+£n(49)]+p2n mes; )+22£n(xu) CZZSP ;

j=li=l j=li=1l

+(0- 1)22£n(D ©.p))+(n-r)m(1-D{(c.p)) (9)

j=li=1

The first partial derivatives of the likelihood function with respect to the
parameters ¢ ,8 and p respectively, will be as follows;

ol r*
60 ;ZD ©.p) @0),
o1 ey SO | e[ @ )
& c Z-ll.z-;s o DZELD . p)} o r)[l—Df(c,p)] 0 .
and,
——Zn mes;)- CZZSpXU m(s;)+(6- 1)22 ¢nGm0
j=li-1 jzial Dn (C p)
I cm@S;h(M))
(n—r )[—1—D|f(c,p)J =0 @2
where,
2 —c.S-p.x-*-2
hl(D)=sJP.x;; e 1TV =12,k ,i=12,.n; and

p #2 —C.Sf.r;z
h,() =Sy .7 &

Thus the likelihood equations (10), (11) and (12) are reduced to a system of
two nonlinear equations by substituting from (10) to (11) and (12) which could be
solved numerically with respectto &,c and p to get the MLEs of #,c and p by
using equations (11) and (12).

In addition, estimates value }Zj for each stress will be obtained by
substituting the estimates value of ¢ and p in the inverse power law relationship



42 R. E. Ibrahim and H. E. Semary

(4) Bayesian Estimation

In this section, we assume that the three parameters c,d and p are
unknown. It is assumed that ¢, and p are independent, where ¢,6 and p have
the following prior density distributions, respectively;

7(c) =b ¢t e™C /ra ; ¢>0 , (a,b, >0)
7(p) =b2 p2t e 2P /ra, . p>0, (a,,b, >0) (13)
7(0) =b3 6% e [Ta, . 0>0 |, (a3,b; >0)

As in Gupt and Kundu (2001) the joint density functions of c,# and p is
obtained from (13) and written as;

a
ﬂ'(C ’ p '9) _ blal b;z .b33 lcal—lleag—ll paz—lle—blc—bz p—b39 (14)
I'g I'a, I'ag
since, the parameters are unknown, the likelihood function can be written
as;
- 2 Nj i 2 Nj 2 2 Nj
0@0.c,p/x)ach)" .expi D D xi—cD > SPx; +(¢9—1)ZZ£n(Dnj (c,p))
j=li=l j=li=1 j=li=l
2
+pan£n(Sj)+(n—r*)fn(l—le(c,p))} (15)
j=1

The joint posterior distribution of the parameters ¢,c and p respectively,
is given by;

7(0,c,p/x)=dc" talgriat exp{ZZﬁn X — [b +ZZS'° ; }

=li=1 j=li=l

_9£b322£n(D C, p))J [bz Zn ms; ]

=li=1 =1

_inzjgn(Dnj (c,p))+(n —r*)¢n (1D|f(c,p))} (16)

j=li=1
where,

z(6,c,p/x)dédcdp

g

(4.1) Bayesian Estimators Using Squares Error Loss Function (SEL):
The Bayes estimators of ¢,6 and p, say u(c,d, p)under SEL is given by

the following form;

o—38
o—8
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00 00 00

Ugs €.6,p)=E[u(c.0,p/x)]=[[[u(c.0,p) z(c.0,p/x)dcdodp  (17)
000
From (17) the Bayes estimators of the parameters ¢, and p cannot be

obtained in a simple closed form, in this case as Jaheen, et. al (2014) Monte Carlo
Integration (MCI) may be used. The original MC approach method was developed

by Physicists to use random number generation to compute integrals. Suppose
b

that, we wish to compute a complex integral, Ih(x) dx.

a
If we can decompose h(x) into the production of a function f(x) and a pdf

P(x) defined over the interval (a,b), then note that;
b b
J.h(x) dx :I f(x) P(x)dx =E(f(x)).So that; the integral can be expressed as an
a a

expectation of f(x) over the density P(x). Thus, if we draw a large number
X\, X,y Xy Of random variables from the density P(x), then;

b M
jh(x)dx =E (f (x)) ;MiZf (X, ) - This is referred to as MCI.
a k=1

Now if we want to find Bayes estimators for the function u(c,é, p) based
on SEL, we may use the following formula;

; SuEk 6%, p*). Lk 6 p¥ )
lgs (€.0,p)=E[u(c,0,p)] =41 ——
k=1

Under a SEL the Bayes estimation of c¢,# and pare obtained from

equations (15) and (18) as follows;
(i) Bayes estimation of c: If u(c,@d, p)=c in (18), the Bayes estimate of ¢ is

then given by;

(18)

éBs =22 19)
Wy
where,
Mo, 2 2 0] 2
W= cx .6 .exp{ZZﬁnx{; —Cy >, D S
k=1 iz ==

2 N 2
+(6, —l)ZZKn(Dnj c, p))+ Pk D.N;-nS; +(n—r")n (1—D|f(c : p))}
=t

j=li=l
and,
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WZ—ZC{ g exp{Zanx —ckZZS Pe X

=li=1 j=li=1

+(6, —1)ZZ£n(D (c, p))+pk2n nS;+(n—r )Kn(l DJ(c, p))}

j=li=l
(i) Bayes estimation of 8: If u(c,8,p) =40 in (18), the Bayes estimate of & is
then given by;

2w
Qe =—3 20
3 =\, (20)
where,
M
Wa=>cp .6 exp{ZZﬁn X ckZZS P xIJ
k=1 =1i=1 j=li=1

+(6, —l)ZZﬁn(D (c, p))+kan nS; +(n-r )ﬁn(l D/(c, p))}

j=li=1
(ili)  Bayes estimation of p: If u(c,d,p)=p in (18), the Bayes estimate of p
is then given by;

W,
T 21
PBs w, (21)
where,
W4—Z(Ck 6.)" .p, exp{ZZﬁn X ckZZS P xIJ
=1 =li=1 j=li=1

+(6, —l)ZZEn(D (c, p))+kan nS; +(n—r )En(l DJ(c, p))}

j=li=1
(4.2) Bayesian Estimators Using Welghted Loss Function (WL):
The Bayes estimators of ¢,# and p, say u(c,é, p) under WL is given by
the following form;

1 %“]/u(ck,gk,pk)’l.L(Ck,é’k,pk/X)
_ k=1
E[u(c,e,p)‘l} %:L(ck 0, p" /x)
k=1

Under a WL the Bayes estimation of c,0 and pare obtained from
equations (22) and (15) as follows;
(i) Bayes estimation of c: If u(c,8, p)=c in (22), the Bayes estimate of ¢ is
then given by;

(22)

u:BS (c,8,p)=

éBS - (23)
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where,
M *

WS:Z(]/é'kr cl )exp{ZZﬁnx” ckZZS'kaIJ
k=1 =li=1 j=li=l

j=li=1

+(6, —l)ZZﬁn(D (c, p))+kan NS +(n-r )fn(l DJ(c, p))}

(ii) Bayes estimation of &: If u(c,®, p)=¢9 in (22), the Bayes estimate of 4 is
then given by;

W
QBS :_6 (24)
Wy
where,
L 1
W6—Z[ﬁ exp zzgnxu CKZZS P xIJ
k=1{ C .6 j=li=1 j=li=1

j=li=1

+(8, —1)22£n(D (, p))+pk2n NS +(n—r )ﬁn(l DY(c, p))}

(iii) Bayes estimation of p: If u(c,®, p) = p in (22), the Bayes estimate of p is
then given by;

x w
PBs =VV_7 (25)
1
where,
M
W=y ——— L —.py.exp ZZEnx —ckZZSpkx
k= (Cx -6) j=li-1 =

j=li=l

+(6, —1)22£n(D (c, p))+pk2n AnS;+(n-r )ﬁn(l D(c, p))}
(4.3) Bayesian Estimators Using Non-Linear Exponential Loss Function
(LINEX):

The Bayes estimators of ¢,6 and p, say u(c,@d, p) under LINEX is given
by the following form;

Ugs (€,6,p) = —%fn [Eu (e‘g[“(c’g'p)])} -

M k gk Lk
1 ze—g[u(c 6% p )l Lk, o¥ ,pk/X)
—Zin{kd - (26)
g

>LEk, 6", p* /x)
=]

Under a LINEX the Bayes estimation of ¢, and pare obtained from
equations (26) and (15) as follows;
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(i) Bayes estimation of c: If u(c,8, p)=c in (26), the Bayes estimate of ¢ is
then given by;

£ W,
where,
M . . 2 Nj
Wg=> 6 Cx .exp{—ck (ZZSJW X +g]+22£nxu
k=1 j=li=1 =1li=1l

+(6, —1)22£n(D (, p))+pk2n NS +(n—r )ﬁn(l D (c, p))}

j=li=l
(i)  Bayes estimation of &: If u(c,@, p)=6 in (26), the Bayes estimate of & is
then given by;

553 Z—Efog (VEJ (28)
where,
2 N
WQ—Z(ek c) exp Y inx; —c, ZZSpk X
j=li=1 j=li=1

—0,(( ZZ%n(D (, p))J ZZKn(D (, p))+pk2n NS

j=li=1 j=li=1

+(n=r*)n (1—Dk (c,p))}

(iii) Bayes estimation of p: If u(c,8, p)=p in (26), the Bayes estimate of p is
then given by;

Pgs = w, (29)
where,
2 Nj
WlO—Z(Hk <) exp{z mx; —cy ZZS Pexi
=] i=li-l j=1i-1

2 N 2
+(6, —1).22£n(Dnj c, p))—pk (s—an NS }r(n —r*)¢n (1—Dk9(c , p))}

j=li=1 =

(4.4) Bayesian Estimators Using General Entropy Loss Function (GEL):
The Bayes estimators of ¢,6 and p, say u(c,é, p) under LINEX is given

by the following form;
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1

s €.0.9) =[ E(uc.0.p)" )] V =

%(u(ck 6% p*)Y ) L(c*,0% p* /x)
o =R (30)
Y LEk .o p*/x)
=]

Under a GEL the Bayes estimation of ¢, and pare obtained from
equations (30) and (15) as follows;
(i) Bayes estimation of c: If u(c,8, p)=c in (30), the Bayes estimate of c is
then given by;

1
< Wi |V
A e
where,
M *
Wy = 6 & exp{ZZﬁnxu ckZZSpk xIJ
k=1 =li=1 j=li=1

+(6, —l)ZZﬁn(D (c, p))+kan nS; +(n-r )ﬁn(l D/(c, p))}

j=li=1
(i)  Bayes estimation of &: If u(c,é, p)=0 in (30), the Bayes estimate of 4 is
then given by;

1
3 Wa |V
s :[W_lz} (32)
1
where,
M
le:kzi cr exp{zi%m X5 —Cy Z;Z;S P xIJ
= =1i= =1i=

+(6, —l)ZZEn(D (, p))+kan nS; +(n—r )En(l DJ(c, p))}
j=li=1
(iii)  Bayes estimation of p: If u(c,@, p): p in (30), the Bayes estimate of p is

then given by;
1

_(Wag |V
_{Wl} (33

O (
ve)
%)

where,
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=li=1 j=li=l

M *
W= (6 ) -p~ exp{ZZﬁnx” ckZZS'kaIJ
k=1

j=li=1

+(6, —1)ZZ£n(D (c, p))+pk2n NS +(n—r )En(l D/(c, p))}

(5) Simulation Study

In order to obtain the MLEs and BSEs of the unknown parameters (c, p, &)

and the properties of their estimates through the RMSE, several sample sizes
(N =25,75,125,175) are generated from two parameter ER distribution of a

simple step—stress ALT data. The simulation procedures are described through the
following steps;
(i) For a given values of parameters (c =1.5, p=0.5, =1.5) and selected

values at stress S; =1 and S, =2 calculate 4; =c.S} for each stress level, where
(k =2).

(i) Generate random samples of size (N =25,75,125,175) from uniform
(c=15,p=05,60=15) given values of parameters (0,1) distribution and
obtain the order statistics Uy.y ,....Uy N )-

(iii)  For a given value of the first stress change z; =1, find n; such that:

2
U <[1 <SP x? U
LN S(1-€ <Upn

(iv) For a given value of the second stress change 7, =1.5, find n, such that:

2 2 o
_c.Szp{X —1+7y (5—1] ]
2

U, . <|1-e

ny; N —ng

<U

no+1; N —nq

(v)  Then the order observations x, <..<x, <X, ,, <t are calculated from (2).
(vi) Basedon ny,n,,7;,7, and the several observations;

—  The MLEs (¢,p,6) of the parameters (c,p,0) and RMSEs for the model
parameters over 1000 samples are obtained, respectively, by solving the three non
— linear equations from (10) to (12).

—  The BSEs (¢,p,6) of the parameters (c,p,0) and RMSEs for the model
parameters are obtained by computing summations under different cases:-

- Under SEL in (19), (22) and (24).

- Under WL in (27), (29) and (31).

- Under LINEX in (34), (36) and (38).
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- Under GEL in (41), (43) and (45).
(vii)  Once the values of ¢, p and & are obtained.

49

The estimates are used to obtain depending inverse power law 4, =c.S/,
and the design stress, S, =0.5, the scale parameter under this stress, 4, is

estimated as 4, =¢.S. Also, the rf and hrf at different values of mission times

under usual conditions using (3) and (4).
A Monte Carlo simulation study is carried out in order to calculated the
MLEs, RMSEs (ML), BSEs and RMSE (BS) of the model parameters, based on

Replicated = 1000 Monte Carlo Simulation.

Simulations results; based on SSS ALT for ER distribution under type-lII
HSC with (k =2) are Summarized in;

LINEX and GEL functions, respectively.

Table (2) and (3) show the rf and hrf under different mission times.

Table (1) present the MLEs, RMSE (ML), BSEs and RMSEs (BS) under SEL, WL,

Table (1): MLEs and BSs of Unknown Parameters c,p and 8, RMSE with different Censoring
Scheme c=15,p =05 and =15

n%

Parameters MLE

Baysian

SEL

Baysian
LINEX

Baysian
GEL

Baysian

WL

25

0.4

1.8953
0.9593
1.566

(1.9291)
(1.2747)
(1.0079)

1.5689
0.911
1.3476

(0.2325)
(0.4304)
(0.6959)

1.5543
0.9048
1.3295

(0.2376)
(0.4245)
(0.7057)

1.5574
0.9036
1.3365

(0.2379)
(0.4239)
(0.7026)

1.5155
0.8783
1.3073

(0.2582)
(0.4024)
(0.721)

0.8

1.8965
0.938
1.5678

(2.052)
(1.2263)
(0.9869)

1.5873
1.2706
1.5942

(0.2649)
(0.7758)
(0.7575)

1.5764
1.2691
1.5326

(0.2508)
(0.7742)
(0.733)

1.5814
1.2694
1.5658

(0.2576)
(0.7746)
(0.7488)

1.5647
1.2659
1.4895

(0.2356)
(0.7707)
(0.723)

75

0.4

1.5039
0.819
1.3881

(1.0987)
(1.0145)
(0.8866)

1.858
0.7866
1.8427

(0.386)
(0.3051)
(0.3375)

1.8529
0.7846
1.824

(0.3816)
(0.3016)
(0.3397)

1.8551
0.7847
1.833

(0.3837)
(0.3019)
(0.3392)

1.846
0.7796
1.8048

(0.3765)
(0.2936)
(0.3444)

0.8

1.5338
0.8467
1.4198

(1.1126)
(1.0565)
(0.8628)

1.8597
0.7871
1.8463

(0.3875)
(0.3055)
(0.3346)

1.8545
0.785
1.8273

(0.383)
(0.302)
(0.3369)

1.8568
0.7851
1.8365

(0.3851)
(0.3023)
(0.3363)

1.8475
0.7801
1.8077

(0.3779)
(0.2939)
(0.3419)

125

0.4

1.5344
0.8826
1.4019

(1.0273)
(1.0776)
(0.8602)

1.8446
0.7713
1.77

(0.3668)
(0.287)
(0.3709)

1.8416
0.7705
1.7573

(0.3638)
(0.2855)
(0.3744)

1.843
0.7705
1.7633

(0.3652)
(0.2856)
(0.3731)

1.8382
0.7683
1.744

(0.3604)
(0.2814)
(0.379)

0.8

1.4872
0.8227
1.3816

(1.0042)
(1.0227)
(0.8652)

1.8452
0.7714
1.7714

(0.3673)
(0.2872)
(0.3695)

1.8422
0.7707
1.7585

(0.3642)
(0.2856)
(0.3731)

1.8436
0.7707
1.7645

(0.3657)
(0.2858)
(0.3718)

1.8388
0.7684
1.7449

(0.3608)
(0.2816)
(0.378)

175

0.4

1.4341
0.7871
1.3421

(0.9362)
(0.9836)
(0.8725)

1.8438
0.7586
1.7386

(0.3651)
(0.261)
(0.3709)

1.8416
0.7583
1.7286

(0.3626)
(0.2607)
(0.3742)

1.8427
0.7583
1.7333

(0.3638)
(0.2607)
(0.3728)

1.8392
0.7575
1.7176

(0.36)
(0.2598)
(0.3782)

0.8

1.4556
0.8128
1.3645

o oolsoo|los ool ool ool ool ool e

(0.9439)
(1.0133)
(0.8545)

1.8444
0.7587
1.7398

(0.3656)
(0.2612)
(0.3699)

1.8421
0.7585
1.7296

(0.3631)
(0.2609)
(0.3733)

1.8432
0.7584
1.7344

(0.3643)
(0.2608)
(0.3719)

1.8397
0.7577
1.7186

(0.3604)
(0.2599)
(0.3774)




50 R. E. Ibrahim and H. E. Semary

From tables (1) the following conclusions can be observed:
It is clear that the MLEs and BEs are very close to the initial value of the
parameters as the sample size increases.
As shown in the numerical results the RMSE (MLE & BS) are decreasing when the
sample size is in increasing.
Also shown that RMSE (BS) better than RMSE (MLE) for all sample sizes.
Finally for all sample sizes we note that, ¢ performs better than other estimates

and & performs better than p .

Tables (2) and (3): indicate that the reliability decreases when the mission
time 7, increases. The results get better in the sense that the aim of an ALT

experiments is to get large number of failures (reduce of their reliability) of the
device with higher reliability.

Table (2): The Reliability Function and the Hazard Rate Function with Different Censoring

Scheme
r= MLE Baysian Baysian Baysian Baysian
N t SEL LINEX GEL

Rf HRf Rf HRf Rf HRf Rf HRf Rf HRf
025 0999 0.0682 0.9986 0.2203 0.9985 0.2319 0.9985 0.2294 0.9982 0.2659
050 0.9951 0.2322 09877 0.4836 0.9872 0.4993 0.9873 0.496 0.9857  0.5437
04 075 09787 04715 09587 0.7733 0.9574 0.7901 0.9577 0.7865 0.954 0.8366
1.00 0.9427 0.7815 0.9062 1.1011 0.9042 1.1177 0.9046 1.1142 0.8984 1.163
25 150 0.7978 1.6751 0.7337 1.9856 0.7305 2.0004 0.7311 19973 0.7215 2.0404
0.25 0.9996 0.0679 0.9987 0.2064 0.9986 0.2145 0.9986 0.2108 0.9985 0.2236
050 0.9951 0.2316 0.9883 0.4644  0.988 0.4757 09881 0.4705 0.9876  0.4881
08 0.75 09788 04706 09602 0.7524 0.9593 0.7647 0.9597 0.7591  0.9583 0.778
1.00 0.9428 0.7805 0.9088 1.0804 0.9073 1.0927 0.908 1.0871 0.9056 1.1058
150 0.798 1.674 0.7379 1.9669 0.7354 1.978 0.7365 19729 0.7328 1.9898
025 09981 0.2769 0.9996 0.0781 0.9996 0.0796 0.9996 0.0789 0.9995 0.0816
0.50 0.9853 05576 0.9945 0.2529 0.9945 0.2558 0.9945 0.2545 0.9943  0.2599
04 075 0.9529 0.8509 0.977 0.4994 0.9768 0.5034 0.9769 0.5017 0.9765 0.5088
1.00 0.8966 1.1767 0.9394 0.8133 0.9389 0.8177 09391 0.8158 0.9383  0.8238
75 150 0.7188 2.0525 0.7914 1.7084  0.7905 1.713 0.7909 1.711 0.7892  1.7193
0.25 0.9983 0.2493 09996 0.0777 0.9996 0.0791 0.9996 0.0785 0.9995 0.0812
050 09864 05223 09946 0.2519 0.9945 0.2549 0.9945 0.2536 0.9944  0.259
0.8 0.75 09556 0.8144 09771 0.4982 0.9769 0.5021 0.977 0.5004 0.9765 0.5076
1.00 0.9011 1.1414 09395 0.8118 0.9391 0.8163 0.9393 0.8144 0.9384 0.8224
150 0.7257 2.0215 0.7917 1.7069 0.7908 1.7116 0.7911 1.7095 0.7895 1.7179
0.25 0.9983 0.2488 0.9995 0.082 0.9995 0.0829 0.9995 0.0825 0.9995 0.0839
050 09865 0.5217 0.9943 0.2608 0.9943 0.2625 0.9943 0.2617 0.9942 0.2645
04 0.75 09557 0.8137 09764 05099 0.9763 0.5122 0.9763 0.5111 0.9761 0.5149
1.00 0.9012 1.1407 0.9381 0.825 0.9379  0.8277 0.938 0.8264  0.9375 0.8306
125 150 0.7259 2.0209 0.789 17206 0.7885 1.7233 0.7887 1.722 0.7879  1.7263
0.25 0.998 0.2937 0.9995 0.0819 0.9995 0.0827 0.9995 0.0823 0.9995 0.0838
050 0.9845 05783 0.9943 0.2604 0.9943 0.2622 0.9943 0.2613 0.9942 0.2642
0.8 0.75 09512 0.8721 09764 0.5094 0.9763 0.5118 0.9764 0.5107 0.9761 0.5145
1.00 0.8939 1.1969 0.9382 0.8245 0.9379 0.8271 0.938 0.8259  0.9376  0.8302
150 0.7148 2.07 0.7891 1.72 0.7886  1.7227 0.7888 1.7215 0.788 1.7258
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Table (2) (continued): The Reliability Function and the Hazard Rate Function with Different
Censoring

175

025 09975 03535 0.9995 0.0823 0.9995 0.0829 0.9995 0.0826 0.9995 0.0836
050 09821 0.6488 0.9943 0.2612 0.9943 0.2625 0.9943 0.2619 0.9942 0.2639
04 075 0.9457 0.9422 09764 05105 09763 0.5122 09763 0.5114 0.9761 0.5141
1.00 0.8851 1263 0.9381 0.8257 09379 0.8276 0.938 0.8267 0.9376  0.8298
150 0.7017 2.1264 0.7889 1.7213 0.7885 1.7233 0.7886 1.7223  0.788 1.7254
025 09977 0328 09995 0.0821 0.9995 0.0828 0.9995 0.0824 0.9995 0.0835
050 09831 0.6193 0.9943 0.2609 0.9943 0.2622 0.9943 0.2616 0.9942 0.2637
08 075 0948 09132 09764 05101 09763 05118 09763 0511  0.9762 0.5137
1.00 0.8888 1.2359 09381 0.8252 0.9379 0.8272 0938 0.8263 0.9377  0.8293
150 0.707 2.1034 0.7889 1.7208 0.7885 1.7228 0.7887 1.7218 0.7881 1.725

(6) Conclusion

In this article, ML and BS methods for estimating the unknown parameters
with type—Il HCS are obtained. The data failure times for SSSALT are assumed to
follow the two parameters ER distribution at each stress level with scale parameter
which is an inverse Power Law function of the stress. The performance of the
estimate parameters is evaluated using RMSEs criteria. In addition, the rf and hrf
obtained with different mission times.
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