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Abstract 

 

We present a modification of the conjugate gradient (CG) algorithm. The 

proposed method is based on adapting the approach of a three-term CG hybridized 

linearly with a spectral-scaling memoryless BFGS update. Our numerical 

experiments indicate that our proposed method is competitive and robust. 
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1.  Introduction 
 

The conjugate gradient methods remain one of the many tools for the solution of 

unconstrained optimization due to their simplicity and low memory storage. They 

remain well known for engineers and mathematicians (see Bamigbola et al. [9], 

Moyi et al. [24] and Navon and Ledger [25]) encountered with large-scale 

problems of the form:  

                   }:)(min{ nxxf  ,                                                                           (1) 

where nf :  is continuously differentiable and its gradient is available. 

The iterates of the classical CG algorithm can be formulated as 

                   kkkk dxx 1                                                                                  (2) 

 

and  

                    0011 , gddgd kkkk                                                              (3) 
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where kg is the gradient of  )(xf at the point kx , kd is the search direction, k is 

the so-called conjugate parameter, and k is the positive scalar step-size which is 

determined by some line search. The most well known conjugate gradient 

algorithms are the Hestenes and Stiefel (HS) [17], Fletcher and Reeves (FR) [14], 

Polak-Ribiere- Polyak (PRP) [26, 27], Liu and Storey (LS) [23], Dai and Yuan 

(DY) [13], and Fletcher (CD) [15], respectively while the corresponding 

parameters k  
are 
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where 11   kkk ggy and denotes Euclidean norm of vectors. The rest of the 

paper is organized as follows. Section 2 is devoted to a brief literature review that 

describes the evolution of the nonlinear CG methods and the development of 

hybrids. In Section 3, after a brief introduction of scaled three-term CG proposed 

by Arzuka et al. (STCG) [7], a modified scaled three-term CG is proposed. A 

corresponding algorithm together with descent properties is given without any line 

search. Section 4 reported preliminary numerical results under standard Wolfe 

line search. Finally, Section 5 presents our concluding remarks. 

 

2. Review of related works 
 

         It is well known that the choice of k affect the numerical performance of 

the method, hence many researchers studied choices of k . According to Andrei 

[2], the CG algorithms, based on k  computation, can be classified as classical, 

hybrid, scaled and parametric. The classical algorithms are defined by (2) and (3), 

where the CG parameter is computed as in (4). Modified classical algorithms are 

abound in literature, to mention a few, consult (Adeleke and Osinuga [1], Andrei 

[2], Hager and Zhang [16], Gilbert and Nocedal [18],  Taqi [28] and Touati-

Ahmed and Storey [29]) and references therein. Hybrids have been derived to 

exploit the exciting features of the classical algorithms using projections (Adeleke 

and Osinuga [1], Andrei [3, 4], Taqi [28] and Zhang et al. [32]), consideration of 

linear and convex combination of classical schemes (Andrei [6], Babaie- Kafaki 

and Ghanbari [8], Liu et al. [21], Li and Li [22], Xu and Kong [31], Zhang et al. 

[32-34]) as well the use of notion involving the classical CG and quasi-Newton 

methods which started with Buckley [12]. Several others in this category can be 

found in (Ibrahim et al. [19-20] and Wan Osman et al. [30]). The other CG 

methods classified as scaled and parametric can be found in Liu et al. [21], Zhang 

et al. [32] and Arzuka et al. [7].  

         The development of three term classical CG started with Beale [10] and 

followed by Babaie-Kafaki [8], Taqi [28] and references therein, to mention a  
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few. Nevertheless, applications of the three-term classical CG and hybrids are 

many in the field of sciences and engineering. For more details, consult 

Bamigbola et al. [9], Taqi [28] and Moyi et al. [24], etc. Another innovation to the 

so-called three-term CG method is the case in which the search direction is 

determined as a linear combination of kk sg , and ky as reported in Arzuka et al. 

[7], Zhang et al. [33-34] among others. Herein, a descent spectral-scaling three-

term (DCG) method is proposed by incorporating the BFGS updating scheme of 

the inverse Hessian approximation within the frame of a memoryless quasi-

Newton approach.  In this case, the inverse Hessian approximation is restarted as 

a multiple of the identity matrix with a spectral scaling parameter in every 

iteration.  

 

           

3. Motivation and the proposed CG algorithm 
 

    This section present the idea proposed in the DCG method. Recall the STCG 

due to Arzuka et al. [7], where the BFGS update is restarted with a multiple of the 

identity matrix with a positive scaling parameter as  
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and thus, the search direction is given by  

                                           
,111

,00

 



kkk gQd

gd

k = 0, 1, 2,…                                  (6) 

Motivated by the approaches of authors (Andrei [6], Azurka et al. [7] and Zhang 

et al. [34]) and based on the concept of memoryless BFGS update where at each 

iteration the inverse Hessian approximation is restarted as a multiple of the 

identity matrix with a spectral scaling parameter adapted from [21], we propose 

our method as 
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and thus, the search direction is defined by  
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The proposed method new search direction is defined by  

                          kytstgd kkkkk ,2111   0, 1, 2,…,   00 gd                    (9) 

where  
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It is obvious to see from (9) that 01  k

T

k gd . Similar to Theorem 2.1 in (Zhang et 

al. [33], pp 632), we state the following theorem without prove. 
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Theorem 3.1: Let 1kd be defined by (9). The 1kd is a descent function of f  at 

kx . 

     Based on Theorem 3.1, we present specific algorithm for DCG method, as 

follows. 

 

Algorithm 3.2 (DCG algorithm).  

Step 0: Give the initial point nx 0  and set .0,,   Set 0k . 

Step 1: If ,kg stop. 

Step 2: Determine 0 using the standard Wolfe line search: 

                        ,)()( k

T

kkxdkk dgxfdxf                                               (11) 

                             ,)( k

T

kk

T

kkk dgddxg                                                      (12) 

         where .10    
Step 3: Let the next iterate be ,1 kkkkk dxx  where k are computed  

         according to ([26], page 4) else kkkk dxx 1  
Step 4: Generate the next direction 1kd by (9) where 1,tk and 2t are computed by   

         (10). 

Step 5: Let ,1:  kk go to step1. 

 

       Obviously, in the DCG method, the relation 
2

111   kk

T

k ggd  still holds. 

The following corollary is an immediate consequence of Theorem 3.1 and shows 

that the search direction satisfies the sufficient descent condition. 

 

Corollary 3.3. Let 1kd be given by (9) and (10). Then, for any ,0k  the 

following equality holds.
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4. Numerical Experiments 
 

       In this section, we report numerical results to study the performance of 

Algorithm 3.1compared to others in the solution of unconstrained optimization 

problems. The test functions used in our computational study were from the 

CUTE library Bongart et al. [11] and Andrei [5]. We tested 5 large-scale problems 

4 times in extended or generalized form for a gradually increasing number of 

variables: n 800, 1000, 5000, … , 10000.
 
The parameters such as number of 

iterations (NI) and CPU time in seconds (CPU) were considered to evaluate the 

computational capability of DCG as compared with the STCG [7], TTCG [6] and 

TTPRP [34] methods. For each test problem, the stopping rule applied was 

 and the number of iterations exceeds a limit of 10,000. All problems 
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implement the standard Wolfe line search with 9.0  and  0001.0  using 

MATLAB R2013 with CPU 1.30 GHz and 3.00GB RAM, on SAMSUNG PC 

notebook. A failure is reported (denoted by ‘F’) in the tabulated results. 

 

4.1 Discussion of results 

 

Numerical performance of all the four algorithms is reported in Table 1. 

From the results in Table 1, it follows that DCG, STCG and TTPRP methods are 

competitive and solved all tested problems. The competitiveness is noticeable 

between DCG and STCG and includes TTPRP only in the problem 1. However, 

STCG outperforms in almost all cases especially at higher dimensions based on 

the number of iterations and CPU time in the first four problems while DCG 

seems to more efficiently solve medium sized problems with dimensions 

1000dim500  and few large-scale problems. Note that TTCG recorded 

failures in almost all the problems but perform favourably and competitively in 

the solutions of problems 1, 3 and 5. 

 

Conclusions 
     

         The contributions of this work are in two folds. The first is incorporating the 

BFGS updating scheme of the inverse Hessian approximation within the frame of 

a memoryless quasi-Newton approach. The other is to propose a spectral scaling 

parameter in the hybridized three-term CG formula such that the search directions 

always possess descent property independent of the line search technique. 

Numerical tests have indicated that our algorithm is competitive and robust 

compared to others by less number of iterations or CPU time based on some tested 

problems and otherwise in others. In future research, due to its competitiveness 

and robustness the proposed method is deemed promising and can still do better in 

solving medium and large-scale optimization problems from many fields of 

sciences and engineering. 
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Appendix 

 

The following functions were used in our computational study. 

 
        1. Extended Rosenbrock function, [5]: 

              
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       2. Extended QP1 function, [5]:       
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       3. Extended Himmelblau function, Bongart et al. [11]: 
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       4. Diagonal 5 function [5]: 
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       5. Raydan 1function [5]:   
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Table 1. Performance of the methods 
Test 

functions 

Dim DCG 

NI / CPU 

STCG  

NI / CPU 

TTCG  

NI / CPU 

TTPRP  

NI / CPU 

 1 863 

1000 

6500 

11400 

8/0.424588 

7/0.037437 

6/0.116492 

18/0.198895 

5/0.075388 

15/0.084508 

4/0.102176 

6/0.125843 

F 

7/0.035623 

8/0.049671 

F 

5/0.093623 

7/0.076455 

7/0.104759 

6/0.120379 

 2 863 

1000 

6500 

11400 

8/0.267298 

8/0.211096 

10/0.263113 

10/0.301597 

11/0.419386 

12/0.372051 

6/0.288581 

5/0.284948 

F 

F 

F 

F 

25/0.247796 

22/0.219962 

12/0.281836 

12/0.326839 

 3 863 

1000 

6500 

11400 

8/0.207479 

8/0.216312 

10/0.30055 

10/0.368419 

12/0.234796 

12/0.226462 

5/0.322132 

5/0.304715 

6/0.057461 

6/0.052752 

F 

F 

46/0.116223 

37/0.097757 

21/0.143006 

54/0.381402 

 4 863 

1000 

6500 

11400 

12/0.090473 

10/0.090974 

11/0.117782 

18/0.184339 

5/0.08349 

16/0.102955 

4/0.11234 

5/0.167173 

F 

F 

F 

F 

57/0.145593 

46/0.151859 

28/0.192908 

21/0.218948 

5 863 

1000 

6500 

11400 

4/0.081658 

4/0.081907 

4/0.104291 

4/0.117792 

4/0.07619 

4/0.093341 

4/0.096191 

4/0.117524 

4/0.093857 

4/0.09179 

4/0.100891 

4/0.116761 

1999/1.13287 

1999/1.37951 

1999/6.83202 

1999/11.9269 
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