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Abstract

The distance between two vertices u and v in a graph G equals the
length of a shortest path from u to v. A set D of vertices is distance-k
dominating if every vertex not belonging to D is at distance at most k of
a vertex in D. The distance-k domination number of a graph G, denoted
by γk(G), is the minimum cardinality of a distance-k dominating set in
G. Here we focus on the trees. For n ≥ 1 and k ≥ 2, let Γ(k, n)
be the set of trees satisfying γk(T ) = n. In this paper, we provide a
constructive characterization of Γ(k, n) for all n ≥ 1 and all k ≥ 2.
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1 Introduction

One of the fastest growing areas within graph theory is the study of domi-
nation and related subset problems. The decision problem of determining the
domination number for arbitrary graphs is NP-complete [4]. The theory of dis-
tance dominating set was propsed by Slater [7] in 1976. The distance between
two vertices u and v in a graph G equals the length of a shortest path from u
to v. A set D of vertices is a distance-k dominating set (DkDS) if every vertex
not belonging to D is at distance at most k of a vertex in D. The distance-k
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domination number of a graph G, denoted by γk(G), is the minimum cardi-
nality of a distance-k dominating set in G. Recently, it was then extensively
studied the distance-k domination number γk(G) for various classes of graphs
G in the literature (see [2],[3],[5],[6],[7],[8],[9]).

For n ≥ 1 and k ≥ 2, let Γ(k, n) be the set of trees T satisfying γk(T ) = n.
In this paper, we provide a constructive characterization of Γ(k, n) for all n ≥ 1
and all k ≥ 2.

2 Notations and preliminary results

All graphs considered in this paper are finite, loopless, and without multiple
edges. For a graph G, V (G) and E(G) denote the vertex set and the edge set
of G, respectively. A u-v path P : u = v1, v2, . . . , vk = v of G is a sequence of
k vertices in G such that vivi+1 ∈ E(G) for i = 1, 2, . . . , k − 1. Denote by Pn

a n-path with n vertices. The length of Pn is n-1. For any two vertices u and
v in G, the distance between u and v, denoted by distG(u, v), is the minimum
length of all u-v paths in G. For two different sets A and B, written A−B is
the set of all elements of A that are not elements of B.

The (open) neighborhood NG(v) of a vertex v is the set of vertices adjacent
to v in G, and the closed neighborhood NG[v] is NG[v] = NG(v) ∪ {v}. For
d ≥ 0, the closed neighborhood Nd

G[v] of a vertex v is the set of the vertices u
satisfying distG(u, v) ≤ d and the (open) neighborhood isNd

G(v) = Nd
G[v]−{v}.

We can see that N0
G[v] = {v}, N1

G(v) = NG(v) and N1
G[v] = NG[v]. For any

subset A and d ≥ 0, denote Nd
G(A) =

⋃
v∈AN

d
G(v) and Nd

G[A] =
⋃

v∈AN
d
G[v].

The degree of v is the cardinality of NG(v), denoted by degG(v). A vertex
v is an isolated vertex if degG(x) = 0. A vertex x is said to be a leaf if
degG(x) = 1. A vertex of G is a support vertex if it is adjacent to a leaf in G.
We denote by L(G) and U(G) the collections of the leaves and support vertices
of G, respectively. A distance-k dominating set D of G is called a γk-set if
|D| = γk(G). For an edge e ∈ E(G), the deletion G − {e} of e from G is the
graph G− {e} obtained by removing the edge e. For a subset A ⊆ V (G), the
deletion of A from G is the graph G− A obtained by removing all vertices in
A and all edges incident to these vertices. The union of two disjoint graphs
G1 and G2 is the graph G1 ∪G2 with vertex set V (G1 ∪G2) = V (G1)∪ V (G2)
and edge set E(G1 ∪G2) = E(G1)∪E(G2). The diameter of a graph G is the
number diam(G) = max{distG(u, v) : u, v ∈ V (G)}. A forest is a graph with
no cycles, and a tree is a connected forest. For other undefined notions, the
reader is referred to [1] for graph theory.

Let T be a tree and diam(G) ≥ 2k + 1. We introduce the end-tree T ∗ =

S̃(z, A1(z), A2(z), . . . , Ak(z)), where k ≥ 2, of T is a subtree with a center z
such that the following all hold.
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(i) z is lying on a longest path of T .
(ii) distT (v, z) ≤ k for every vertex v of T ∗.
(iii) For i = 1, . . . , k, Ai(z) = {v : distT (v, z) = k}.
(iv)|Ak(z)| ≥ 1.
(v) The subgraph T ′ = T − V (T ∗) is a tree and |T ∗| is as large as possible.

The graph S̃(z, A1(z), A2(z), A3(z)) is shown Figure 1.
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Figure 1: The tree T ∗ = S̃(z, A1(z), A2(z), A3(z))

The following are the useful lemmas.

Lemma 2.1. Suppose T ∗ = S̃(z, A1(z), A2(z), . . . , Ak(z)) is an end-tree of
a tree T , where k ≥ 2 and diam(T ) ≥ 2k + 1. Then there exists a γk-set D of
T satisfying D ∩ V (T ∗) = {z}.

Proof. Let D be a γk-set of T satisfying z ∈ D. If D ∩ V (T ∗) = {z}, then we
are done. So we assume that D∩V (T ∗) 6= {z}. Let w ∈ D, where w 6= z, be a
vertex of T ∗. Suppose T − uv = T ∗ ∪ T ′, where u ∈ V (T ′). If Nk

T [w] ⊆ Nk
T [z],

then D−{w} is a DkDS of T with cardinality γk(T )−1. This is a contradiction,
so w is lying on the z-u path andNk

T [w]−Nk
T [z] 6= ∅. Suppose, by contradiction,

u ∈ D. Since distT (z, u) ≤ k + 1, this means that distT (w, u) ≤ k. Then we
can see that D − {w} is a DkDS of T with cardinality γk(T ) − 1. This is
a contradiction, so u /∈ D. We can see that Nk

T [w] ⊆ Nk
T [z] ∪ Nk

T [u]. Thus
D′ = (D − {w}) ∪ {u} is a DkDS of T , so γk(T ) ≤ |D′| = |D| = γk(T ). Then
D′ is a γk-set of T satisfying D∩V (T ∗) = {z}, which completes the proof.

Lemma 2.2. Suppose T ∗ = S̃(z, A1(z), A2(z), . . . , Ak(z)), where k ≥ 2, is
an end-tree of a tree T and T ′ = T − V (T ∗). Then γk(T ′) ≤ γk(T )− 1.

Proof. By Lemma 1, assume that D is a γk-set of T satisfying D∩V (T ∗) = {z}.
Let D′ = D − {z}. If D′ is a DkDS of T , then γk(T ′) ≤ |D′| = |D| − 1 =
γk(T )− 1. So we assume that D′ is not a DkDS of T ′. Let T − uv = T ∗ ∪ T ′,
where u ∈ V (T ′). Suppose d = distT (z, u), then 1 ≤ d ≤ k + 1. If d = k + 1,
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then Nk
T [z] ∩ V (T ′) = ∅. Thus D′ is a DkDS of T ′. This is a contradiction,

hence 1 ≤ d ≤ k. Assume that P : x1, x2, . . . , xk, z, . . . , u, . . . is a longest path
of T . Let T ′ − {u} = F ∪ T ′′, where F is a forest and T ′′ is a tree satisfying
V (P ) ∩ V (T ′′) 6= ∅. Since u /∈ V (T ∗) and d ≤ k, we can see that |F | ≥ 1.

Let S = V (T ′)−Nk
T ′ [D′]. Since D′ is not a DkDS of T ′, this implies that

S 6= ∅. Then S ⊆ Nk
T ′ [z] and S ⊆ Nk−d

T ′ [u].

Claim 1. V (F )−Nk−d
T ′ [u] 6= ∅.

Suppose, by contradiction, V (F ) ⊆ Nk−d
T ′ [u]. Then V (F ) ⊆ Nk

T [z], so T ∗ is
not an end-tree of T . This is a contradiction.

Claim 2. V (F ) ∩D′ 6= ∅.
Suppose, by contradiction, V (F ) ∩D′ = ∅. By Claim 1, we have V (F ) 6⊆

Nk
T [z]. Then there exists a vertex w ∈ D′, where w ∈ V (T ′′), satisfying

V (F ) ⊆ Nk
T [w]. Then D′ is a DkDS of T ′, this is a contradiction.

By Claim 2, let w ∈ D′ be a vertex of F . Since P is a longest path of T , this
implies that distT ′(u′, u) ≤ d+k for every vertex u′ ∈ V (F ). Let w′ be a vertex
of F satisfying distT ′(w′, u) = d and Nk

T ′ [w] ⊂ Nk
T ′ [w′]. Then S ⊆ Nk

T [w′] and
D′′ = (D−{w})∪{w′} is a DkDS of T ′. So γk(T ′) ≤ |D′′| = |D′| = γk(T )− 1,
which completes the proof.

Lemma 2.3. Suppose T ∗ = S̃(z, A1(z), A2(z), . . . , Ak(z)), where k ≥ 2, is
an end-tree of a tree T and T ′ = T − V (T ∗). Then γk(T ′) = γk(T )− 1.

Proof. Suppose, by contradiction, γk(T ′) ≤ γk(T ) − 2. Let D′ be a γk-set of
T ′. Then D = D′ ∪ {z} is a DkDS of T , so γk(T ) ≤ |D| = |D′| + 1 ≤
(γk(T )− 2) + 1 = γk(T )− 1. This is a contradiction, thus γk(T ′) ≥ γk(T )− 1.
By Lemma 2, we have that γk(T )− 1 ≤ γk(T ′) ≤ γk(T )− 1, which completes
the proof.

3 Characterization

In this section, we provide a constructive characterization of Γ(k, n) for all
n ≥ 1 and all k ≥ 2. Let T ′ be a tree. First we introduce some special subsets
and some operations. Let T ′ be a tree.

(i) A0(z) = {z}.
(ii) For i = 0, 1, . . . , k,

Ai = {v : v ∈ Ai(z) for some z such that i is as small as possible}.
(iii) For d = 0, 1, . . . , k − 1, Rd(T ′) = {u : γk(T ′ −Nd

T ′ [u]) = γk(T ′)}.

Operation 1. Assume u ∈ V (T ′). Add a new tree T ∗ = S̃(z, A1(z), A2(z),
. . . , Ak(z)) and the edge uv, where v ∈ Ak, then we obtain the tree T and z is
lying on a longest path of T .
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Operation 2. Assume u ∈ R0(T ′). Add a new tree T ∗ = S̃(z, A1(z), A2(z),
. . . , Ak(z)) and the edge uv, where v ∈ Ak−1, then we obtain the tree T and z
is lying on a longest path of T .

...
Operation i. Assume u ∈ Ri−2(T ′). Add a new tree T ∗ = S̃(z, A1(z), A2(z),
. . . , Ak(z)) and the edge uv, where v ∈ Ak−i+1, then we obtain the tree T and
z is lying on a longest path of T .

...
Operation k+1. Assume u ∈ Rk−1(T ′). Add a new tree T ∗ = S̃(z, A1(z),
A2(z), . . . , Ak(z)) and the edge uv, where v ∈ A0, then we obtain the tree T
and z is lying on a longest path of T .

Let Ψ(1) be the trees T ∗ = S̃(z, A1(z), A2(z), . . . , Ak(z)). Let Ψ be the col-
lection of the trees T which are obtained from a sequence T1 ∈ Ψ(1), T2, . . . , Tm
= T and, if i = 1, . . . ,m−1, Ti+1 can be obtained recursively from Ti by one of
the Operation 1 ∼ Operation k+1. Suppose Ψ(k, n), where k ≥ 2 and n ≥ 1,
is the collection of all trees T ∈ Ψ satisfying γk(T ) = n. We want to prove
that Γ(k, n) = Ψ(k, n) for for all n ≥ 1 and all k ≥ 2. The following theorem
is the main theorem.

Theorem 3.1. For n ≥ 1 and k ≥ 2, Γ(k, n) = Ψ(k, n).

For every tree T ∈ Ψ(k, n), where k ≥ 2 and n ≥ 1, we can see that
γk(T ) = n. So T ∈ Γ(k, n). Hence Ψ(k, n) ⊆ Γ(k, n) for all n ≥ 1 and all
k ≥ 2. On the other hand, we will prove Γ(k, n) ⊆ Ψ(k, n) in the following
lemma.

Lemma 3.2. For n ≥ 1 and k ≥ 2, Γ(k, n) ⊆ Ψ(k, n).

Proof. We can see that Γ(k, 1) = Ψ(k, 1). Suppose T ∈ Γ(k, n) and T 6∈
Ψ(k, n), where n ≥ 2, such that n is as small as possible. Suppose T ∗ =

S̃(z, A1(z), A2(z), . . . , Ak(z)) is an end-tree of T and T ′ = T − V (T ∗). By
Lemma 2.3, γk(T ′) = γk(T ) − 1 = n − 1. Thus T ′ ∈ Γ(k, n − 1), by the
hypothesis, T ′ ∈ Ψ(k, n−1). Assume that T−{uv} = T ∗∪T ′, where u ∈ V (T ′).
We consider two cases.
Case 1. v ∈ Ak. Then T can be obtained from T ′ ∈ Ψ(k, n − 1) by the
Operation 1. So T ∈ Ψ(k, n). This is a contradiction.
Case 2. v ∈ Ai for some i = 0, 1, . . . , k − 1. Then distT (z, v) = i and
distT (z, u) = i+1, where v ∈ Ai(z). Suppose, by contradiction, u 6∈ Rk−i−1(T ′).
Then γk(T ′−Nk−i−1

T ′ [u]) ≤ γk(T ′)−1 = n−2. Let H = T ′−Nk−i−1
T ′ [u] and D′

be a γk-set of H. Suppose D′′ = D′∪{z}. Since Nk−i−1
T ′ [u] ⊆ Nk

T [z], this means
that D′′ is a DkDS of T . Thus n = γk(T ) ≤ |D′′| = |D′| + 1 = γk(H) + 1 ≤
(n − 2) + 1 = n − 1, this is a contradiction. So u ∈ Rk−i−1(T ′). Then T can
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be obtained from T ′ ∈ Ψ(k, n− 1) by the Operation k− i+ 1. So T ∈ Ψ(k, n).
This is a contradiction.

By Case 1 and Case 2, we have that Γ(k, n) ⊆ Ψ(k, n) for all n ≥ 1 and all
k ≥ 2.

As an immediate consequence of Lemma 3.2, we obtain the Theorem 3.1.
Hence we provide a constructive characterization Ψ(k, n) of Γ(k, n) for all
n ≥ 1 and all k ≥ 2.
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