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Abstract

The distance between two vertices w and v in a graph G equals the
length of a shortest path from u to v. A set D of vertices is distance-k
dominating if every vertex not belonging to D is at distance at most k of
a vertex in D. The distance-k domination number of a graph G, denoted
by vk (G), is the minimum cardinality of a distance-k dominating set in
G. Here we focus on the trees. For n > 1 and k£ > 2, let I'(k,n)
be the set of trees satisfying vx(7") = n. In this paper, we provide a
constructive characterization of I'(k,n) for all n > 1 and all k& > 2.
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1 Introduction

One of the fastest growing areas within graph theory is the study of domi-
nation and related subset problems. The decision problem of determining the
domination number for arbitrary graphs is NP-complete [4]. The theory of dis-
tance dominating set was propsed by Slater [7] in 1976. The distance between
two vertices v and v in a graph G equals the length of a shortest path from u
tov. A set D of vertices is a distance-k dominating set (DkDS) if every vertex
not belonging to D is at distance at most k of a vertex in D. The distance-k
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domination number of a graph G, denoted by vx(G), is the minimum cardi-
nality of a distance-k dominating set in GG. Recently, it was then extensively
studied the distance-k domination number 7;(G) for various classes of graphs
G in the literature (see [2],[3],[5],[6],[7],[8],[9]).

Forn > 1 and k > 2, let I'(k,n) be the set of trees T satisfying vx(T") = n.
In this paper, we provide a constructive characterization of I'(k, n) for alln > 1
and all £ > 2.

2 Notations and preliminary results

All graphs considered in this paper are finite, loopless, and without multiple
edges. For a graph G, V(G) and E(G) denote the vertex set and the edge set
of G, respectively. A u-v path P : u = vy, vs,...,v, = v of G is a sequence of
k vertices in G such that v;v;11 € E(G) for i = 1,2,...,k — 1. Denote by P,
a n-path with n vertices. The length of P, is n-1. For any two vertices u and
v in G, the distance between u and v, denoted by dists(u,v), is the minimum
length of all u-v paths in G. For two different sets A and B, written A — B is
the set of all elements of A that are not elements of B.

The (open) neighborhood N¢(v) of a vertex v is the set of vertices adjacent
to v in G, and the closed neighborhood Ng[v] is Ngl[v] = Ng(v) U {v}. For
d > 0, the closed neighborhood Ng[v] of a vertex v is the set of the vertices u
satisfying distg(u,v) < d and the (open) neighborhood is N¢(v) = N&[v]—{v}.
We can see that N2[v] = {v}, Ni(v) = Ng(v) and N}[v] = Ng[v]. For any
subset A and d > 0, denote N&(A) = U,eq N&(v) and NE[A] = J,c 4 N&[V].
The degree of v is the cardinality of Ng(v), denoted by degs(v). A vertex
v is an isolated vertex if degs(z) = 0. A vertex x is said to be a leaf if
degs(z) = 1. A vertex of G is a support vertex if it is adjacent to a leaf in G.
We denote by L(G) and U(G) the collections of the leaves and support vertices
of G, respectively. A distance-k dominating set D of G is called a ~v-set if
|D| = v%(G). For an edge e € E(G), the deletion G — {e} of e from G is the
graph G — {e} obtained by removing the edge e. For a subset A C V(G), the
deletion of A from G is the graph G — A obtained by removing all vertices in
A and all edges incident to these vertices. The union of two disjoint graphs
G1 and Gy is the graph G U Gs with vertex set V(G1 UGy) = V(G1) UV (Gs)
and edge set E(G1UGs) = E(G1) U E(G3). The diameter of a graph G is the
number diam(G) = max{distg(u,v) : u,v € V(G)}. A forest is a graph with
no cycles, and a tree is a connected forest. For other undefined notions, the
reader is referred to [1] for graph theory.

Let T be a tree and diam(G) > 2k + 1. We introduce the end-tree T* =
g(z,Al(z),Ag(z), .o, Ak(2)), where k > 2, of T is a subtree with a center z
such that the following all hold.
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(i) z is lying on a longest path of T'.

(ii) distp(v, z) < k for every vertex v of T*.

(iii) For i = 1,...k, A;(2) = {v : distr(v, z) = k}.

(i) Ag(2)] > 1.

(v) The subgraph 7" =T — V(T*) is a tree and |T*| is as large as possible.

The graph S(z, A;(z), As(z), As(z)) is shown Figure 1.

Figure 1: The tree T* = S(z, A1(2), A2(2), A3(2))

The following are the useful lemmas.

Lemma 2.1. Suppose T* = S(z, A1(2), Aa(2), ..., Ak(2)) is an end-tree of
a tree T, where k > 2 and diam(T) > 2k + 1. Then there exists a yx-set D of
T satisfying DNV (T*) = {z}.

Proof. Let D be a ~g-set of T satisfying z € D. If DN V(T*) = {z}, then we
are done. So we assume that DNV(T*) # {z}. Let w € D, where w # z, be a
vertex of T*. Suppose T — uv = T* UT’, where u € V(T"). If N¥[w] C NE[2],
then D—{w} is a DkDS of T with cardinality 7,(7")—1. This is a contradiction,
so w is lying on the z-u path and NX[w]—NE[z] # 0. Suppose, by contradiction,
u € D. Since disty(z,u) < k + 1, this means that disty(w,u) < k. Then we
can see that D — {w} is a DkDS of T with cardinality ,(7) — 1. This is
a contradiction, so u ¢ D. We can see that NF[w] C Nk[z] U NE[u]. Thus
D' = (D —{w})U{u}is a DkDS of T, so 1(T") < |D'| = |D| = %(T). Then
D' is a yy-set of T satisfying DNV (T*) = {z}, which completes the proof. [

Lemma 2.2. Suppose T* = S(z, A1(2), Aa(2), ..., Ax(z)), where k > 2, is
an end-tree of a tree T and T' =T — V(T*). Then v(T") < v (T) — 1.

Proof. By Lemma 1, assume that D is a yg-set of T' satisfying DNV (T*) = {z}.
Let D' = D — {z}. If D' is a DKDS of T, then v (T") < |D'| = |D| -1 =
Y(T) — 1. So we assume that D" is not a DkDS of T". Let T — uv =T*UT",
where u € V(T"). Suppose d = distr(z,u), then 1 <d < k+1. Ifd=Fk+ 1,
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then NE[z] N V(T") = (. Thus D’ is a DKDS of T". This is a contradiction,
hence 1 < d < k. Assume that P : xy,2s,...,2k,2,...,u,... is a longest path
of T. Let T" — {u} = FUT", where F is a forest and 7" is a tree satisfying
V(P)NV(T") # (). Since u ¢ V(T*) and d < k, we can see that |F| > 1.

Let S = V(T") — N}, [D']. Since D' is not a DkDS of T”, this implies that
S # (. Then S C NE[2] and S C NE[u].

Claim 1. V(F) — NE4[u] # 0.

Suppose, by contradiction, V (F) C Nk %[u]. Then V(F) C Nk[2], so T* is
not an end-tree of T'. This is a contradiction.
Claim 2. V(F)N D' # 0.

Suppose, by contradiction, V(F) N D’ = (. By Claim 1, we have V(F) ¢
NE[z]. Then there exists a vertex w € D', where w € V(T"), satisfying
V(F) C NE[w]. Then D’ is a DkDS of T”, this is a contradiction.

By Claim 2, let w € D' be a vertex of F'. Since P is a longest path of T, this
implies that disty (v, u) < d+k for every vertex v’ € V(F). Let w’ be a vertex
of F satisfying disty(w',u) = d and Nk [w] C N} [w']. Then S C NE[w'] and
D" = (D —{w})U{w'} is a DEDS of T". So y(T") < |D"| = |D'| = w(T) — 1,
which completes the proof. O]

Lemma 2.3. Suppose T* = S(z, A1(2), A2(2),..., Ax(2)), where k > 2, is
an end-tree of a tree T and T' =T — V(T™*). Then v(T") = v(T) — 1.

Proof. Suppose, by contradiction, v,(T") < v(T) — 2. Let D' be a vx-set of
T'. Then D = D'"U{z} is a DEDS of T, so w(T) < |[D| = |D'|+1 <
(7(T') — 2) +1 = (T") — 1. This is a contradiction, thus v (7") > v (T) — 1.
By Lemma 2, we have that v.(T) — 1 < 1% (T") < v(T) — 1, which completes
the proof. O

3 Characterization

In this section, we provide a constructive characterization of I'(k,n) for all
n>1and all £ > 2. Let T” be a tree. First we introduce some special subsets
and some operations. Let 7" be a tree.
(i) Ao(z) = {2
(ii) For i = 0,1,...,k,

A; = {v:v € A;(2) for some z such that i is as small as possible}.
(iii) For d = 0,1,...,k — 1, RYT") = {u : 7(T" — N&[u]) = v (T")}.

Operation 1. Assume u € V(T"). Add a new tree 7" = S(z, A(2), As(2),
..., Ag(z)) and the edge uv, where v € Ay, then we obtain the tree 7" and z is
lying on a longest path of T
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Operation 2. Assume v € R%(T"). Add a new tree T* = S(z, A1(2), As(2),
..., Ak(z)) and the edge uv, where v € Aji_1, then we obtain the tree 7" and z
is lying on a longest path of T

Operation i. Assume u € R72(T"). Add a new tree T* = S(z, A1(2), As(2),
..., Ag(2)) and the edge uv, where v € Aj_; 11, then we obtain the tree 7" and
z is lying on a longest path of T'.

Operation k+41. Assume u € R¥(T"). Add a new tree T* = S(z, Ay(2),
Ay(2),...,Ak(2)) and the edge uv, where v € A, then we obtain the tree T
and z is lying on a longest path of T'.

Let W(1) be the trees T* = S(z, A1(2), A2(2), ..., Ax(2)). Let ¥ be the col-
lection of the trees T' which are obtained from a sequence 77 € W(1),T5,..., T,
=T and,ift=1,...,m—1, T;,; can be obtained recursively from 7} by one of
the Operation 1 ~ Operation k+1. Suppose V(k,n), where k > 2 and n > 1,
is the collection of all trees T' € ¥ satisfying v,(7") = n. We want to prove
that ['(k,n) = U(k,n) for for all n > 1 and all £ > 2. The following theorem
is the main theorem.

Theorem 3.1. Forn>1 and k > 2, I'(k,n) = ¥(k,n).

For every tree T' € U(k,n), where k£ > 2 and n > 1, we can see that
v(T) = n. SoT € I'(k,n). Hence W(k,n) C I'(k,n) for all n > 1 and all
k > 2. On the other hand, we will prove I'(k,n) C W¥(k,n) in the following

lemma.
Lemma 3.2. Forn>1and k> 2, I'(k,n) C ¥(k,n).

Proof. We can see that T'(k,1) = W(k,1). Suppose T" € I'(k,n) and T ¢
U(k,n), where n > 2, such that n is as small as possible. Suppose T* =
S(z,A1(2), A5(2), ..., Ax(2)) is an end-tree of T and T/ = T — V(T*). By
Lemma 2.3, 7%(T") = w(T) —1 = n—1. Thus 77 € I'(k,n — 1), by the
hypothesis, 77 € U(k,n—1). Assume that T—{uv} = T*UT", where u € V (T").
We consider two cases.

Case 1. v € A;. Then T can be obtained from 77 € ¥(k,n — 1) by the
Operation 1. So T' € V(k,n). This is a contradiction.

Case 2. v € A; for some i = 0,1,...,k — 1. Then disty(z,v) = i and
disty(z,u) = i+1, where v € A;(2). Suppose, by contradiction, u ¢ RF~=1(T").
Then 4, (T" — N7 Hu]) < %(T')—1=n—2. Let H =T'— Nk [u] and D’
be a yj-set of H. Suppose D" = D'U{z}. Since NJ, " '[u] C NE[z], this means
that D" is a DEDS of T. Thus n = (T) < |[D"| = [D'| +1 = y(H) + 1 <
(n —2) +1=n—1, this is a contradiction. So u € R¥"*=1(T"). Then T can
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be obtained from 7" € W(k,n — 1) by the Operation k —i+1. So T € V(k,n).
This is a contradiction.

By Case 1 and Case 2, we have that I'(k,n) C ¥(k,n) for all n > 1 and all
k> 2. ]

As an immediate consequence of Lemma 3.2, we obtain the Theorem 3.1.
Hence we provide a constructive characterization ¥(k,n) of I'(k,n) for all
n>1and all &k > 2.
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