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Abstract

The distance between two vertices u and v in a graph G equals
the length of a shortest path from u to v. A set S of vertices is a 2-
independent set if the distance between any two elements in S is greater
than two in G. The 2-independence number of a graph G, denoted by
α2(G), is the maximum size of a 2-independent set in G. In this paper,
we determine a sharp upper bound for the 2-independence number in a
connected graph and provide a characterization of the connected graphs
achieving this sharp upper bound.
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1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple
edges. For a graph G, V (G) and E(G) denote the vertex set and the edge set
of G, respectively. A u-v path P : u = v1, v2, . . . , vk = v of G is a sequence
of k vertices in G such that vivi+1 ∈ E(G) for i = 1, 2, . . . , k − 1. Denote by
Pn a n-path with n vertices. The length of Pn is n-1. For any two vertices
u and v in G, the distance between u and v, denoted by distG(u, v), is the
minimum length of all u-v paths in G. A set S of vertices is a k-independent
set if the distance between any two elements in S is greater than k in G. The
k-independence number of a graph G, denoted by αk(G), is the maximum size
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of a k-independent set in G. The study of the number of independent sets in
a graph has a rich history. Finding a k-independent set of a graph is NP-hard
(see [6], [7]). A. Abiad, G. Coutinho and M.A. Fiol [1] found the spectral
bounds on the k-independence number of a graph. For some cases, they also
showed that the bounds are sharp. Jou [3] determined the k-th largest number
of 2-independent sets among all extra-free forest of order n ≥ 2, where k = 1, 2
and 3. Extremal graphs achieving these values are also given. Min-Jen Jou and
Jenq-Jong Lin [4] considered the problem of determining the small numbers
of maximal 2-independent sets among all trees of order n. Extremal graphs
achieving these values are also given. Min-Jen Jou, Jenq-Jong Lin and Qian-
Yu Lin [5] determined a sharp upper bound for the 2-independence number
in a tree. We also provided a constructive characterization of the extremal
trees achieving this sharp upper bound. In this paper, we determine a sharp
upper bound for the 2-independence number in a connected graph and provide
a characterization of the connected graphs achieving this sharp upper bound.

2 A sharp upper bound

In this section, we determine a sharp upper bound for the 2-independence
number in a connected graph. First, we introduce some notations.

The (open) neighborhood NG(v) of a vertex v is the set of vertices adjacent
to v in G, and the closed neighborhood NG[v] is NG[v] = NG(v) ∪ {v}. The
degree of v is the cardinality of NG(v), denoted by degG(v). A vertex x is said
to be a leaf if degG(x) = 1. A vertex of G is a support vertex if it is adjacent
to a leaf in G. We denote by L(G) and U(G) the collections of the leaves and
support vertices of G, respectively. Two leaves x and x′ are called duplicated
leaves in a graph G if they are adjacent to the same support vertex. The
closed 2-neighborhood N2

G[v] of a vertex v is the set of the vertices u satisfying
distG(u, v) ≤ 2 and the (open) 2-neighborhood is N2

G(v) = N2
G[v] − {v}. For

any subset A, denote N2
G[A] =

⋃
v∈AN

2
G[v] and N2

G(A) =
⋃

v∈AN
2
G(v). Let

L∗(G) = {x : x ∈ L(G), |N2
G[x] ∩ L(G)| = 1}. A connected graph is said to

be fresh if L(G) = L∗(G). A 2-independent set S of G is called a α2-set if
|S| = α2(G). For a subset A ⊆ V (G), the induced subgraph ≺ A �G of a graph
G is a subgraph G′ = (A,E(G′)), where E(G′) = {uv : u, v ∈ A, uv ∈ E(G)}.
For a subset A ⊆ V (G), the deletion of A from G is the graph G−A obtained
by removing all vertices in A and all edges incident to these vertices. For a
subset B ⊆ E(G), the edge-deletion of B from G is the graph G−B obtained
by removing all edges of B. For two different sets A and B, written A − B,
is the set of all elements of A that are not elements of B. A forest is a graph
with no cycles, and a tree is a connected forest. For other undefined notations,
the reader is referred to [2] for graph theory.

The following are the useful lemmas.
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Lemma 2.1. Let H be a deletion of a connected graph G. If H is connected,
then α2(H) ≤ α2(G).

Proof. Let S be a α2-set of H. Thus S is a 2-independent set of G. Hence
α2(H) = |S| ≤ α2(G), which completes the proof.

Lemma 2.2. Let G′ be an edge-deletion of a connected graph G. If G′ is
connected, then α2(G) ≤ α2(G

′).

Proof. Let S be a α2-set of G. For two distinct vertices u and v of S,
distG′(u, v) ≥ distG(u, v) ≥ 3. Thus S is a 2-independent set of G′. Hence
α2(G) = |S| ≤ α2(G

′), which completes the proof.

Lemma 2.3. Let G be a connected graph. Then there exists a α2-set S
satisfying L∗(G) ⊆ S.

Proof. Let S be a α2-set of G. If L∗(G) ⊆ S, then we are done. So we assume
that L∗(G) − S = {x1, . . . , xt}, where t ≥ 1. Let ui be a vertex of S such
that distG(ui, xi) is as small as possible. Then distG(xi, ui) ≤ 2 for all i. Let
S∗ = (S − {u1, . . . , ut}) ∪ {x1, . . . , xt}. So |S∗| ≥ |S| = α2(G). We can see
that distG(xi, xj) ≥ 3 for all i 6= j. For w ∈ S∗ and w 6= xi, distG(xi, w) ≥
distG(ui, w) ≥ 3 Hence S∗ is a α2-set of G satisfying L∗(G) ⊆ S∗.

Lemma 2.4. Let G be a connected graph of order |G| ≥ 3. If x and x′ are
duplicated leaves of G and NG(x) = NG(x′), then α2(G− {x′}) = α2(G).

Proof. Let x ∈ L∗(G). By Lemma 2.3, there exists a α2-set S of G satisfying
x ∈ S. So S is a α2-set of G−{x′}. Hence α2(G−{x′}) = |S| = α2(G), which
completes the proof.

Theorem 2.5. [5] Let T be a tree of order |T | ≥ 2. Then α2(T ) ≤ b |T |
2
c

and the upper bound is sharp.
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Figure 1: The tree T (n), where bn
2
c = m ≥ 1.

Let T (n) be as in Figure 1, where bn
2
c = m. We can see that α2(T (n)) = m,

as a result, the upper bound in Theorem 2.6 is sharp.

Theorem 2.6. Let G be a graph of order |G| ≥ 2. Then α2(G) ≤ b |G|
2
c and

the upper bound in is sharp.

Proof. Let T be a spanning tree of G. Then |T | = |G|. By Lemma 2.2 and

Theorem 2.5, α2(G) ≤ α2(T ) ≤ b |T |
2
c = b |G|

2
c, which completes the proof.
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3 Characterization

In this section, we provide a characterization of the connected graphs achieving
this sharp upper bound in Theorem 2.6. For the convenience of the characteri-
zation, let G (m) be the set of connected graph G satisfying α2(G) = b |G|

2
c = m,

where m ≥ 1. Then |G| = 2m or 2m + 1 for every G ∈ G (m). We want to
construction G (m) for all m ≥ 1. Due to the construction, we first mention
two sets H1(m) and H2(m). They are collections of some connected graphs G.

(I) H1(m) = {G : G hold the following properties a and b}.
(a) |L∗(G)| = m.
(b)≺ V (G)− L∗(G) �G is connected.

(II) H2(m) = {G : G hold the following properties c, d and e}.
(c) |L∗(G)| = m− 1.
(d)≺ V (G)− L∗(G) �G is connected.
(e) C = {w1, w2, w3} = V (G)−NG[L∗(G)] and NG(w1) = {w2, w3}.

The following Theorem is the main theorem.

Theorem 3.1. For m ≥ 1, G (m) =
⋃2

i=1Hi(m).

Suppose that G ∈ Hi(m) for some i, where m ≥ 1, we can see that G is a

connected graph satisfying α2(G) = b |G|
2
c = m. Hence we obtain thatHi(m) ⊆

G (m) for i = 1, 2. On the other hand, we will prove G (m) ⊆
⋃2

i=1Hi(m) and
we prove it through a sequence of lemmas.

Lemma 3.2. For n ≥ 3, α2(Cn) = bn
3
c.

Proof. Let V (Cn) = {v1, v2, . . . , vn} and bn
3
c = k. Then S = {v3, . . . , v3k}

is a 2-independent set of Cn, so α2(Cn) ≥ |S| = k. Suppose, by contradic-
tion, α2(Cn) ≥ k + 1 and S∗ = {vs1 , . . . , vsk+1

} is a 2-independent set of Cn,
where s1 < s2 < · · · < sk+1. Then distCn(vsi , vsi+1

) ≥ 3 for i = 1, . . . , k and
distCn(vs1 , vsk+1

) ≥ 3. Then |Cn| ≥ 3k + 3 > n. This is a contradiction,
so α2(Cn) ≤ k. Thus bn

3
c = k ≤ α2(Cn) ≤ k = bn

3
c, which completes the

proof.

Lemma 3.3. Let G ∈ G (m) and |G| = 2m, where m ≥ 1. Then the
following hold.
(i) |L(G)| = |L∗(G)| = m.
(ii) The induced subgraph ≺ V (G)− L(G) �G is connected.
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Proof. If L(G) = ∅, by Lemma 2.2 and Lemma 3.2, m ≤ α2(G) ≤ α2(C2m) =
b2m

3
c < m. This is a contradiction, so L(G) 6= ∅.

Claim 1. L(G) = L∗(G). Suppose, by contradiction, x and x′ are duplicated
leaves of G and NG(x) = NG(x′). By Lemma 2.4 and Theorem 2.6, m =
α2(G) = α2(G− {x′}) ≤ b2m−12

c = m− 1. This is a contradiction, so L(G) =
L∗(G).

(i) We prove it by induction on m. We can see that G (1) = {P2, P3, C3}. If
|G| = 2 is even, this means that G = P2. So it’s true for m = 1. Assume that
it’s true for m− 1, where m ≥ 2. Let G ∈ G (m) and |G| = 2m. Let u0 ∈ L(G)
and u′0 ∈ NG(u0). Suppose G′ = G − {u0, u′0}, by Claim 1, then G′ is a
connected graph of order |G′| = 2(m− 1). By Theorem 2.6, m− 1 ≤ α2(G

′) ≤
b |G

′|
2
c = b |G|

2
c − 1 = m − 1. The equalities hold, so α2(G

′) = b |G
′|

2
c = m − 1.

Hence G′ ∈ G (m−1), by the induction hypothesis, |L(G′)| = |L∗(G′)| = m−1.
Let L1 = L∗(G′) = L(G′) = {u1, . . . , um−1} and U1 = {u′1, . . . , u′m−1}, where
u′i ∈ NG′(ui) for i = 1, . . . ,m− 1. So V (G′) = L1 ∪ U1.
Claim 2. u′0 6∈ NG(L1). Suppose, by contradiction, A = NG(u′0) ∩ L1 6= ∅
and B = L1 − A. Let A′ = NG′(A) and B′ = NG′(B), where |A| = |A′| = a
and |B| = |B′| = b. By Lemma 2.3, there exists a α2-set S of G satisfying
L(G) ⊂ S. Then u0 ∈ S and A∩S = ∅. Since G is connected, N2

G′(A′)∩B 6= ∅.
Then |A′∩S| ≤ a−1 and m = α2(G) = |{u0}|+|A′∩S|+|B| ≤ 1+(a−1)+b =
a+ b = m− 1. This is a contradiction, so u′0 6∈ NG(L1).

By Claim 2, we have that L(G) = L∗(G) = {u0, u1, . . . , um−1} and |L(G)| =
|L∗(G)| = m.

(ii) Since G is connected, this implies that ≺ V (G)−L(G) �G is connected.

Lemma 3.4. Let G ∈ G (m) and |G| = 2m + 1, where m ≥ 1. If G have
duplicated leaves, then |L∗(G)| = |L(G)| − 1 = m.

Proof. By lemma 2.4, suppose G′ is a fresh graph, where G′ is a subgraph
of G and |G′| = |G| − a, such that α2(G

′) = α2(G) = m. By Theorem

2.6, m = α2(G
′) ≤ b |G

′|
2
c = b |G|−a

2
c ≤ b2m

2
c = m. The equalities hold, so

a = 1 and G′ ∈ G (m). By Lemma 3.3, |L(G′)| = |L∗(G′)| = m. Hence
|L∗(G)| = |L(G)| − 1 = m.

Lemma 3.5. If G ∈ G (m) and |G| = 2m+ 1, where m ≥ 1, then |L∗(G)| =
m or m− 1.

Proof. We prove it by induction on m. We can see that G (1) = {P2, P3, C3}. If
|G| = 3 is odd, this means that G = P3 or C3. So it’s true for m = 1. Assume
that it’s true for m − 1, where m ≥ 2. Let G ∈ G (m) and |G| = 2m + 1. If
L(G) = ∅, by Lemma 2.2 and lemma 3.2, then m = α2(G) ≤ α2(C2m+1) =
b2m+1

3
c < m, where m ≥ 2. This is a contradiction, so L(G) 6= ∅.
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If L∗(G) 6= L(G). By Lemma 3.4, |L∗(G)| = |L(G)| − 1 = m. So we
assume that L∗(G) = L(G). Let u0 ∈ L(G) and u′0 ∈ NG(u0). Suppose
G′ = G− {u0, u′0}, then G′ is a connected graph of order |G′| = 2(m− 1) + 1.

By Theorem 2.6, m− 1 ≤ α2(G
′) ≤ b |G

′|
2
c = b |G|

2
c − 1 = m− 1. The equalities

hold, so α2(G
′) = b |G

′|
2
c = m − 1. Thus G′ ∈ G (m − 1), by the induction

hypothesis, |L∗(G′)| = m − 1 or m − 2. Let L1 = L∗(G′) = {u1, . . . , uk},
where m − 2 ≤ k ≤ m − 1, and U1 = NG′(L1) ∩ U(T ) = {u′1, . . . , u′k}. If
NG(u′0) ∩ L1 = ∅, then |L∗(G)| = k + 1 and |L∗(G)| = m or m − 1. So we
assume that A = NG(u′0) ∩ L1 6= ∅ and B = L1 − A. Let A′ = NG′(A) and
B′ = NG′(B), where |A| = |A′| = a and |B| = |B′| = b. By Lemma 2.3, there
exists a α2-set S of G satisfying L∗(G) ⊂ S. Then u0 ∈ S and A ∩ S = ∅.
Since a+ b = k ≤ m− 1, C = V (G′)− (A ∪ A′ ∪B ∪B′) and |C| = 1 or 3.

Claim. |S ∩ A′| ≤ 1. Suppose, by contradiction, |S ∩ A′| ≥ 2. Since G is
connected, ≺ A′ �G′ is connected or N2

G′(A′) ∩ (C ∪ B′) 6= ∅. Then we have
that 2 ≤ |S ∩ A′| ≤ a − 1 and m = α2(G) = |{u0}| + |A′ ∩ S| + |B| ≤
1 + (a− 1) + b = a+ b = m− 1. This is a contradiction, so |S ∩ A′| ≤ 1.

Since α2(G) = α2(G
′) + 1, by Claim, |A| = a = 1, say A = {u1}. If k =

m− 2, then C = {w1, w2, w3}, where NG′(w1) = {w2, w3}, and C ∩L∗(G) = ∅.
Since G′ is connected, u′1 ∈ NG′({w2, w3} ∪ B′). Thus distG′(u′1, w1) = 2 or
distG′(u′1, ui) = 2 for some ui ∈ B. Then u′1 6∈ S and m = |S| = |{u0, w1}| +
|B| = 2 + (m − 2 − 1) = m − 1. This is a contradiction, so k = m − 1. So
m ≥ |L∗(G)| ≥ |B|+ 1 = m− 2 + 1 = m− 1.

Lemma 3.6. For m ≥ 1, G (m) ⊆
⋃2

i=1Hi(m).

Proof. Let G ∈ G (m). Then |G| = 2m or 2m+ 1. If |G| = 2m, by Lemma 3.3,
|L(G)| = |L∗(G)| = m and |G − L∗(G)| = m, where V (G) = L∗(G) ∪ U(G).
By Lemma 2.3, L∗(G) is a α2-set of G. Since G is connected, this implies
that G′ = G − L∗(G) is connected. Hence G ∈ H1(m). So we assume that
|G| = 2m+ 1. By Lemma 3.4, |L∗(G)| = m or m− 1.

Case 1. |L∗(G)| = m. Then L∗(G) is a α2-set of G. Since G is connected, this
implies that G′ = G− L∗(G) is connected. Hence G ∈ H1(m).

Case 2. |L∗(G)| = m − 1. Let C = V (G) − NG[L∗(G)]. Then |C| = 3, say
C = {w1, w2, w3} and C ∩ L(G) = ∅. This means that NG(w1) = {w2, w2}.
Hence G ∈ H2(m).

By Cases 1 and 2, G ∈ H1(m) or G ∈ H2(m).

As an immediate consequence of Lemma 3.6, we obtain the Theorem 3.1.
Hence we provide a characterization of G (m) for all m ≥ 1.
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