International Journal of Contemporary Mathematical Sciences Vol. 15, 2020, no. 4, 163 - 169 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2020.91446

On the 2-Independence Number of Connected Graphs

Min-Jen Jou ^a, Jenq-Jong Lin ^{a,1} and Qian-Yu Lin ^b

^aLing Tung University, Taichung 40852, Taiwan ^bNational Chiayi University, Chiayi 60004, Taiwan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2020 Hikari Ltd.

Abstract

The distance between two vertices u and v in a graph G equals the length of a shortest path from u to v. A set S of vertices is a 2-independent set if the distance between any two elements in S is greater than two in G. The 2-independence number of a graph G, denoted by $\alpha_2(G)$, is the maximum size of a 2-independent set in G. In this paper, we determine a sharp upper bound for the 2-independence number in a connected graph and provide a characterization of the connected graphs achieving this sharp upper bound.

Mathematics Subject Classification: 05C05, 05C69

Keywords: connected graph, 2-independent set, 2-independence number

1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple edges. For a graph G, V(G) and E(G) denote the vertex set and the edge set of G, respectively. A u-v path $P: u = v_1, v_2, \ldots, v_k = v$ of G is a sequence of k vertices in G such that $v_i v_{i+1} \in E(G)$ for $i = 1, 2, \ldots, k-1$. Denote by P_n a n-path with n vertices. The length of P_n is n-1. For any two vertices u and v in G, the distance between u and v, denoted by $dist_G(u, v)$, is the minimum length of all u-v paths in G. A set S of vertices is a k-independent set if the distance between any two elements in S is greater than k in G. The k-independence number of a graph G, denoted by $\alpha_k(G)$, is the maximum size

¹Corresponding author

of a k-independent set in G. The study of the number of independent sets in a graph has a rich history. Finding a k-independent set of a graph is NP-hard (see [6], [7]). A. Abiad, G. Coutinho and M.A. Fiol [1] found the spectral bounds on the k-independence number of a graph. For some cases, they also showed that the bounds are sharp. Jou [3] determined the k-th largest number of 2-independent sets among all extra-free forest of order $n \geq 2$, where k = 1, 2 and 3. Extremal graphs achieving these values are also given. Min-Jen Jou and Jenq-Jong Lin [4] considered the problem of determining the small numbers of maximal 2-independent sets among all trees of order n. Extremal graphs achieving these values are also given. Min-Jen Jou, Jenq-Jong Lin and Qian-Yu Lin [5] determined a sharp upper bound for the 2-independence number in a tree. We also provided a constructive characterization of the extremal trees achieving this sharp upper bound. In this paper, we determine a sharp upper bound for the 2-independence number in a connected graph and provide a characterization of the connected graphs achieving this sharp upper bound.

2 A sharp upper bound

In this section, we determine a sharp upper bound for the 2-independence number in a connected graph. First, we introduce some notations.

The (open) neighborhood $N_G(v)$ of a vertex v is the set of vertices adjacent to v in G, and the closed neighborhood $N_G[v]$ is $N_G[v] = N_G(v) \cup \{v\}$. The degree of v is the cardinality of $N_G(v)$, denoted by $\deg_G(v)$. A vertex x is said to be a leaf if $\deg_G(x) = 1$. A vertex of G is a support vertex if it is adjacent to a leaf in G. We denote by L(G) and U(G) the collections of the leaves and support vertices of G, respectively. Two leaves x and x' are called duplicated leaves in a graph G if they are adjacent to the same support vertex. The closed 2-neighborhood $N_G^2[v]$ of a vertex v is the set of the vertices u satisfying $dist_G(u,v) \leq 2$ and the (open) 2-neighborhood is $N_G^2(v) = N_G^2[v] - \{v\}$. For any subset A, denote $N_G^2[A] = \bigcup_{v \in A} N_G^2[v]$ and $N_G^2(A) = \bigcup_{v \in A} N_G^2(v)$. Let $L^*(G) = \{x : x \in L(G), |N_G^2[x] \cap L(G)| = 1\}.$ A connected graph is said to be fresh if $L(G) = L^*(G)$. A 2-independent set S of G is called a α_2 -set if $|S| = \alpha_2(G)$. For a subset $A \subseteq V(G)$, the induced subgraph $\prec A \succ_G$ of a graph G is a subgraph G' = (A, E(G')), where $E(G') = \{uv : u, v \in A, uv \in E(G)\}$. For a subset $A \subseteq V(G)$, the deletion of A from G is the graph G-A obtained by removing all vertices in A and all edges incident to these vertices. For a subset $B \subseteq E(G)$, the edge-deletion of B from G is the graph G-B obtained by removing all edges of B. For two different sets A and B, written A-B, is the set of all elements of A that are not elements of B. A forest is a graph with no cycles, and a tree is a connected forest. For other undefined notations, the reader is referred to [2] for graph theory.

The following are the useful lemmas.

Lemma 2.1. Let H be a deletion of a connected graph G. If H is connected, then $\alpha_2(H) \leq \alpha_2(G)$.

Proof. Let S be a α_2 -set of H. Thus S is a 2-independent set of G. Hence $\alpha_2(H) = |S| \le \alpha_2(G)$, which completes the proof.

Lemma 2.2. Let G' be an edge-deletion of a connected graph G. If G' is connected, then $\alpha_2(G) \leq \alpha_2(G')$.

Proof. Let S be a α_2 -set of G. For two distinct vertices u and v of S, $dist_{G'}(u,v) \geq dist_{G}(u,v) \geq 3$. Thus S is a 2-independent set of G'. Hence $\alpha_2(G) = |S| \leq \alpha_2(G')$, which completes the proof.

Lemma 2.3. Let G be a connected graph. Then there exists a α_2 -set S satisfying $L^*(G) \subseteq S$.

Proof. Let S be a α_2 -set of G. If $L^*(G) \subseteq S$, then we are done. So we assume that $L^*(G) - S = \{x_1, \ldots, x_t\}$, where $t \ge 1$. Let u_i be a vertex of S such that $dist_G(u_i, x_i)$ is as small as possible. Then $dist_G(x_i, u_i) \le 2$ for all i. Let $S^* = (S - \{u_1, \ldots, u_t\}) \cup \{x_1, \ldots, x_t\}$. So $|S^*| \ge |S| = \alpha_2(G)$. We can see that $dist_G(x_i, x_j) \ge 3$ for all $i \ne j$. For $w \in S^*$ and $w \ne x_i$, $dist_G(x_i, w) \ge dist_G(u_i, w) \ge 3$ Hence S^* is a α_2 -set of G satisfying $L^*(G) \subseteq S^*$.

Lemma 2.4. Let G be a connected graph of order $|G| \ge 3$. If x and x' are duplicated leaves of G and $N_G(x) = N_G(x')$, then $\alpha_2(G - \{x'\}) = \alpha_2(G)$.

Proof. Let $x \in L^*(G)$. By Lemma 2.3, there exists a α_2 -set S of G satisfying $x \in S$. So S is a α_2 -set of $G - \{x'\}$. Hence $\alpha_2(G - \{x'\}) = |S| = \alpha_2(G)$, which completes the proof.

Theorem 2.5. [5] Let T be a tree of order $|T| \geq 2$. Then $\alpha_2(T) \leq \lfloor \frac{|T|}{2} \rfloor$ and the upper bound is sharp.

Figure 1: The tree T(n), where $\lfloor \frac{n}{2} \rfloor = m \ge 1$.

Let T(n) be as in Figure 1, where $\lfloor \frac{n}{2} \rfloor = m$. We can see that $\alpha_2(T(n)) = m$, as a result, the upper bound in Theorem 2.6 is sharp.

Theorem 2.6. Let G be a graph of order $|G| \ge 2$. Then $\alpha_2(G) \le \lfloor \frac{|G|}{2} \rfloor$ and the upper bound in is sharp.

Proof. Let T be a spanning tree of G. Then |T| = |G|. By Lemma 2.2 and Theorem 2.5, $\alpha_2(G) \leq \alpha_2(T) \leq \lfloor \frac{|T|}{2} \rfloor = \lfloor \frac{|G|}{2} \rfloor$, which completes the proof. \square

3 Characterization

In this section, we provide a characterization of the connected graphs achieving this sharp upper bound in Theorem 2.6. For the convenience of the characterization, let $\mathscr{G}(m)$ be the set of connected graph G satisfying $\alpha_2(G) = \lfloor \frac{|G|}{2} \rfloor = m$, where $m \geq 1$. Then |G| = 2m or 2m + 1 for every $G \in \mathscr{G}(m)$. We want to construction $\mathscr{G}(m)$ for all $m \geq 1$. Due to the construction, we first mention two sets $\mathcal{H}_1(m)$ and $\mathcal{H}_2(m)$. They are collections of some connected graphs G.

- (I) $\mathcal{H}_1(m) = \{G : G \text{ hold the following properties } a \text{ and } b\}.$
- (a) $|L^*(G)| = m$.
- (b) $\prec V(G) L^*(G) \succ_G$ is connected.
- (II) $\mathcal{H}_2(m) = \{G : G \text{ hold the following properties } c, d \text{ and } e\}.$
- (c) $|L^*(G)| = m 1$.
- $(d) \prec V(G) L^*(G) \succ_G$ is connected.
- (e) $C = \{w_1, w_2, w_3\} = V(G) N_G[L^*(G)]$ and $N_G(w_1) = \{w_2, w_3\}.$

The following Theorem is the main theorem.

Theorem 3.1. For
$$m \geq 1$$
, $\mathscr{G}(m) = \bigcup_{i=1}^{2} \mathcal{H}_{i}(m)$.

Suppose that $G \in \mathcal{H}_i(m)$ for some i, where $m \geq 1$, we can see that G is a connected graph satisfying $\alpha_2(G) = \lfloor \frac{|G|}{2} \rfloor = m$. Hence we obtain that $\mathcal{H}_i(m) \subseteq \mathcal{G}(m)$ for i = 1, 2. On the other hand, we will prove $\mathcal{G}(m) \subseteq \bigcup_{i=1}^2 \mathcal{H}_i(m)$ and we prove it through a sequence of lemmas.

Lemma 3.2. For
$$n \geq 3$$
, $\alpha_2(C_n) = \lfloor \frac{n}{3} \rfloor$.

Proof. Let $V(C_n) = \{v_1, v_2, \dots, v_n\}$ and $\lfloor \frac{n}{3} \rfloor = k$. Then $S = \{v_3, \dots, v_{3k}\}$ is a 2-independent set of C_n , so $\alpha_2(C_n) \geq |S| = k$. Suppose, by contradiction, $\alpha_2(C_n) \geq k+1$ and $S^* = \{v_{s_1}, \dots, v_{s_{k+1}}\}$ is a 2-independent set of C_n , where $s_1 < s_2 < \dots < s_{k+1}$. Then $dist_{C_n}(v_{s_i}, v_{s_{i+1}}) \geq 3$ for $i = 1, \dots, k$ and $dist_{C_n}(v_{s_1}, v_{s_{k+1}}) \geq 3$. Then $|C_n| \geq 3k+3 > n$. This is a contradiction, so $\alpha_2(C_n) \leq k$. Thus $\lfloor \frac{n}{3} \rfloor = k \leq \alpha_2(C_n) \leq k = \lfloor \frac{n}{3} \rfloor$, which completes the proof.

Lemma 3.3. Let $G \in \mathcal{G}(m)$ and |G| = 2m, where $m \geq 1$. Then the following hold.

- (i) $|L(G)| = |L^*(G)| = m$.
- (ii) The induced subgraph $\prec V(G) L(G) \succ_G$ is connected.

Proof. If $L(G) = \emptyset$, by Lemma 2.2 and Lemma 3.2, $m \le \alpha_2(G) \le \alpha_2(C_{2m}) = \lfloor \frac{2m}{3} \rfloor < m$. This is a contradiction, so $L(G) \ne \emptyset$.

Claim 1. $L(G) = L^*(G)$. Suppose, by contradiction, x and x' are duplicated leaves of G and $N_G(x) = N_G(x')$. By Lemma 2.4 and Theorem 2.6, $m = \alpha_2(G) = \alpha_2(G - \{x'\}) \le \lfloor \frac{2m-1}{2} \rfloor = m-1$. This is a contradiction, so $L(G) = L^*(G)$.

(i) We prove it by induction on m. We can see that $\mathscr{G}(1) = \{P_2, P_3, C_3\}$. If |G| = 2 is even, this means that $G = P_2$. So it's true for m = 1. Assume that it's true for m - 1, where $m \geq 2$. Let $G \in \mathscr{G}(m)$ and |G| = 2m. Let $u_0 \in L(G)$ and $u'_0 \in N_G(u_0)$. Suppose $G' = G - \{u_0, u'_0\}$, by Claim 1, then G' is a connected graph of order |G'| = 2(m-1). By Theorem 2.6, $m-1 \leq \alpha_2(G') \leq \lfloor \frac{|G'|}{2} \rfloor = \lfloor \frac{|G|}{2} \rfloor - 1 = m-1$. The equalities hold, so $\alpha_2(G') = \lfloor \frac{|G'|}{2} \rfloor = m-1$. Hence $G' \in \mathscr{G}(m-1)$, by the induction hypothesis, $|L(G')| = |L^*(G')| = m-1$. Let $L_1 = L^*(G') = L(G') = \{u_1, \ldots, u_{m-1}\}$ and $U_1 = \{u'_1, \ldots, u'_{m-1}\}$, where $u'_i \in N_{G'}(u_i)$ for $i = 1, \ldots, m-1$. So $V(G') = L_1 \cup U_1$.

Claim 2. $u'_0 \notin N_G(L_1)$. Suppose, by contradiction, $A = N_G(u'_0) \cap L_1 \neq \emptyset$ and $B = L_1 - A$. Let $A' = N_{G'}(A)$ and $B' = N_{G'}(B)$, where |A| = |A'| = a and |B| = |B'| = b. By Lemma 2.3, there exists a α_2 -set S of G satisfying $L(G) \subset S$. Then $u_0 \in S$ and $A \cap S = \emptyset$. Since G is connected, $N_{G'}^2(A') \cap B \neq \emptyset$. Then $|A' \cap S| \leq a - 1$ and $m = \alpha_2(G) = |\{u_0\}| + |A' \cap S| + |B| \leq 1 + (a - 1) + b = a + b = m - 1$. This is a contradiction, so $u'_0 \notin N_G(L_1)$.

By Claim 2, we have that $L(G) = L^*(G) = \{u_0, u_1, \dots, u_{m-1}\}$ and $|L(G)| = |L^*(G)| = m$.

(ii) Since G is connected, this implies that $\langle V(G) - L(G) \rangle_G$ is connected.

Lemma 3.4. Let $G \in \mathcal{G}(m)$ and |G| = 2m + 1, where $m \ge 1$. If G have duplicated leaves, then $|L^*(G)| = |L(G)| - 1 = m$.

Proof. By lemma 2.4, suppose G' is a fresh graph, where G' is a subgraph of G and |G'| = |G| - a, such that $\alpha_2(G') = \alpha_2(G) = m$. By Theorem 2.6, $m = \alpha_2(G') \leq \lfloor \frac{|G'|}{2} \rfloor = \lfloor \frac{|G| - a}{2} \rfloor \leq \lfloor \frac{2m}{2} \rfloor = m$. The equalities hold, so a = 1 and $G' \in \mathscr{G}(m)$. By Lemma 3.3, $|L(G')| = |L^*(G')| = m$. Hence $|L^*(G)| = |L(G)| - 1 = m$.

Lemma 3.5. If $G \in \mathcal{G}(m)$ and |G| = 2m + 1, where $m \ge 1$, then $|L^*(G)| = m$ or m - 1.

Proof. We prove it by induction on m. We can see that $\mathscr{G}(1) = \{P_2, P_3, C_3\}$. If |G| = 3 is odd, this means that $G = P_3$ or C_3 . So it's true for m = 1. Assume that it's true for m - 1, where $m \ge 2$. Let $G \in \mathscr{G}(m)$ and |G| = 2m + 1. If $L(G) = \emptyset$, by Lemma 2.2 and lemma 3.2, then $m = \alpha_2(G) \le \alpha_2(C_{2m+1}) = |\frac{2m+1}{3}| < m$, where $m \ge 2$. This is a contradiction, so $L(G) \ne \emptyset$.

If $L^*(G) \neq L(G)$. By Lemma 3.4, $|L^*(G)| = |L(G)| - 1 = m$. So we assume that $L^*(G) = L(G)$. Let $u_0 \in L(G)$ and $u'_0 \in N_G(u_0)$. Suppose $G' = G - \{u_0, u'_0\}$, then G' is a connected graph of order |G'| = 2(m-1) + 1. By Theorem 2.6, $m-1 \leq \alpha_2(G') \leq \lfloor \frac{|G'|}{2} \rfloor = \lfloor \frac{|G|}{2} \rfloor - 1 = m-1$. The equalities hold, so $\alpha_2(G') = \lfloor \frac{|G'|}{2} \rfloor = m-1$. Thus $G' \in \mathscr{G}(m-1)$, by the induction hypothesis, $|L^*(G')| = m-1$ or m-2. Let $L_1 = L^*(G') = \{u_1, \ldots, u_k\}$, where $m-2 \leq k \leq m-1$, and $U_1 = N_{G'}(L_1) \cap U(T) = \{u'_1, \ldots, u'_k\}$. If $N_G(u'_0) \cap L_1 = \emptyset$, then $|L^*(G)| = k+1$ and $|L^*(G)| = m$ or m-1. So we assume that $A = N_G(u'_0) \cap L_1 \neq \emptyset$ and $B = L_1 - A$. Let $A' = N_{G'}(A)$ and $B' = N_{G'}(B)$, where |A| = |A'| = a and |B| = |B'| = b. By Lemma 2.3, there exists a α_2 -set S of G satisfying $L^*(G) \subset S$. Then $u_0 \in S$ and $A \cap S = \emptyset$. Since $a + b = k \leq m-1$, $C = V(G') - (A \cup A' \cup B \cup B')$ and |C| = 1 or 3.

<u>Claim.</u> $|S \cap A'| \leq 1$. Suppose, by contradiction, $|S \cap A'| \geq 2$. Since G is connected, $\langle A' \rangle_{G'}$ is connected or $N^2_{G'}(A') \cap (C \cup B') \neq \emptyset$. Then we have that $2 \leq |S \cap A'| \leq a-1$ and $m = \alpha_2(G) = |\{u_0\}| + |A' \cap S| + |B| \leq 1 + (a-1) + b = a + b = m-1$. This is a contradiction, so $|S \cap A'| \leq 1$.

Since $\alpha_2(G) = \alpha_2(G') + 1$, by Claim, |A| = a = 1, say $A = \{u_1\}$. If k = m-2, then $C = \{w_1, w_2, w_3\}$, where $N_{G'}(w_1) = \{w_2, w_3\}$, and $C \cap L^*(G) = \emptyset$. Since G' is connected, $u'_1 \in N_{G'}(\{w_2, w_3\} \cup B')$. Thus $dist_{G'}(u'_1, w_1) = 2$ or $dist_{G'}(u'_1, u_i) = 2$ for some $u_i \in B$. Then $u'_1 \notin S$ and $m = |S| = |\{u_0, w_1\}| + |B| = 2 + (m-2-1) = m-1$. This is a contradiction, so k = m-1. So $m \geq |L^*(G)| \geq |B| + 1 = m-2 + 1 = m-1$.

Lemma 3.6. For $m \geq 1$, $\mathscr{G}(m) \subseteq \bigcup_{i=1}^{2} \mathcal{H}_{i}(m)$.

Proof. Let $G \in \mathcal{G}(m)$. Then |G| = 2m or 2m + 1. If |G| = 2m, by Lemma 3.3, $|L(G)| = |L^*(G)| = m$ and $|G - L^*(G)| = m$, where $V(G) = L^*(G) \cup U(G)$. By Lemma 2.3, $L^*(G)$ is a α_2 -set of G. Since G is connected, this implies that $G' = G - L^*(G)$ is connected. Hence $G \in \mathcal{H}_1(m)$. So we assume that |G| = 2m + 1. By Lemma 3.4, $|L^*(G)| = m$ or m - 1.

<u>Case 1.</u> $|L^*(G)| = m$. Then $L^*(G)$ is a α_2 -set of G. Since G is connected, this implies that $G' = G - L^*(G)$ is connected. Hence $G \in \mathcal{H}_1(m)$.

<u>Case 2.</u> $|L^*(G)| = m - 1$. Let $C = V(G) - N_G[L^*(G)]$. Then |C| = 3, say $C = \{w_1, w_2, w_3\}$ and $C \cap L(G) = \emptyset$. This means that $N_G(w_1) = \{w_2, w_2\}$. Hence $G \in \mathcal{H}_2(m)$.

By Cases 1 and 2,
$$G \in \mathcal{H}_1(m)$$
 or $G \in \mathcal{H}_2(m)$.

As an immediate consequence of Lemma 3.6, we obtain the Theorem 3.1. Hence we provide a characterization of $\mathscr{G}(m)$ for all $m \geq 1$.

References

- [1] A. Abiad, G. Coutinho, M.A. Fiol, On the k-Independence Number of Graphs, *Discrete Mathematics*, **342** (10) (2019), 2875-2885. https://doi.org/10.1016/j.disc.2019.01.016
- [2] J.A. Bondy, U.S.R. Murty, *Graph Theory with Applications*, New York, 1976. https://doi.org/10.1007/978-1-349-03521-2
- [3] Min-Jen Jou, The Large Numbers of 2-Independent Sets in Extra-Free Forests, Ars Combinatoria, 118 (2015), 221-226.
- [4] Min-Jen Jou and Jenq-Jong Lin, The Maximal 2-independent Sets in Trees, International Conference on Applied Mathematics, Simulation and Modelling, (AMSM 2016). https://doi.org/10.2991/amsm-16.2016.25
- [5] Min-Jen Jou, Jenq-Jong Lin and Qian-Yu Lin, On the 2-independence number of trees, *International Journal of Contemporary Mathematical Sciences*, **15** (2020) 107-112. https://doi.org/10.12988/ijcms.2020.91441
- [6] M.C. Kong and Y. Zhao, On Computing Maximum k-Independent Sets, Congressus Numerantium, 95 (1993), 47-60.
- [7] M.C. Kong and Y. Zhao, Computing k-Independent Sets for Regular Bipartite Graphs, *Congressus Numerantium*, **143** (2000), 65-80.

Received: June 11, 2020; Published: June 26, 2020