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Abstract

The distance between two vertices u and v in a graph G equals
the length of a shortest path from u to v. A set S of vertices is a 2-
independent set if the distance between any two elements in S is greater
than two in G. The 2-independence number of a graph G, denoted by
as(@), is the maximum size of a 2-independent set in G. In this paper,
we determine a sharp upper bound for the 2-independence number in a
connected graph and provide a characterization of the connected graphs
achieving this sharp upper bound.
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1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple
edges. For a graph G, V(G) and E(G) denote the vertex set and the edge set
of G, respectively. A wu-v path P : u = vy,vs,...,v, = v of GG is a sequence
of k vertices in G such that v;v;4, € E(G) fori = 1,2,...,k — 1. Denote by
P, a n-path with n vertices. The length of P, is n-1. For any two vertices
uw and v in G, the distance between u and v, denoted by distg(u,v), is the
minimum length of all u-v paths in G. A set S of vertices is a k-independent
set if the distance between any two elements in S is greater than k in GG. The
k-independence number of a graph G, denoted by ay(G), is the maximum size
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of a k-independent set in G. The study of the number of independent sets in
a graph has a rich history. Finding a k-independent set of a graph is NP-hard
(see [6], [7]). A. Abiad, G. Coutinho and M.A. Fiol [1] found the spectral
bounds on the k-independence number of a graph. For some cases, they also
showed that the bounds are sharp. Jou [3] determined the k-th largest number
of 2-independent sets among all extra-free forest of order n > 2, where k = 1, 2
and 3. Extremal graphs achieving these values are also given. Min-Jen Jou and
Jeng-Jong Lin [4] considered the problem of determining the small numbers
of maximal 2-independent sets among all trees of order n. Extremal graphs
achieving these values are also given. Min-Jen Jou, Jeng-Jong Lin and Qian-
Yu Lin [5] determined a sharp upper bound for the 2-independence number
in a tree. We also provided a constructive characterization of the extremal
trees achieving this sharp upper bound. In this paper, we determine a sharp
upper bound for the 2-independence number in a connected graph and provide
a characterization of the connected graphs achieving this sharp upper bound.

2 A sharp upper bound

In this section, we determine a sharp upper bound for the 2-independence
number in a connected graph. First, we introduce some notations.

The (open) neighborhood N¢(v) of a vertex v is the set of vertices adjacent
to v in G, and the closed neighborhood Ng[v] is Ng[v] = Ng(v) U {v}. The
degree of v is the cardinality of Ng(v), denoted by deg,(v). A vertex x is said
to be a leaf if deg,(xz) = 1. A vertex of G is a support vertez if it is adjacent
to a leaf in G. We denote by L(G) and U(G) the collections of the leaves and
support vertices of G, respectively. Two leaves x and x’ are called duplicated
leaves in a graph G if they are adjacent to the same support vertex. The
closed 2-neighborhood NE[v] of a vertex v is the set of the vertices u satisfying
distg(u,v) < 2 and the (open) 2-neighborhood is Ni(v) = NZ[v] — {v}. For
any subset A, denote NE[A] = U, N&[v] and NE(A) = U,eq Né(v). Let
L*(G) = {x : z € L(G),|N&[z] N L(G)| = 1}. A connected graph is said to
be fresh if L(G) = L*(G). A 2-independent set S of G is called a as-set if
|S| = a2(G). For asubset A C V(G), the induced subgraph < A ¢ of a graph
G is a subgraph G’ = (A, E(G")), where E(G") = {uv : u,v € A,uwv € E(G)}.
For a subset A C V(G), the deletion of A from G is the graph G — A obtained
by removing all vertices in A and all edges incident to these vertices. For a
subset B C F(G), the edge-deletion of B from G is the graph G — B obtained
by removing all edges of B. For two different sets A and B, written A — B,
is the set of all elements of A that are not elements of B. A forest is a graph
with no cycles, and a tree is a connected forest. For other undefined notations,
the reader is referred to [2] for graph theory.

The following are the useful lemmas.
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Lemma 2.1. Let H be a deletion of a connected graph G. If H is connected,
then as(H) < as(G).

Proof. Let S be a ag-set of H. Thus S is a 2-independent set of G. Hence
as(H) = |S] < as(G), which completes the proof. O

Lemma 2.2. Let G’ be an edge-deletion of a connected graph G. If G' is
connected, then as(G) < as(G').

Proof. Let S be a as-set of G. For two distinct vertices v and v of 5,
distg(u,v) > distg(u,v) > 3. Thus S is a 2-independent set of G'. Hence
as(G) =|S| < ay(G’), which completes the proof. O

Lemma 2.3. Let G be a connected graph. Then there exists a ag-set S
satisfying L*(G) C S.

Proof. Let S be a as-set of G. If L*(G) C S, then we are done. So we assume
that L*(G) — S = {w1,..., ¢}, where t > 1. Let u; be a vertex of S such
that distg(u;, ;) is as small as possible. Then distg(x;,u;) < 2 for all i. Let
S* = (S —{ur,...,u}) U{xy,...,2¢}. So |[S*| > |S] = az(G). We can see
that distg(z;,x;) > 3 for all ¢ # j. For w € S* and w # z;, distg(x;,w) >
distg(u;, w) > 3 Hence S* is a ag-set of G satisfying L*(G) C S*. O
Lemma 2.4. Let G be a connected graph of order |G| > 3. If x and x’ are
duplicated leaves of G and Ng(z) = Ng(2'), then as(G — {z'}) = as(G).

Proof. Let x € L*(G). By Lemma 2.3, there exists a ag-set S of G satisfying
z € S. So Sisaagset of G—{a'}. Hence ao(G —{2'}) = |S| = aa(G), which
completes the proof. O

Theorem 2.5. [5] Let T be a tree of order |T| > 2. Then as(T) < [Z1]

2
and the upper bound is sharp.

|T(n)| = 2m is even |T'(n)| =2m+ 1 is odd

Figure 1: The tree T'(n), where [§] =m > 1.

Let T'(n) be as in Figure 1, where | 7] = m. We can see that ay(T'(n)) = m,
as a result, the upper bound in Theorem 2.6 is sharp.

Theorem 2.6. Let G be a graph of order |G| > 2. Then ay(G) < L@J and
the upper bound n is sharp.

Proof. Let T be a spanning tree of G. Then |T| = |G|. By Lemma 2.2 and
Theorem 2.5, a2(G) < as(T) < L@J = L@J, which completes the proof. [
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3 Characterization

In this section, we provide a characterization of the connected graphs achieving
this sharp upper bound in Theorem 2.6. For the convenience of the characteri-
zation, let ¢(m) be the set of connected graph G satisfying as(G) = L@j =m,
where m > 1. Then |G| = 2m or 2m + 1 for every G € ¥(m). We want to
construction ¢(m) for all m > 1. Due to the construction, we first mention
two sets Hq(m) and Ha(m). They are collections of some connected graphs G.

(I) H1(m) = {G : G hold the following properties a and b}.

(a) [LH(G)] = m
(b)< V(G) — L*(G) >¢ is connected.

(IT) Ha(m) = {G G hold the following properties ¢, d and e}.

(€) [L*(G)] =m — 1.

()= V(G) — L*(G) >¢ is connected.

(e) C = {wy,wq, w3} = V(G) — Ng[L*(G)] and Ng(w;) = {wa, ws}.

The following Theorem is the main theorem.

Theorem 3.1. Form > 1, 9(m) = |J._, Hi(m).

Suppose that G € H;(m) for some i, where m > 1, we can see that G is a
connected graph satisfying as(G) = L%J = m. Hence we obtain that H;(m) C
@(m) for i = 1,2. On the other hand, we will prove ¥(m) C |J7_, H,;(m) and
we prove it through a sequence of lemmas.

Lemma 3.2. Forn >3, as(Cy) = [%].

Proof. Let V(Cy,) = {vi,v2,...,v,} and [3] = k. Then S = {vs,..., v}
is a 2-independent set of C,,, so ay(C,) > |S| = k. Suppose, by contradic-
tion, a(Cy,) > k + 1 and S* = {v,,,...,v,,,} is a 2-independent set of C,,,
where s; < s < -+ < sp41. Then diste, (vs,,vs,,,) > 3 fori =1,..., k and
distc, (Vs , Vs, ) = 3. Then [C,] > 3k +3 > n. This is a contradiction,
so ax(Cy) < k. Thus 3] =k < ax(C,) < k = [§], which completes the
proof. n

Lemma 3.3. Let G € 9(m) and |G| = 2m, where m > 1. Then the
following hold.
(i) [L(G)] = [L*(G)] = m
(ii) The induced subgraph < V(G) — L(G) >¢ is connected.
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Proof. It L(G) = 0, by Lemma 2.2 and Lemma 3.2, m < as(G) < az(Cay) =
[ 2] < m. This is a contradiction, so L(G) # 0.

Claim 1. L(G) = L*(G). Suppose, by contradiction, x and 2’ are duplicated
leaves of G and Ng(x) = Ng(2'). By Lemma 2.4 and Theorem 2.6, m =
a2(G) = as(G — {z'}) < [#2-1] =m — 1. This is a contradiction, so L(G) =
L*(G).

(i) We prove it by induction on m. We can see that (1) = { P, P5, C3}. If

|G| = 2 is even, this means that G = P,. So it’s true for m = 1. Assume that
it’s true for m — 1, where m > 2. Let G € ¥(m) and |G| = 2m. Let uy € L(G)
and uj € Ng(ug). Suppose G' = G — {ug,up}, by Claim 1, then G’ is a
connected graph of order |G’| = 2(m —1). By Theorem 2.6, m —1 < ay(G’) <
L'CQ;—I‘J = L@J — 1 =m — 1. The equalities hold, so ay(G’) = L%J =m—1
Hence G’ € ¥(m—1), by the induction hypothesis, |L(G")| = |L*(G")| = m—1.
Let Ly = L*(G") = L(G") = {uy,...,upm—1} and Uy = {u},...,ul, 1}, where
u, € Ngr(u;) fori=1,...,m —1. So V(G') = L, UUj.
Claim 2. u, ¢ Ng(L1). Suppose, by contradiction, A = Ng(ugy) N Ly # 0
and B = L; — A. Let A = Ng/(A) and B" = Ng/(B), where |A| = |A'| = a
and |B| = |B’| = b. By Lemma 2.3, there exists a as-set S of G satisfying
L(G) € S. Then ug € S and ANS = (). Since G is connected, NZ,(A")NB # (.
Then |A'NS| < a—1and m = as(G) = [{u}|+|A'NS|+|B| < 1+(a—1)+b=
a+b=m — 1. This is a contradiction, so uy & Ng(Ly).

By Claim 2, we have that L(G) = L*(G) = {ug, u1, ..., Un-1} and |L(G)| =
[LH(G)| = m.

(ii) Since G is connected, this implies that < V(G)— L(G) >¢ is connected.

[

Lemma 3.4. Let G € 9(m) and |G| = 2m + 1, where m > 1. If G have
duplicated leaves, then |L*(G)| = |L(G)| — 1 = m.

Proof. By lemma 2.4, suppose G’ is a fresh graph, where G’ is a subgraph
of G and |G'| = |G| — a, such that as(G') = a(G) = m. By Theorem
2.6, m = ay(G’) < L%J = LMT_QJ < [2] = m. The equalities hold, so
a =1and G € ¢(m). By Lemma 3.3, |L(G")| = |L*(G")] = m. Hence
|L*(G)| = |L(G)| — 1 =m. O

Lemma 3.5. If G € 9(m) and |G| = 2m+1, where m > 1, then |L*(G)| =
m or m — 1.

Proof. We prove it by induction on m. We can see that ¢(1) = { P, P;, C3}. If
|G| = 3 is odd, this means that G = P5 or C5. So it’s true for m = 1. Assume
that it’s true for m — 1, where m > 2. Let G € ¥(m) and |G| = 2m + 1. If
L(G) = 0, by Lemma 2.2 and lemma 3.2, then m = a3(G) < as(Copi1) =
|22 ] < m, where m > 2. This is a contradiction, so L(G) # 0.
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If L*(G) # L(G). By Lemma 34, |L*(G)| = |L(G)| —1 = m. So we
assume that L*(G) = L(G). Let uy € L(G) and uy € Ng(up). Suppose
G’ = G — {ug, u,}, then G’ is a connected graph of order |G'| =2(m —1) + 1.
By Theorem 2.6, m — 1 < ay(G’) < L‘%/'J = L%J — 1 =m— 1. The equalities
hold, so ay(G’) = L%j =m — 1. Thus G’ € g(m — 1), by the induction
hypothesis, |L*(G")] = m — 1 or m — 2. Let Ly = L*(G") = {u1,...,u},
where m —2 < k < m —1, and U; = Nge(Ly) NU(T) = {u},...,u.}. If
Neg(up) N Ly = 0, then |L*(G)| = k4 1 and |L*(G)| = m or m — 1. So we
assume that A = Ng(ug) N Ly # 0 and B = Ly — A. Let A’ = Ng/(A) and
B' = Ng/(B), where |A| = |A’| = a and |B| = |B'| = b. By Lemma 2.3, there
exists a ag-set S of G satisfying L*(G) € S. Then up € S and ANS = 0.
Sincca+b=k<m-1,C=V(G")—(AUAUBUDB') and |C|] =1 or 3.
Claim. |[S N A’| < 1. Suppose, by contradiction, |S N A’| > 2. Since G is
connected, < A’ =¢ is connected or NZ,(A’) N (C' U B’) # (. Then we have
that 2 < |[SNA| < a—1and m = a(G) = {u}| + A NS|+ |B| <
14+ (a—1)+b=a-+b=m— 1. This is a contradiction, so |SN A’'| <1.

Since as(G) = az(G’) + 1, by Claim, |[A] =a =1,say A = {w}. lf k =
m — 2, then C' = {wy, w, w3}, where Ngr(wq) = {wq, w3}, and C'NL*(G) = 0.
Since G’ is connected, u] € Neg/({wq, w3} U B'). Thus diste(u),w1) = 2 or
distg (uy,u;) = 2 for some u; € B. Then u} ¢ S and m = |S| = [{ug, w1 }| +
|IB| =24 (m —2—1) = m — 1. This is a contradiction, so k = m — 1. So
m>|L*(G)|>|B|l+1=m—-2+1=m—1. O

Lemma 3.6. Form > 1, 9(m) C |J_, Hi(m).

Proof. Let G € 4(m). Then |G| = 2m or 2m + 1. If |G| = 2m, by Lemma 3.3,
|L(G)| = |L*(G)] = m and |G — L*(G)| = m, where V(G) = L*(G) U U(G).
By Lemma 2.3, L*(G) is a ag-set of G. Since G is connected, this implies
that G’ = G — L*(@G) is connected. Hence G € H;(m). So we assume that
|G| = 2m + 1. By Lemma 3.4, |L*(G)| = m or m — 1.
Case 1. |L*(G)| = m. Then L*(G) is a ag-set of G. Since G is connected, this
implies that G’ = G — L*(@G) is connected. Hence G € H(m).
Case 2. |L*(G)| = m — 1. Let C = V(G) — Ng[L*(G)]. Then |C| = 3, say
C = {wy,wz,w3} and C' N L(G) = (. This means that Ng(w;) = {wa, wa}.
Hence G € Ha(m).

By Cases 1 and 2, G € Hy(m) or G € Ha(m). O

As an immediate consequence of Lemma 3.6, we obtain the Theorem 3.1.
Hence we provide a characterization of ¢(m) for all m > 1.
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