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Abstract

The distance between two vertices u and v in a graph G equals
the length of a shortest path from u to v. A set S of vertices is a 2-
independent set if the distance between any two elements in S is greater
than two in G. The 2-independence number of a graph G, denoted by
as(@), is the maximum size of a 2-independent set in G. Here we focus
on the trees. In this paper, we determine a sharp upper bound for
the 2-independence number in a tree. We also provide a constructive
characterization of the extremal trees achieving this sharp upper bound.
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1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple
edges. For a graph G, V(G) and E(G) denote the vertex set and the edge set
of G, respectively. A wu-v path P : u = vy,vs,...,v, = v of GG is a sequence
of k vertices in G such that v;v;4, € E(G) fori = 1,2,...,k — 1. Denote by
P, a n-path with n vertices. The length of P, is n-1. For any two vertices
uw and v in G, the distance between u and v, denoted by distg(u,v), is the
minimum length of all u-v paths in G. A set S of vertices is a k-independent
set if the distance between any two elements in S is greater than k in GG. The
k-independence number of a graph G, denoted by ay(G), is the maximum size
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of a k-independent set in G. The study of the number of independent sets in
a graph has a rich history. Finding a k-independent set of a graph is NP-hard
(see [5], [6]). A. Abiad, G. Coutinho and M.A. Fiol [1] found the spectral
bounds on the k-independence number of a graph. For some cases, they also
showed that the bounds are sharp. Jou [3] determined the k-th largest number
of 2-independent sets among all extra-free forest of order n > 2, where k =1,
2 and 3. Extremal graphs achieving these values are also given. Min-Jen
Jou and Jeng-Jong Lin [4] considered the problem of determining the small
numbers of maximal 2-independent sets among all trees of order n. Extremal
graphs achieving these values are also given. In this paper, we determine a
sharp upper bound for the 2-independence number in a tree. We also provide a
constructive characterization of the extremal trees achieving this sharp upper

bound.

2 A sharp upper bound

In this section, we determine a sharp upper bound for the 2-independence
number in a tree. First, we introduce some notations.

The (open) neighborhood N (v) of a vertex v is the set of vertices adjacent
to v in G, and the closed neighborhood Ng[v] is Ng[v] = Ng(v) U {v}. The
degree of v is the cardinality of Ng(v), denoted by deg.(v). A vertex z is said
to be a leaf if deg,(z) = 1. A vertex of G is a support vertex if it is adjacent
to a leaf in G. Two leaves x and 2’ are called duplicated leaves in a graph
G if they are adjacent to the same support vertex. A k-independent set S of
G is called a ay-set if |S| = ax(G). For a subset A C V(G), the deletion of
A from G is the graph G — A obtained by removing all vertices in A and all
edges incident to these vertices. The diameter of a graph G is the number
diam(G) = max{distg(u,v) : u,v € V(G)}. For two different sets A and B,
written A — B is the set of all elements of A that are not elements of B. A
forest is a graph with no cycles, and a tree is a connected forest. For other
undefined notions, the reader is referred to [2] for graph theory.

The following are the useful lemmas.

Lemma 2.1. Let T be a tree of order |T'| > 2 and T" be a subtree of T.
Then as(T") < ao(T).

Proof. Let S’ be a ag-set of T'. Then S’ is a 2-independent set of T. So
as(T) > |S'| = as(T"), which completes the proof. O

Lemma 2.2. Suppose T is a tree of order |T'| > 2 and x is a leaf of T.
Then there exists a as-set S of T' satisfying v € S.

Proof. Let S be a as-set of T. If z € S, then we are done. So we assume that
x ¢ S. Let v be a vertex in S such that disty(z, v) is as small as possible. Then
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distr(z,v) < 2 and distr(z,u) > 3 for every vertex u € S, where u # v. Let
S" = (S —{v})uU{x}. For every pair of vertices u and w in S’, disty(u, w) > 3.
Thus S’ is a 2-independent set of T', so aa(T') = |S| = |S’| < ao(T). Hence the
equalities hold, the set S’ is a ag-set of T satisfying x € S’. This completes
the proof. n

Lemma 2.3. Let T be a tree of order |T| > 3. Suppose x and x’ are
duplicated leaves of T, then T' =T — {2’} is a tree and ao(T") = ao(T).

Proof. Since 2’ is a leaf of T', this implies that 7" is a tree. By Lemma 2.2, there
exists a ag-set S of T satisfying x € S. Then 2/ € S, so S is a 2-independent
set of 7". By Lemma 2.1, a(7") < ao(T) and aa(T) = |S] < aa(T") < as(T).
Then the equalities hold, hence as(T") = ay(T). O

Lemma 2.4. Suppose T is a tree of order |T'| > 2 and ay(T) = m, where
m > 1. Then |T| > 2m.

Proof. Suppose S = {wy,...,wy,}, where m > 1, is a ag-set of T. For i =
1,...,m, let W(i) be the set of vertices v € Ny(w;) which are not adjacent to
another w;, where j # 4. Since disty(w;, w;) > 3 for all i # j, we have that
W(i) #0and W(E)NW(5) = 0. So |T| > [S|+>_0", [W ()| > m+m =2m. O

Now we determine an upper bound for the 2-independence number in a
tree.

Theorem 2.5. Let T be a tree of order |T| > 2. Then as(T) < L%J

Proof. Let |T| = n. If n is even, by Lemma 2.4, as(T) < |—§| = [@j So it’s
true for all even n > 2. Now we assume that |T| = n = 2k + 1 is odd, where
k > 1. Suppose, by contradiction, as(T) > [@j + 1, then ao(T) > k + 1.
By Lemma 2.4, 2k +1 = |T| > 2-as(T) > 2(k+1) = 2k +2. This is a
contradiction, which completes the proof. O

|T(n)| = 2m is even T (n)| =2m+ 1 is odd

Figure 1: The tree T'(n), where [§| =m > 1.

Let T'(n) be as in Figure 1, where |5 | = m. We can see that ay(T'(n)) = m,
as a result, the upper bound in Theorem 2.5 is sharp.
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3 Characterization

In this section, we provide a constructive characterization of the extremal trees
achieving the sharp upper bound in Theorem 2.5. For the convenience of the
characterization, let 7(m) be the set of trees T" satisfying a(7") = L@j =m,
where m > 1. Due to the construction, we first mention the following lemma.

Lemma 3.1. Let T € 7(m), where m > 2. Suppose T" € 7(m — 1) is a
subtree of T, then |T'| + 1 < |T| < |T'| + 3.

Proof. We can see that |T'| > |T'| + 1. By Theorem 2.5, |T'| > 2(m — 1) =
2m — 2 and |T| <2m+1. So |T| —|T'| < (2m + 1) — (2m — 2) = 3. Hence
T'|+1<|T|<|T'|+3. O

Let T” be a tree of order n’ > 2 and S’ be a as-set of 77. We introduce a
special subset R(7") and four operations. Let R(1") = {v : v € V(T"), Np[v]N
S = (}.

Operation O1. Assume n’ > 5 is odd and v € R(T"), add a new vertex x;
and the edge ux;.

Operation O2. Assume u ¢ S, add a new path P, : 1, 25 and the edge uxs.
Operation O3. Assume n’ > 2 is even and u € V(T”), add a new path
Ps : x1, 29, x3 and the edge uxs.

Operation O4. Assume n’ > 2 is even and u € V(7”), add a new path
P3 : x1, 19, x5 and the edge uws.

Let A(1) = {P, P3s}. Suppose A is the collection of the trees T which are
obtained from a sequence T € A(1),T5,..., T, =T and, ifi = 1,... .k — 1,
T;+1 can be obtained recursively from 7; by one of the operations O1-O4.
Suppose A(m), where m > 2, is the collection of all trees T € A satisfying
as(T) = m. We want to prove that 7(m) = A(m) for for all m > 1. The
following Theorem is the main theorem.

Theorem 3.2. Form > 1, 7(m) = A(m).

For every tree T' € A(m), where m > 1, we can see that 7' is a tree

satisfying an(T) = L@J = m. Hence we obtain that A(m) C 7(m). On the

other hand, we will prove 7(m) C A(m) in the following lemma.
Lemma 3.3. Form > 1, 7(m) C A(m).

Proof. We can see that 7 (1) = {P2, P53} = A(1l), so it’s true for m = 1.
Suppose, by contradiction, T" € Z(m) and T' ¢ A(m) such that m is as small
as possible. Then 2m < |T'| < 2m + 1, where m > 2, and diam(T) > 4.
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First, we assume that T" has no duplicated leaf. Let P : xq,x9, 23,24, ...
be a longest path of T. By Lemma 2.2, there exists a ao-set S of T satisfying
1 € S. Let 8 =S — {21} and 7" = T — {x1,22}. Then 7" is a tree of
order |T"| = |T| — 2 and S’ is a 2-independent set of 7. By Theorem 2.5,
m—1=1[8-1=1[8]<ay(T) < [Tl = [F2] = |ITI} — 1 =m — 1. Thus
the equalities hold, as(7") = m—1and S" is a ag-set of T'. So T" € 7(m —1),
by the hypothesis, 7" € A(m — 1). Since z3 ¢ S’, T can be obtained from
T" € A(m — 1) by the Operation O2. So T' € A(m). This is a contradiction,
hence T" have duplicated leaves.

By Lemma 2.3, let T* be a subtree of T" such that 7™ has no duplicated leaf
and ao(T*) = az(T). By Theorem 2.5, then m = ao(T) = as(T™) < [@J <
Lm%lj < L@J = m. Thus the equalities hold, so |T%*| = |T'|—1 = 2m. Then T
have only two duplicated leaves, say u and «’. Let Np(y) = {u, v, z}. Suppose
S* is a ag-set of T satisfying u € S*. Then S** = S*—{u} is a 2-independent set
of T** =T —{u,u,y}, where T** is a tree of order |T™*| = |T| —3 = 2(m —1).
By Theorem 2.5, m — 1 = |S*| = 1 = [S™] < ap(T*) < L@J =m — 1.
Thus the equalities hold, as(T**) = m — 1 and S* is a ag-set of T**. So
T € 7(m — 1), by the hypothesis, 7** € A(m — 1). Since z ¢ S** and
|T**| = 2(m—1), T can be obtained from T** € A(m—1) by the Operation O4.
So T € A(m). This is a contradiction again, which completes the proof. [

As an immediate consequence of Lemma 3.3, we obtain the Theorem 3.2.
Hence we provide a constructive characterization A(m) of 7 (m) for all m > 1.
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