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Abstract

The distance between two vertices u and v in a graph G equals
the length of a shortest path from u to v. A set S of vertices is a 2-
independent set if the distance between any two elements in S is greater
than two in G. The 2-independence number of a graph G, denoted by
α2(G), is the maximum size of a 2-independent set in G. Here we focus
on the trees. In this paper, we determine a sharp upper bound for
the 2-independence number in a tree. We also provide a constructive
characterization of the extremal trees achieving this sharp upper bound.

Mathematics Subject Classification: 05C05, 05C69

Keywords: tree, 2-independent set, 2-independence number

1 Introduction

All graphs considered in this paper are finite, loopless, and without multiple
edges. For a graph G, V (G) and E(G) denote the vertex set and the edge set
of G, respectively. A u-v path P : u = v1, v2, . . . , vk = v of G is a sequence
of k vertices in G such that vivi+1 ∈ E(G) for i = 1, 2, . . . , k − 1. Denote by
Pn a n-path with n vertices. The length of Pn is n-1. For any two vertices
u and v in G, the distance between u and v, denoted by distG(u, v), is the
minimum length of all u-v paths in G. A set S of vertices is a k-independent
set if the distance between any two elements in S is greater than k in G. The
k-independence number of a graph G, denoted by αk(G), is the maximum size
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of a k-independent set in G. The study of the number of independent sets in
a graph has a rich history. Finding a k-independent set of a graph is NP-hard
(see [5], [6]). A. Abiad, G. Coutinho and M.A. Fiol [1] found the spectral
bounds on the k-independence number of a graph. For some cases, they also
showed that the bounds are sharp. Jou [3] determined the k-th largest number
of 2-independent sets among all extra-free forest of order n ≥ 2, where k = 1,
2 and 3. Extremal graphs achieving these values are also given. Min-Jen
Jou and Jenq-Jong Lin [4] considered the problem of determining the small
numbers of maximal 2-independent sets among all trees of order n. Extremal
graphs achieving these values are also given. In this paper, we determine a
sharp upper bound for the 2-independence number in a tree. We also provide a
constructive characterization of the extremal trees achieving this sharp upper
bound.

2 A sharp upper bound

In this section, we determine a sharp upper bound for the 2-independence
number in a tree. First, we introduce some notations.

The (open) neighborhood NG(v) of a vertex v is the set of vertices adjacent
to v in G, and the closed neighborhood NG[v] is NG[v] = NG(v) ∪ {v}. The
degree of v is the cardinality of NG(v), denoted by degG(v). A vertex x is said
to be a leaf if degG(x) = 1. A vertex of G is a support vertex if it is adjacent
to a leaf in G. Two leaves x and x′ are called duplicated leaves in a graph
G if they are adjacent to the same support vertex. A k-independent set S of
G is called a αk-set if |S| = αk(G). For a subset A ⊆ V (G), the deletion of
A from G is the graph G − A obtained by removing all vertices in A and all
edges incident to these vertices. The diameter of a graph G is the number
diam(G) = max{distG(u, v) : u, v ∈ V (G)}. For two different sets A and B,
written A − B is the set of all elements of A that are not elements of B. A
forest is a graph with no cycles, and a tree is a connected forest. For other
undefined notions, the reader is referred to [2] for graph theory.

The following are the useful lemmas.

Lemma 2.1. Let T be a tree of order |T | ≥ 2 and T ′ be a subtree of T .
Then α2(T

′) ≤ α2(T ).

Proof. Let S ′ be a α2-set of T ′. Then S ′ is a 2-independent set of T . So
α2(T ) ≥ |S ′| = α2(T

′), which completes the proof.

Lemma 2.2. Suppose T is a tree of order |T | ≥ 2 and x is a leaf of T .
Then there exists a α2-set S of T satisfying x ∈ S.

Proof. Let S be a α2-set of T . If x ∈ S, then we are done. So we assume that
x 6∈ S. Let v be a vertex in S such that distT (x, v) is as small as possible. Then
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distT (x, v) ≤ 2 and distT (x, u) ≥ 3 for every vertex u ∈ S, where u 6= v. Let
S ′ = (S−{v})∪{x}. For every pair of vertices u and w in S ′, distT (u,w) ≥ 3.
Thus S ′ is a 2-independent set of T , so α2(T ) = |S| = |S ′| ≤ α2(T ). Hence the
equalities hold, the set S ′ is a α2-set of T satisfying x ∈ S ′. This completes
the proof.

Lemma 2.3. Let T be a tree of order |T | ≥ 3. Suppose x and x′ are
duplicated leaves of T , then T ′ = T − {x′} is a tree and α2(T

′) = α2(T ).

Proof. Since x′ is a leaf of T , this implies that T ′ is a tree. By Lemma 2.2, there
exists a α2-set S of T satisfying x ∈ S. Then x′ 6∈ S, so S is a 2-independent
set of T ′. By Lemma 2.1, α2(T

′) ≤ α2(T ) and α2(T ) = |S| ≤ α2(T
′) ≤ α2(T ).

Then the equalities hold, hence α2(T
′) = α2(T ).

Lemma 2.4. Suppose T is a tree of order |T | ≥ 2 and α2(T ) = m, where
m ≥ 1. Then |T | ≥ 2m.

Proof. Suppose S = {w1, . . . , wm}, where m ≥ 1, is a α2-set of T . For i =
1, . . . ,m, let W (i) be the set of vertices v ∈ NT (wi) which are not adjacent to
another wj, where j 6= i. Since distT (wi, wj) ≥ 3 for all i 6= j, we have that
W (i) 6= ∅ and W (i)∩W (j) = ∅. So |T | ≥ |S|+

∑m
i=1 |W (i)| ≥ m+m = 2m.

Now we determine an upper bound for the 2-independence number in a
tree.

Theorem 2.5. Let T be a tree of order |T | ≥ 2. Then α2(T ) ≤ b |T |
2
c.

Proof. Let |T | = n. If n is even, by Lemma 2.4, α2(T ) ≤ |T |
2

= b |T |
2
c. So it’s

true for all even n ≥ 2. Now we assume that |T | = n = 2k + 1 is odd, where

k ≥ 1. Suppose, by contradiction, α2(T ) ≥ b |T |
2
c + 1, then α2(T ) ≥ k + 1.

By Lemma 2.4, 2k + 1 = |T | ≥ 2 · α2(T ) ≥ 2(k + 1) = 2k + 2. This is a
contradiction, which completes the proof.
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Figure 1: The tree T (n), where bn
2
c = m ≥ 1.

Let T (n) be as in Figure 1, where bn
2
c = m. We can see that α2(T (n)) = m,

as a result, the upper bound in Theorem 2.5 is sharp.
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3 Characterization

In this section, we provide a constructive characterization of the extremal trees
achieving the sharp upper bound in Theorem 2.5. For the convenience of the
characterization, let T (m) be the set of trees T satisfying α2(T ) = b |T |

2
c = m,

where m ≥ 1. Due to the construction, we first mention the following lemma.

Lemma 3.1. Let T ∈ T (m), where m ≥ 2. Suppose T ′ ∈ T (m − 1) is a
subtree of T , then |T ′|+ 1 ≤ |T | ≤ |T ′|+ 3.

Proof. We can see that |T | ≥ |T ′| + 1. By Theorem 2.5, |T ′| ≥ 2(m − 1) =
2m − 2 and |T | ≤ 2m + 1. So |T | − |T ′| ≤ (2m + 1) − (2m − 2) = 3. Hence
|T ′|+ 1 ≤ |T | ≤ |T ′|+ 3.

Let T ′ be a tree of order n′ ≥ 2 and S ′ be a α2-set of T ′. We introduce a
special subset R(T ′) and four operations. Let R(T ′) = {v : v ∈ V (T ′), NT ′ [v]∩
S ′ = ∅}.

Operation O1. Assume n′ ≥ 5 is odd and u ∈ R(T ′), add a new vertex x1
and the edge ux1.
Operation O2. Assume u /∈ S ′, add a new path P2 : x1, x2 and the edge ux2.
Operation O3. Assume n′ ≥ 2 is even and u ∈ V (T ′), add a new path
P3 : x1, x2, x3 and the edge ux3.
Operation O4. Assume n′ ≥ 2 is even and u ∈ V (T ′), add a new path
P3 : x1, x2, x3 and the edge ux2.

Let A(1) = {P2, P3}. Suppose A is the collection of the trees T which are
obtained from a sequence T1 ∈ A(1), T2, . . . , Tk = T and, if i = 1, . . . , k − 1,
Ti+1 can be obtained recursively from Ti by one of the operations O1-O4.
Suppose A(m), where m ≥ 2, is the collection of all trees T ∈ A satisfying
α2(T ) = m. We want to prove that T (m) = A(m) for for all m ≥ 1. The
following Theorem is the main theorem.

Theorem 3.2. For m ≥ 1, T (m) = A(m).

For every tree T ∈ A(m), where m ≥ 1, we can see that T is a tree

satisfying α2(T ) = b |T |
2
c = m. Hence we obtain that A(m) ⊆ T (m). On the

other hand, we will prove T (m) ⊆ A(m) in the following lemma.

Lemma 3.3. For m ≥ 1, T (m) ⊆ A(m).

Proof. We can see that T (1) = {P2, P3} = A(1), so it’s true for m = 1.
Suppose, by contradiction, T ∈ T (m) and T 6∈ A(m) such that m is as small
as possible. Then 2m ≤ |T | ≤ 2m+ 1, where m ≥ 2, and diam(T ) ≥ 4.
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First, we assume that T has no duplicated leaf. Let P : x1, x2, x3, x4, . . .
be a longest path of T . By Lemma 2.2, there exists a α2-set S of T satisfying
x1 ∈ S. Let S ′ = S − {x1} and T ′ = T − {x1, x2}. Then T ′ is a tree of
order |T ′| = |T | − 2 and S ′ is a 2-independent set of T ′. By Theorem 2.5,

m− 1 = |S| − 1 = |S ′| ≤ α2(T
′) ≤ b |T

′|
2
c = b |T |−2

2
c = b |T |

2
c − 1 = m− 1. Thus

the equalities hold, α2(T
′) = m−1 and S ′ is a α2-set of T ′. So T ′ ∈ T (m−1),

by the hypothesis, T ′ ∈ A(m − 1). Since x3 6∈ S ′, T can be obtained from
T ′ ∈ A(m − 1) by the Operation O2. So T ∈ A(m). This is a contradiction,
hence T have duplicated leaves.

By Lemma 2.3, let T ∗ be a subtree of T such that T ∗ has no duplicated leaf
and α2(T

∗) = α2(T ). By Theorem 2.5, then m = α2(T ) = α2(T
∗) ≤ b |T

∗|
2
c ≤

b |T |−1
2
c ≤ b |T |

2
c = m. Thus the equalities hold, so |T ∗| = |T |−1 = 2m. Then T

have only two duplicated leaves, say u and u′. Let NT (y) = {u, u′, z}. Suppose
S∗ is a α2-set of T satisfying u ∈ S∗. Then S∗∗ = S∗−{u} is a 2-independent set
of T ∗∗ = T −{u, u′, y}, where T ∗∗ is a tree of order |T ∗∗| = |T |− 3 = 2(m− 1).

By Theorem 2.5, m − 1 = |S∗| − 1 = |S∗∗| ≤ α2(T
∗∗) ≤ b |T

∗∗|
2
c = m − 1.

Thus the equalities hold, α2(T
∗∗) = m − 1 and S∗∗ is a α2-set of T ∗∗. So

T ∗∗ ∈ T (m − 1), by the hypothesis, T ∗∗ ∈ A(m − 1). Since z 6∈ S∗∗ and
|T ∗∗| = 2(m−1), T can be obtained from T ∗∗ ∈ A(m−1) by the Operation O4.
So T ∈ A(m). This is a contradiction again, which completes the proof.

As an immediate consequence of Lemma 3.3, we obtain the Theorem 3.2.
Hence we provide a constructive characterization A(m) of T (m) for all m ≥ 1.
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