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Abstract

In this paper, we introduce the notion of t-derivation for a lattice and
investigate some related properties. Moreover, we characterize modular
lattices and distributive lattices by isotone t-derivations.
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1 Introduction

The notion of lattice theory introduced by Birkhoff [3]. Balbes and Dwinger [1]
gave the concept of distributive lattices and Hoffmann introduced the notion
of partially ordered set (Poset). The application of lattice theory plays an
important role in different areas such as information science [6], information
retrieval [4], information access controls [13] and cryptanalysis [5].

Derivations is a very interesting research topic in the theory of different al-
gebraic structures. After the derivation on a ring was defined by Posner in [12],
many authors studied the derivation theory in different algebraic structures.
In 2004, Jun and Xin [8] applied the notion of derivation in ring theory to BCI-
algebras. Thereafter, M. A. Javed and M. Aslam [10] studied f -derivations in
BCI-algebras as its generalization.
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Recently the notion of derivation introduced in rings and near rings has
been studied by various researchers in the context of lattices (see [1, 2, 14].
In 2008, Xin et al. [14] introduced the notion of derivation in lattices and
discussed its properties. After that, many authors generalized this concept
in lattices. For example Yilmaz and Özturk [15] introduced the notion of
f -derivation on lattices.

The notion of t-derivations in BCI-algebras and complicated subtraction
algebras are introduced in [9, 11]. In this paper, the notion of t-derivation on
lattices is introduced, which is a generalization of derivation in lattices. Fur-
ther we studied its properties in the context of t-derivations and characterized
modular lattices and distributive lattices by isotone t-derivations.

2 Preliminaries

Definition 2.1. ([3]) Let L be a nonempty set endowed with operations ∧ and
∨. If (L,∧,∨) satisfies the following conditions for all x, y, z ∈ L ∶

(1) x ∧ x = x,x ∨ x = x.
(2) x ∧ y = y ∧ x,x ∨ y = y ∨ x.
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z).
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x.
Then L is called lattice.

Definition 2.2. ([3]) A lattice L is called a distributive lattice if one of the
following two identities hold for all x, y, z ∈ L ∶

(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
(6) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

In any lattice, the conditions (5) and (6) are equivalent.

Definition 2.3. ([3]) Let L be a lattice. A binary relation ≤ on L is defined
by x ≤ y if and only if x ∧ y = x and x ∨ y = y.

Definition 2.4. ([1]) A lattice L is called a modular lattice if it satisfies the
following condition for all x, y, z ∈ L. If x ≤ y then x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Lemma 2.5. ([14]) Let L be a lattice. Let the binary relation ≤ be as in
Definition 2.3. Then (L,≤) is a partially ordered set (poset) and for any x, y ∈
L, x ∧ y is the g.l.b. of {x, y} and x ∨ y is the l.u.b. of {x, y}.

Definition 2.6. ([14]) Let L be a lattice. A function d ∶ L→ L on a lattice L
is called a derivation if

d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y))

for all x, y ∈ L.
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Lemma 2.7. [14] Let L be a lattice and d be a derivation on L. Then the
following hold:
(1)dx ≤ x;
(2)dx ∧ dy ≤ d(x ∧ y) ≤ dx ∨ dy;
(3) If L has a least element 0 and a greatest element 1, then d0 = 0, d1 ≤ 1.

Definition 2.8. Let L1 and L2 be lattices. A function f ∶ L1 → L2 is called
increasing if x ≤ y implies fx ≤ fy for all x, y ∈ L1.

3 t-Derivations on Lattices

In this section, we introduce the notion of t-derivations for lattices.

Definition 3.1. Let L be a lattice. Then for any t ∈ L, we define a self map
Dt ∶ L→ L by Dt(x) = x ∧ t for all x ∈ L.

Definition 3.2. Let L be a lattice and Dt be a mapping on L. A function
Dt ∶ L→ L is a t-derivation if

Dt(x ∧ y) = (Dt(x) ∧ y) ∨ (x ∧Dt(y))

for all x, y ∈ L.

Definition 3.3. Let L be a lattice and Dt be a t-derivation on L. Then Dt is
called isotone t-derivation if it is increasing.

Example 3.4.

Let L = {0, a, b,1} be a lattice shown by the Hasse diagram of Fig 1. Define
mapping Dt as follows:
For t = 0, Dt(x) = 0 forall x ∈ L

For t = a, Dt(x) = {
0 for x = 0
a for x = a or b or 1

For t = b, Dt(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 for x = 0
a for x = a
b for x = b or 1

For t = 1, Dt(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 for x = 0
a for x = a
b for x = b
1 for x = 1

Then it is easy to verify that Dt is a t-derivation.
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Proposition 3.5. Let L be a lattice and Dt is a t-derivation on L. Then the
following identities hold for all x, y ∈ L:
(a) Dt(x) ≤ x.
(b) Dt(x) ∧Dt(y) ≤Dt(x ∧ y) ≤Dt(x) ∨Dt(y).
(c) If L has a least element 0, then Dt(0) = 0.
(d) If L has a greatest element 1 and Dt is an increasing function, then
Dt(x) = (Dt(1) ∧ x) ∨Dt(x).

Proof. (a): For all x ∈ L,

Dt(x) =Dt(x ∧ x) = (Dt(x) ∧ x) ∨ (x ∧Dt(x)) =Dt(x) ∧ x.

which implies
Dt(x) ≤ x

(b) For all x, y ∈ L, we have Dt(x ∧ y) = (Dt(x) ∧ y) ∨ (x ∧Dt(y)). Since
Dt(y) ≤ y for all y ∈ L, therefore Dt(x) ∧Dt(y) ≤ Dt(x) ∧ y similarly Dt(x) ∧
Dt(y) ≤ x ∧Dt(y). Thus Dt(x) ∧Dt(y) ≤ Dt(x ∧ y). Also Dt(x) ∧ y ≤ Dt(x)
and x ∧Dt(y) ≤Dt(y), therefore

Dt(x ∧ y) ≤Dt(x) ∨Dt(y)

(c) Since 0 is the least element, then (a) gives 0 ≤ Dt(x) ≤ x = 0, which
implies Dt(0) = 0.
(d) Note that Dt(x) ≤ x ≤ 1 for all x ∈ L, so

Dt(x) =Dt(1 ∧ x) = (Dt(1) ∧ x) ∨ (1 ∧Dt(x)) = (Dt(1) ∧ x) ∨Dt(x).

Proposition 3.6. Let L be a lattice and Dt is a t-derivation on L. Then the
following hold for all x, y ∈ L:
(a) Dt(x) = (Dt(x ∨ y) ∧ x) ∨Dt(x).
(b) If y ≤ x and Dt(x) = x then Dt(y) = y.

Proof. (a) Let x, y ∈ L, then by Definition 2.1 (4), we have
Dt(x) =Dt((x∨y)∧x) = (Dt(x∨y)∧x)∨ ((x∨y)∧Dt(x)) so the last relation
along with Proposition 3.5 (a) implies
Dt(x) = (Dt(x ∨ y) ∧ x) ∨Dt(x).

(b) Let y ≤ x and Dt(x) = x , then Dt(y) = Dt(x ∧ y) = (Dt(x) ∧ y) ∨ (x ∧
Dt(y)). Since Dt(y) ≤ y ≤ x, therefore Dt(y) = y ∨Dt(y) = y.
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Theorem 3.7. Let L be a lattice with greatest element 1. Let Dt be a t-
derivation, on L, then
(a) If Dt(1) ≥ x, then Dt(x) = x.
(b) If Dt(1) ≤ x, then Dt(1) ≤Dt(x).
(c) Dt(1) = 1 if and only if Dt(x) = x.

Proof. (a) Let Dt(1) ≥ x for x ∈ L. Using Proposition 3.6 (a) and hypothesis,
we have Dt(x) = (Dt(1) ∧ x) ∨Dt(x) = x ∨Dt(x) = x.

(b) Let Dt(1) ≤ x for x ∈ L. Then Proposition 3.6 (a) along with Definition
2.1 (4) implies Dt(x)∧Dt(1) = ((Dt(1)∧x)∨Dt(x))∧Dt(1) = (Dt(1)∨Dt(x))∧
Dt(1) =Dt(1), which implies Dt(1) ≤Dt(x).

(c) Let Dt(x) = x, then obviously Dt(1) = 1. Conversely let Dt(1) = 1.
Since x ≤ 1 and Dt(1) = 1, then (b) implies Dt(x) = x.

Theorem 3.8. Let L be a lattice and Dt is a t-derivation on L. Then the
following hold for all x, y ∈ L:
(a) D2

t (x) =Dt(x).
(b) Dt(x) = x if only if Dt(x ∨ y) = (x ∨Dt(y)) ∧ (Dt(x) ∨ y).

Proof. (a) Take, D2
t (x) = Dt(Dt(x)) = Dt(x ∧ Dt(x)) = (Dt(x) ∧ Dt(x)) ∨

(x ∧ Dt(Dt(x))) = Dt(x) ∨ (x ∧ D2
t (x)). Since Dt(Dt(x)) ≤ Dt(x) ≤ x, so

D2
t (x) =Dt(x).

(b) Let Dt(x) = x. Then Dt(x∨ y) = x∨ y = (x∨ y)∧ (x∨ y) = (x∨Dt(y))∧
(Dt(x) ∨ y). Conversely, let Dt(x ∨ y) = (x ∨Dt(y)) ∧ (Dt(x) ∨ y). Replacing
y by x in the last equation, we get Dt(x) = x.

Theorem 3.9. Let L be a lattice, Dt be a t-derivation on L. Then the following
statements are equivalent:
(a) Dt is isotone t-derivation on L.
(b) Dt(x) ∨Dt(y) ≤Dt(x ∨ y).

Proof. (a) ⇒ (b) Since Dt is isotone t-derivation, therefore Dt(x) ≤ Dt(x ∨ y)
and Dt(y) ≤Dt(x ∨ y). Hence Dt(x) ∨Dt(y) ≤Dt(x ∨ y).

(b) ⇒ (a) Suppose that Dt(x) ∨ Dt(y) ≤ Dt(x ∨ y). For x ≤ y, Dt(x) ≤
Dt(x) ∨Dt(y) ≤ Dt(x ∨ y) = Dt(y), which implies Dt(x) ≤ Dt(y). Hence Dt is
isotone.

Definition 3.10. Let L be a lattice and Dt be t-derivation. Define a set
FDt(L) = {x ∈ L ∶Dt(x) = x} .

Proposition 3.11. Let L be a lattice, Dt be an isotone t-derivation. If x, y ∈
FDt(L), then x ∨ y ∈ FDt(L).
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Proof. Since Dt is isotone t-derivation therefore

(x ∨ y) =Dt(x) ∨Dt(y) ≤Dt(x ∨ y).

Proposition 3.5 (a) yield Dt(x ∨ y) = (x ∨ y) and hence x ∨ y ∈ FDt(L).

Proposition 3.12. Let L be a lattice and Dt1 and Dt2 be two isotone t-
derivations on L. Then Dt1 =Dt2 if and only if FDt1

(L) = FDt2
(L).

Proof. It is obvious that Dt1 = Dt2 implies FDt1
(L) = FDt2

(L). Conversely let
FDt1
(L) = FDt2

(L) and x ∈ L. By Theorem 3.8 (a), Dt1(x) ∈ FDt1
(L) = FDt2

(L)
and so Dt2Dt1(x) = Dt1(x). Similarly we can get Dt1Dt2(x) = Dt2(x). Since
Dt1 and Dt2 are isotone t-derivations, we have Dt2Dt1(x) ≤Dt2(x) =Dt1Dt2(x)
and so Dt2Dt1(x) ≤ Dt1Dt2(x). Similarly we can get Dt1Dt2(x) ≤ Dt2Dt1(x),
this shows that Dt1Dt2(x) = Dt2Dt1(x). It follows that Dt1(x) = Dt2Dt1(x) =
Dt1Dt2(x) =Dt2(x), that is Dt1 =Dt2 .

Theorem 3.13. Let L be a lattice with greatest element 1. Let Dt be a t-
derivation on L for all x ∈ L, then the following statements are equivalent:
(a) Dt is isotone t-derivation on L.
(b) Dt(x) = x ∧Dt(1).
(c) Dt(x ∧ y) =Dt(x) ∧Dt(y).

Proof. (a) ⇒ (b) Suppose that Dt is isotone, then Dt(x) ≤ Dt(1). Since
Dt(x) ≤ x, so Dt(x) ≤ x ∧ Dt(1). Also Proposition 3.5 (d) gives Dt(x) =
(Dt(1)∧x)∨Dt(x), which implies Dt(1)∧x ≤Dt(x). Thus Dt(x) = x∧Dt(1).

(b) ⇒ (c) Suppose that Dt(x) = x ∧ Dt(1). Then Dt(x) ∧ Dt(y) = (x ∧
Dt(1)) ∧ (y ∧Dt(1)) = (x ∧ y) ∧Dt(1) =Dt(x ∧ y).

(c) ⇒ (a) Suppose that Dt(x∧y) =Dt(x)∧Dt(y) and x ≤ y. Then Dt(x) =
Dt(x ∧ y) = Dt(x) ∧ Dt(y), implies Dt(x) ≤ Dt(y). Thus Dt is isotone t-
derivation on L.

Theorem 3.14. Let L be a modular lattice and Dt be a t-derivation on L.
Then the following statements are equivalent:
(1) Dt is isotone t-derivation,
(2) Dt(x ∧ y) =Dtx ∧Dty,
(3)Dtx = x implies Dtx ∨Dty =Dt(x ∨ y).

Proof. (1) ⇒ (2) Let Dt is isotone t-derivation and x ∧ y ≤ x, x ∧ y ≤ y implies
Dt(x∧y) ≤Dtx, Dt(x∧y) ≤Dty respectively. Thus Dt(x∧y) ≤Dtx∧Dty. Since
L is modular and Dtx∧y ≤Dtx ≤ x we have Dt(x∧y) = (Dtx∧y)∨(x∧Dty) =
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((Dtx ∧ y) ∨Dty) ∧ x ≥ (Dtx ∧ y) ∧ x =Dtx ∧ y ≥Dtx ∧Dty.

(2) ⇒ (1) Assume that x ≤ y. Then Dtx =Dt(x∧ y) =Dtx∧Dty, therefore
Dtx ≤Dty.

(1) ⇒ (3) Assume that Dtx = x and Dt is isotone. Since L is modular and
by Proposition 3.6(a) we get Dty = (Dt(x∨y)∧y)∨Dty = (Dty∨y)∧Dt(x∨y) =
y ∧Dt(x∨ y) hence Dtx∨Dty =Dtx∨ (y ∧Dt(x∨ y)) = (Dtx∨ y) ∧Dt(x∨ y) =
(x ∨ y) ∧Dt(x ∨ y) =Dt(x ∨ y).

(3) ⇒ (1) Assume x ≤ y, then by Theorem 3.8 (i) Dt(Dtx) = Dtx by
hypothesis, Dt(Dtx∨ y) =Dt(Dtx)∨Dty =Dtx∨Dty. Otherwise x ≤ y implies
Dtx ≤ x ≤ y thus Dt(Dtx ∨ y) = Dty. And so Dty = Dtx ∨Dty, hence Dtx ≤

Dty.

Theorem 3.15. Let L be a distributive lattice and Dt be a t-derivation on L.
Then the following statements are equivalent:
(a) Dt is isotone t-derivation on L.
(b) Dt(x) ∨Dt(y) =Dt(x ∨ y).

Proof. (a) ⇒ (b) Suppose that Dt is isotone t-derivation. Since Dtx ≤Dt(x∨y)
and Dty ≤Dt(x∨ y). Proposition 3.6 (a) implies Dtx = (Dt(x∨ y) ∧x) ∨Dtx =

(Dt(x ∨ y) ∨Dtx) ∧ (x ∨Dtx) = Dt(x ∨ y) ∧ x. Thus Dtx ∨Dty = (Dt(x ∨ y) ∧
x) ∨ (Dt(x ∨ y) ∧ y) =Dt(x ∨ y) ∧ (x ∨ y) =Dt(x ∨ y).

(b) ⇒ (a) Assume x ≤ y, then Dt(y) = Dt(x ∨ y) = Dt(x) ∨Dt(y), hence
Dt(x) ≤Dt(y), so Dt is isotone t-derivation.
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