International Journal of Contemporary Mathematical Sciences

Vol. 15, 2020, no. 4, 207-214
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ijcms.2020.91444

On t-Derivations of Lattices

Malik Anjum Javed
Department of Mathematics
Govt. M.A.O College, Lahore, Pakistan

Sarmad Nawaz Malik
Aitchison College, Shahrah-e-Quaid-e-Azam, Lahore, Pakistan

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright (C) 2020 Hikari Ltd.

Abstract

In this paper, we introduce the notion of t-derivation for a lattice and investigate some related properties. Moreover, we characterize modular lattices and distributive lattices by isotone t-derivations.

Mathematics Subject Classification: 06B35, 03G16, 06C05

Keywords: Lattice, modular lattices, distributive lattice, t-derivation

1 Introduction

The notion of lattice theory introduced by Birkhoff [3]. Balbes and Dwinger [1] gave the concept of distributive lattices and Hoffmann introduced the notion of partially ordered set (Poset). The application of lattice theory plays an important role in different areas such as information science [6], information retrieval [4], information access controls [13] and cryptanalysis [5].

Derivations is a very interesting research topic in the theory of different algebraic structures. After the derivation on a ring was defined by Posner in [12], many authors studied the derivation theory in different algebraic structures. In 2004, Jun and Xin [8] applied the notion of derivation in ring theory to BCIalgebras. Thereafter, M. A. Javed and M. Aslam [10] studied f-derivations in BCI-algebras as its generalization.

Recently the notion of derivation introduced in rings and near rings has been studied by various researchers in the context of lattices (see [1, 2, 14]. In 2008, Xin et al. [14] introduced the notion of derivation in lattices and discussed its properties. After that, many authors generalized this concept in lattices. For example Yilmaz and Özturk [15] introduced the notion of f-derivation on lattices.

The notion of t-derivations in BCI-algebras and complicated subtraction algebras are introduced in $[9,11]$. In this paper, the notion of t-derivation on lattices is introduced, which is a generalization of derivation in lattices. Further we studied its properties in the context of t-derivations and characterized modular lattices and distributive lattices by isotone t-derivations.

2 Preliminaries

Definition 2.1. ([3]) Let L be a nonempty set endowed with operations \wedge and \vee. If (L, \wedge, \vee) satisfies the following conditions for all $x, y, z \in L$:
(1) $x \wedge x=x, x \vee x=x$.
(2) $x \wedge y=y \wedge x, x \vee y=y \vee x$.
(3) $(x \wedge y) \wedge z=x \wedge(y \wedge z),(x \vee y) \vee z=x \vee(y \vee z)$.
(4) $(x \wedge y) \vee x=x,(x \vee y) \wedge x=x$.

Then L is called lattice.
Definition 2.2. ([3]) A lattice L is called a distributive lattice if one of the following two identities hold for all $x, y, z \in L$:
(5) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$.
(6) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.

In any lattice, the conditions (5) and (6) are equivalent.
Definition 2.3. ([3]) Let L be a lattice. A binary relation \leq on L is defined by $x \leq y$ if and only if $x \wedge y=x$ and $x \vee y=y$.

Definition 2.4. ([1]) A lattice L is called a modular lattice if it satisfies the following condition for all $x, y, z \in L$. If $x \leq y$ then $x \vee(y \wedge z)=(x \vee y) \wedge z$.

Lemma 2.5. ([14]) Let L be a lattice. Let the binary relation \leq be as in Definition 2.3. Then (L, \leq) is a partially ordered set (poset) and for any $x, y \in$ $L, x \wedge y$ is the g.l.b. of $\{x, y\}$ and $x \vee y$ is the l.u.b. of $\{x, y\}$.

Definition 2.6. ([14]) Let L be a lattice. A function $d: L \rightarrow L$ on a lattice L is called a derivation if

$$
d(x \wedge y)=(d(x) \wedge y) \vee(x \wedge d(y))
$$

for all $x, y \in L$.

Lemma 2.7. [14] Let L be a lattice and d be a derivation on L. Then the following hold:
(1) $d x \leq x$;
(2) $d x \wedge d y \leq d(x \wedge y) \leq d x \vee d y$;
(3) If L has a least element 0 and a greatest element 1 , then $d 0=0, d 1 \leq 1$.

Definition 2.8. Let L_{1} and L_{2} be lattices. A function $f: L_{1} \rightarrow L_{2}$ is called increasing if $x \leq y$ implies $f x \leq f y$ for all $x, y \in L_{1}$.

$3 t$-Derivations on Lattices

In this section, we introduce the notion of t-derivations for lattices.
Definition 3.1. Let L be a lattice. Then for any $t \in L$, we define a self map $D_{t}: L \rightarrow L$ by $D_{t}(x)=x \wedge t$ for all $x \in L$.

Definition 3.2. Let L be a lattice and D_{t} be a mapping on L. A function $D_{t}: L \rightarrow L$ is a t-derivation if

$$
D_{t}(x \wedge y)=\left(D_{t}(x) \wedge y\right) \vee\left(x \wedge D_{t}(y)\right)
$$

for all $x, y \in L$.
Definition 3.3. Let L be a lattice and D_{t} be a t-derivation on L. Then D_{t} is called isotone t-derivation if it is increasing.

Example 3.4.

Let $L=\{0, a, b, 1\}$ be a lattice shown by the Hasse diagram of Fig 1. Define mapping D_{t} as follows:
For $t=0, D_{t}(x)=0$ forall $x \in L$

$$
\text { For } t=a, D_{t}(x)= \begin{cases}0 & \text { for } x=0 \\ a & \text { for } x=a \text { or } b \text { or } 1\end{cases}
$$

$$
\text { For } t=b, D_{t}(x)= \begin{cases}0 & \text { for } x=0 \\ a & \text { for } x=a \\ b & \text { for } x=b \text { or } 1\end{cases}
$$

$$
\text { For } t=1, D_{t}(x)= \begin{cases}0 & \text { for } x=0 \\ a & \text { for } x=a \\ b & \text { for } x=b \\ 1 & \text { for } x=1\end{cases}
$$

Then it is easy to verify that D_{t} is a t-derivation.

Proposition 3.5. Let L be a lattice and D_{t} is a t-derivation on L. Then the following identities hold for all $x, y \in L$:
(a) $D_{t}(x) \leq x$.
(b) $D_{t}(x) \wedge D_{t}(y) \leq D_{t}(x \wedge y) \leq D_{t}(x) \vee D_{t}(y)$.
(c) If L has a least element 0 , then $D_{t}(0)=0$.
(d) If L has a greatest element 1 and D_{t} is an increasing function, then $D_{t}(x)=\left(D_{t}(1) \wedge x\right) \vee D_{t}(x)$.
Proof. (a): For all $x \in L$,

$$
D_{t}(x)=D_{t}(x \wedge x)=\left(D_{t}(x) \wedge x\right) \vee\left(x \wedge D_{t}(x)\right)=D_{t}(x) \wedge x .
$$

which implies

$$
D_{t}(x) \leq x
$$

(b) For all $x, y \in L$, we have $D_{t}(x \wedge y)=\left(D_{t}(x) \wedge y\right) \vee\left(x \wedge D_{t}(y)\right)$. Since $D_{t}(y) \leq y$ for all $y \in L$, therefore $D_{t}(x) \wedge D_{t}(y) \leq D_{t}(x) \wedge y$ similarly $D_{t}(x) \wedge$ $D_{t}(y) \leq x \wedge D_{t}(y)$. Thus $D_{t}(x) \wedge D_{t}(y) \leq D_{t}(x \wedge y)$. Also $D_{t}(x) \wedge y \leq D_{t}(x)$ and $x \wedge D_{t}(y) \leq D_{t}(y)$, therefore

$$
D_{t}(x \wedge y) \leq D_{t}(x) \vee D_{t}(y)
$$

(c) Since 0 is the least element, then (a) gives $0 \leq D_{t}(x) \leq x=0$, which implies $D_{t}(0)=0$.
(d) Note that $D_{t}(x) \leq x \leq 1$ for all $x \in L$, so $D_{t}(x)=D_{t}(1 \wedge x)=\left(D_{t}(1) \wedge x\right) \vee\left(1 \wedge D_{t}(x)\right)=\left(D_{t}(1) \wedge x\right) \vee D_{t}(x)$.
Proposition 3.6. Let L be a lattice and D_{t} is a t-derivation on L. Then the following hold for all $x, y \in L$:
(a) $D_{t}(x)=\left(D_{t}(x \vee y) \wedge x\right) \vee D_{t}(x)$.
(b) If $y \leq x$ and $D_{t}(x)=x$ then $D_{t}(y)=y$.

Proof. (a) Let $x, y \in L$, then by Definition 2.1 (4), we have
$D_{t}(x)=D_{t}((x \vee y) \wedge x)=\left(D_{t}(x \vee y) \wedge x\right) \vee\left((x \vee y) \wedge D_{t}(x)\right)$ so the last relation along with Proposition 3.5 (a) implies
$D_{t}(x)=\left(D_{t}(x \vee y) \wedge x\right) \vee D_{t}(x)$.
(b) Let $y \leq x$ and $D_{t}(x)=x$, then $D_{t}(y)=D_{t}(x \wedge y)=\left(D_{t}(x) \wedge y\right) \vee(x \wedge$ $\left.D_{t}(y)\right)$. Since $D_{t}(y) \leq y \leq x$, therefore $D_{t}(y)=y \vee D_{t}(y)=y$.

Theorem 3.7. Let L be a lattice with greatest element 1. Let D_{t} be a tderivation, on L, then
(a) If $D_{t}(1) \geq x$, then $D_{t}(x)=x$.
(b) If $D_{t}(1) \leq x$, then $D_{t}(1) \leq D_{t}(x)$.
(c) $D_{t}(1)=1$ if and only if $D_{t}(x)=x$.

Proof. (a) Let $D_{t}(1) \geq x$ for $x \in L$. Using Proposition 3.6 (a) and hypothesis, we have $D_{t}(x)=\left(D_{t}(1) \wedge x\right) \vee D_{t}(x)=x \vee D_{t}(x)=x$.
(b) Let $D_{t}(1) \leq x$ for $x \in L$. Then Proposition $3.6(a)$ along with Definition $2.1(4)$ implies $D_{t}(x) \wedge D_{t}(1)=\left(\left(D_{t}(1) \wedge x\right) \vee D_{t}(x)\right) \wedge D_{t}(1)=\left(D_{t}(1) \vee D_{t}(x)\right) \wedge$ $D_{t}(1)=D_{t}(1)$, which implies $D_{t}(1) \leq D_{t}(x)$.
(c) Let $D_{t}(x)=x$, then obviously $D_{t}(1)=1$. Conversely let $D_{t}(1)=1$. Since $x \leq 1$ and $D_{t}(1)=1$, then (b) implies $D_{t}(x)=x$.

Theorem 3.8. Let L be a lattice and D_{t} is a t-derivation on L. Then the following hold for all $x, y \in L$:
(a) $D_{t}^{2}(x)=D_{t}(x)$.
(b) $D_{t}(x)=x$ if only if $D_{t}(x \vee y)=\left(x \vee D_{t}(y)\right) \wedge\left(D_{t}(x) \vee y\right)$.

Proof. (a) Take, $D_{t}^{2}(x)=D_{t}\left(D_{t}(x)\right)=D_{t}\left(x \wedge D_{t}(x)\right)=\left(D_{t}(x) \wedge D_{t}(x)\right) \vee$ $\left(x \wedge D_{t}\left(D_{t}(x)\right)\right)=D_{t}(x) \vee\left(x \wedge D_{t}^{2}(x)\right)$. Since $D_{t}\left(D_{t}(x)\right) \leq D_{t}(x) \leq x$, so $D_{t}^{2}(x)=D_{t}(x)$.
(b) Let $D_{t}(x)=x$. Then $D_{t}(x \vee y)=x \vee y=(x \vee y) \wedge(x \vee y)=\left(x \vee D_{t}(y)\right) \wedge$ $\left(D_{t}(x) \vee y\right)$. Conversely, let $D_{t}(x \vee y)=\left(x \vee D_{t}(y)\right) \wedge\left(D_{t}(x) \vee y\right)$. Replacing y by x in the last equation, we get $D_{t}(x)=x$.

Theorem 3.9. Let L be a lattice, D_{t} be at-derivation on L. Then the following statements are equivalent:
(a) D_{t} is isotone t-derivation on L.
(b) $D_{t}(x) \vee D_{t}(y) \leq D_{t}(x \vee y)$.

Proof. $(a) \Rightarrow(b)$ Since D_{t} is isotone t-derivation, therefore $D_{t}(x) \leq D_{t}(x \vee y)$ and $D_{t}(y) \leq D_{t}(x \vee y)$. Hence $D_{t}(x) \vee D_{t}(y) \leq D_{t}(x \vee y)$.
(b) $\Rightarrow(a)$ Suppose that $D_{t}(x) \vee D_{t}(y) \leq D_{t}(x \vee y)$. For $x \leq y, D_{t}(x) \leq$ $D_{t}(x) \vee D_{t}(y) \leq D_{t}(x \vee y)=D_{t}(y)$, which implies $D_{t}(x) \leq D_{t}(y)$. Hence D_{t} is isotone.

Definition 3.10. Let L be a lattice and D_{t} be t-derivation. Define a set $F_{D_{t}}(L)=\left\{x \in L: D_{t}(x)=x\right\}$.

Proposition 3.11. Let L be a lattice, D_{t} be an isotone t-derivation. If $x, y \in$ $F_{D_{t}}(L)$, then $x \vee y \in F_{D_{t}}(L)$.

Proof. Since D_{t} is isotone t-derivation therefore

$$
(x \vee y)=D_{t}(x) \vee D_{t}(y) \leq D_{t}(x \vee y) .
$$

Proposition $3.5(a)$ yield $D_{t}(x \vee y)=(x \vee y)$ and hence $x \vee y \in F_{D_{t}}(L)$.
Proposition 3.12. Let L be a lattice and $D_{t_{1}}$ and $D_{t_{2}}$ be two isotone t derivations on L. Then $D_{t_{1}}=D_{t_{2}}$ if and only if $F_{D_{t_{1}}}(L)=F_{D_{t_{2}}}(L)$.

Proof. It is obvious that $D_{t_{1}}=D_{t_{2}}$ implies $F_{D_{t_{1}}}(L)=F_{D_{t_{2}}}(L)$. Conversely let $F_{D_{t_{1}}}(L)=F_{D_{t_{2}}}(L)$ and $x \in L$. By Theorem $3.8(a), D_{t_{1}}(x) \in F_{D_{t_{1}}}(L)=F_{D_{t_{2}}}(L)$ and so $D_{t_{2}} D_{t_{1}}(x)=D_{t_{1}}(x)$. Similarly we can get $D_{t_{1}} D_{t_{2}}(x)=D_{t_{2}}(x)$. Since $D_{t_{1}}$ and $D_{t_{2}}$ are isotone t-derivations, we have $D_{t_{2}} D_{t_{1}}(x) \leq D_{t_{2}}(x)=D_{t_{1}} D_{t_{2}}(x)$ and so $D_{t_{2}} D_{t_{1}}(x) \leq D_{t_{1}} D_{t_{2}}(x)$. Similarly we can get $D_{t_{1}} D_{t_{2}}(x) \leq D_{t_{2}} D_{t_{1}}(x)$, this shows that $D_{t_{1}} D_{t_{2}}(x)=D_{t_{2}} D_{t_{1}}(x)$. It follows that $D_{t_{1}}(x)=D_{t_{2}} D_{t_{1}}(x)=$ $D_{t_{1}} D_{t_{2}}(x)=D_{t_{2}}(x)$, that is $D_{t_{1}}=D_{t_{2}}$.

Theorem 3.13. Let L be a lattice with greatest element 1. Let D_{t} be a t derivation on L for all $x \in L$, then the following statements are equivalent:
(a) D_{t} is isotone t-derivation on L.
(b) $D_{t}(x)=x \wedge D_{t}(1)$.
(c) $D_{t}(x \wedge y)=D_{t}(x) \wedge D_{t}(y)$.

Proof. $(a) \Rightarrow(b)$ Suppose that D_{t} is isotone, then $D_{t}(x) \leq D_{t}(1)$. Since $D_{t}(x) \leq x$, so $D_{t}(x) \leq x \wedge D_{t}(1)$. Also Proposition $3.5(d)$ gives $D_{t}(x)=$ $\left(D_{t}(1) \wedge x\right) \vee D_{t}(x)$, which implies $D_{t}(1) \wedge x \leq D_{t}(x)$. Thus $D_{t}(x)=x \wedge D_{t}(1)$.
(b) $\Rightarrow(c)$ Suppose that $D_{t}(x)=x \wedge D_{t}(1)$. Then $D_{t}(x) \wedge D_{t}(y)=(x \wedge$ $\left.D_{t}(1)\right) \wedge\left(y \wedge D_{t}(1)\right)=(x \wedge y) \wedge D_{t}(1)=D_{t}(x \wedge y)$.
$(c) \Rightarrow(a)$ Suppose that $D_{t}(x \wedge y)=D_{t}(x) \wedge D_{t}(y)$ and $x \leq y$. Then $D_{t}(x)=$ $D_{t}(x \wedge y)=D_{t}(x) \wedge D_{t}(y)$, implies $D_{t}(x) \leq D_{t}(y)$. Thus D_{t} is isotone $t-$ derivation on L.

Theorem 3.14. Let L be a modular lattice and D_{t} be at-derivation on L. Then the following statements are equivalent:
(1) D_{t} is isotone t-derivation,
(2) $D_{t}(x \wedge y)=D_{t} x \wedge D_{t} y$,
(3) $D_{t} x=x$ implies $D_{t} x \vee D_{t} y=D_{t}(x \vee y)$.

Proof. (1) \Rightarrow (2) Let D_{t} is isotone t-derivation and $x \wedge y \leq x, x \wedge y \leq y$ implies $D_{t}(x \wedge y) \leq D_{t} x, D_{t}(x \wedge y) \leq D_{t} y$ respectively. Thus $D_{t}(x \wedge y) \leq D_{t} x \wedge D_{t} y$. Since L is modular and $D_{t} x \wedge y \leq D_{t} x \leq x$ we have $D_{t}(x \wedge y)=\left(D_{t} x \wedge y\right) \vee\left(x \wedge D_{t} y\right)=$
$\left(\left(D_{t} x \wedge y\right) \vee D_{t} y\right) \wedge x \geq\left(D_{t} x \wedge y\right) \wedge x=D_{t} x \wedge y \geq D_{t} x \wedge D_{t} y$.
$(2) \Rightarrow(1)$ Assume that $x \leq y$. Then $D_{t} x=D_{t}(x \wedge y)=D_{t} x \wedge D_{t} y$, therefore $D_{t} x \leq D_{t} y$.
$(1) \Rightarrow(3)$ Assume that $D_{t} x=x$ and D_{t} is isotone. Since L is modular and by Proposition 3.6 (a) we get $D_{t} y=\left(D_{t}(x \vee y) \wedge y\right) \vee D_{t} y=\left(D_{t} y \vee y\right) \wedge D_{t}(x \vee y)=$ $y \wedge D_{t}(x \vee y)$ hence $D_{t} x \vee D_{t} y=D_{t} x \vee\left(y \wedge D_{t}(x \vee y)\right)=\left(D_{t} x \vee y\right) \wedge D_{t}(x \vee y)=$ $(x \vee y) \wedge D_{t}(x \vee y)=D_{t}(x \vee y)$.
(3) \Rightarrow (1) Assume $x \leq y$, then by Theorem 3.8 (i) $D_{t}\left(D_{t} x\right)=D_{t} x$ by hypothesis, $D_{t}\left(D_{t} x \vee y\right)=D_{t}\left(D_{t} x\right) \vee D_{t} y=D_{t} x \vee D_{t} y$. Otherwise $x \leq y$ implies $D_{t} x \leq x \leq y$ thus $D_{t}\left(D_{t} x \vee y\right)=D_{t} y$. And so $D_{t} y=D_{t} x \vee D_{t} y$, hence $D_{t} x \leq$ $D_{t} y$.

Theorem 3.15. Let L be a distributive lattice and D_{t} be at-derivation on L.
Then the following statements are equivalent:
(a) D_{t} is isotone t-derivation on L.
(b) $D_{t}(x) \vee D_{t}(y)=D_{t}(x \vee y)$.

Proof. $(a) \Rightarrow(b)$ Suppose that D_{t} is isotone t-derivation. Since $D_{t} x \leq D_{t}(x \vee y)$ and $D_{t} y \leq D_{t}(x \vee y)$. Proposition 3.6 (a) implies $D_{t} x=\left(D_{t}(x \vee y) \wedge x\right) \vee D_{t} x=$ $\left(D_{t}(x \vee y) \vee D_{t} x\right) \wedge\left(x \vee D_{t} x\right)=D_{t}(x \vee y) \wedge x$. Thus $D_{t} x \vee D_{t} y=\left(D_{t}(x \vee y) \wedge\right.$ $x) \vee\left(D_{t}(x \vee y) \wedge y\right)=D_{t}(x \vee y) \wedge(x \vee y)=D_{t}(x \vee y)$.
$(b) \Rightarrow(a)$ Assume $x \leq y$, then $D_{t}(y)=D_{t}(x \vee y)=D_{t}(x) \vee D_{t}(y)$, hence $D_{t}(x) \leq D_{t}(y)$, so D_{t} is isotone t-derivation.

References

[1] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, United States, 1974.
[2] A.J. Bell, The co-information lattice, in: 4th International Sympo-sium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, Japan, 2003, pp. 921-926.
[3] G. Birkhoof, Lattice Theory, American Mathematical Society, New York, 1940.
[4] C. Carpineto and G. Romano, Information retrieval through hybrid navigation of lattice representations, International Journal of HumanComputers Studies, 45 (1996), 553-578.
https://doi.org/10.1006/ijhc.1996.0067
[5] G. Durfee, Cryptanalysis of RSA using algebraic and lattice methods, Dissertation, Department of computer science, Stanford University, 2002, pp. 1114.
[6] C. Degang, Z. Wenxiu, D. Yeung and E.C.C. Tsang, Rough approximations on a complete distributive lattice with application to generalized rough sets, Informat. Sci., 176 (2006), 1829-1848.
https://doi.org/10.1016/j.ins.2005.05.009
[7] A. Honda, M. Grabisch, Entropy of capacities on lattices and set systems, Inform. Sci., 176 (2006), 3472-3489.
https://doi.org/10.1016/j.ins.2006.02.011
[8] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci., 159 (2004), 167-176. https://doi.org/10.1016/j.ins.2003.03.001
[9] C. Jana, T. Senapati, and M. Pal, On t-derivation of complicated subtraction algebras, Journal of Discrete Mathematical Sciences and Cryptography, 20 (8) (2017), 1583-1595.
https://doi.org/10.1080/09720529.2017.1308663
[10] M. A. Javed and M. Aslam, A note on f-derivations of BCI-algebras, Commun. Korean Math. Soc., 24 (3) (2009), 321-331.
https://doi.org/10.4134/ckms.2009.24.3.321
[11] G. Muhiuddin and Abdullah M. Al-roqi, On t-Derivations of BCIAlgebras, Abstract and Applied Analysis, 2012, article ID 872784 (2012), 12 pages. https://doi.org/10.1155/2012/872784
[12] E. C. Posner, Derivation of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100. https://doi.org/10.1090/s0002-9939-1957-0095863-0
[13] R.S. Sandhu, Role hierarchies and constraints for lattice-based access controls, in: Proceedings of the 4 th European Symposium on Research in Computer Security, Rome, Italy, 1996, pp. 6579. https://doi.org/10.1007/3-540-61770-1_28
[14] X. L. Xin, T. Y. Li and J. H. Lu, On derivations of lattices, Inform. Sci., 178 (2) (2008), 307-316. https://doi.org/10.1016/j.ins.2007.08.018
[15] C. Yilmaz and M.A., Özturk, On f-derivations of lattices, Bull. Korean Math. Soc., 45 (4) (2008), 701-707.
https://doi.org/10.4134/bkms.2008.45.4.701

Received: May 26, 2020; Published: August 3, 2020

