
 

International Journal of Contemporary Mathematical Sciences  

Vol. 15, 2020, no. 2, 97 – 105 

 HIKARI Ltd,  www.m-hikari.com 

 https://doi.org/10.12988/ijcms.2020.91440 

 

 

Chance-Constrained Programming (CCP) with  

 

Bivariate Generalized Exponential Distributed  

 

Random Parameters 

 
Khalid M. El-Khabeary, Afaf El-Dash, Nada M. Hafez                                 

and Samah M. Abo-El-hadid 

 

Department of Mathematics, Insurance and Applied Statistics 

Faculty of Commerce and Business Administration 

Helwan University, Cairo, Egypt 
   
 This article is distributed under the Creative Commons by-nc-nd Attribution License.  

Copyright © 2020 Hikari Ltd. 

 

Abstract 
     CCP technique is considered an important tool for modeling and solving some decision 

problems. In this paper, we introduce an equivalent deterministic model of a CCP linear 

model, assuming that two of the left-hand side (L.H.S) coefficients are independent random 

parameters and following bivariate generalized exponential distribution with three 

parameters GE(𝛼𝑗, 𝜆𝑗, 𝜇𝑗), 𝑗 = 1,2. Firstly, the probability density function (PDF) and 

cumulative distribution function (CDF) of linear combination of GE(𝛼𝑗, 𝜆𝑗, 𝜇𝑗), 𝑗 = 1,2 

are derived. Secondly, an equivalent deterministic model is introduced through theorem 

(1). Thirdly; some special cases are presented. Finally, a numerical example is introduced 

to illustrate how to find the PDF, CDF and equivalent deterministic model. 

 

Keywords: Binomial theorem, CCP technique, GE(𝛼, 𝜆, 𝜇) Distribution, Probabilistic 

Programming, Stochastic Programming. 

 

1. Introduction 
 

      The CCP technique is the most frequent and major technique used to transform a 

probabilistic programming model into an equivalent deterministic model. It was 

introduced by Charnes and Cooper (1959). This technique depends on knowing the  
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inverse of CDF of the random parameters to build Chance Constraints (CC’s), which 

are achieved at a specific level of Tolerance Measure. CC’s could be restricted with 

tolerance measures individually or jointly (Prékopa, 1995; El-Dash, 2015). 

     Since Charnes and Cooper had introduced the CCP technique, many studies have 

been presented to develop and apply this technique under certain some probability 

distributions such as; Normal distribution (Charnes and Cooper, 1962; Jagannathan, 

1974), Gamma distribution (Lingaraj and Wolfe, 1974; Atalay and Apaydin, 2011), 

Chi-square distribution (Sengupta, 1972a; El-Dash, 1984), Weibull distribution (Ismail 

et. al, 2018). 

    Also, many main researches are presented to convert CC’s models into its equivalent 

deterministic models when random parameters are distributed as exponential 

distribution with single parameter Exp(λ), two parameters Exp(λ,μ), and three 

parameters GE(𝛼, 𝜆, 𝜇). Here, we classify these researches into two categories 

according to whether random parameters are independent or dependent. 

     Firstly, as for the assumption of independence of the random parameters, Sengupta 

(1972a) assumed that L.H.S parameters are random and derived an approximate 

equivalent deterministic model depending on the non-central chi-square distribution. 

El-Dash (1984) assumed that L.H.S parameters are random and derived the exact 

equivalent deterministic model depending on Box’s theorem. Biswal et. al (1998) 

assumed that the L.H.S coefficients are random parameters and derived the exact 

equivalent deterministic model depending on the mathematical induction method. 

Hafez et. al (2018) extended the approach presented by Biswal et. al for the case of 

Exp(λ,μ). Gupta and Kundu (1999) introduced the GE(𝛼, 𝜆, 𝜇), which got a lot of 

attention recently, since it is considered in many cases more flexible and applicable in 

analyzing lifetime data than gamma, Weibull and exponential distributions (Gupta and 

Kundu, 2001). Examples of studies that used this distribution in CCP, El-Dash (2018), 

assumed that some parameters in R.H.S and one parameter in L.H.S are random. Then, 

El-Dash and Hafez (2019), assumed that the R.H.S random parameters follow 

GE(𝛼𝑖, 𝜆𝑖 , 𝜇𝑖) for joint constraints. 

 

      Secondly, under the assumption of dependent random parameters, Hafez et al. 

(2018) assumed that the L.H.S or R.H.S random parameters are distributed as Downton 

bivariate exponential distribution. El-Dash (2019), proposed bivariate exponential 

distribution as an extension of bivariate Freund exponential distribution. Then in 

(2020), she proposed an extension of Farlie, Gumble and Morgenstern bivariate 

exponential distribution and presented the equivalent deterministic constraints in the 

case of joint and individual constraints.  

 

       In this paper, the transformation of CCP model into an equivalent deterministic 

model is presented with random parameters following bivariate GE(𝛼𝑗 , 𝜆𝑗 , 𝜇𝑗), 𝑗 = 1,2.   
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2. The proposed equivalent deterministic model 

 
     In this section, we present the equivalent deterministic model of the CCP Linear 

model with two random L.H.S coefficients 𝑎𝑖1̃,  𝑎𝑖2̃ distributed as GE(𝛼𝑖𝑗 , 𝜆𝑖𝑗 , 𝜇𝑖𝑗),

𝑗 = 1,2. Let:  

                                    Max. 𝑧 = ∑ c𝑗xj
𝑛
j=1                                                          (2.1)  

𝑆. 𝑇            Pr(∑ 𝑎𝑖𝑗̃xj  
2
j=1 ≤ 𝑏𝑖) ≥ 𝛾𝑖            ;    𝑖 = 1, 2, … ,𝑚                       (2.2) 

                         𝑥𝑗 ≥   0                 ;   𝑗 = 1, 2, … , 𝑛 

      Where; xj, c𝑗;  𝑗 = 1, 2, … , 𝑛. are the decision variables and  the objective function 

coefficients respectively, 𝑏𝑖 are the R.H.S values, and 𝑎𝑖𝑗̃ are independent Random 

parameters following GE(𝛼𝑖𝑗, 𝜆𝑖𝑗 , 𝜇𝑖𝑗) distribution, and 𝛾𝑖 is the tolerance measure of 

the 𝑖𝑡ℎ CC, where 0 ≤ 𝛾𝑖 ≤ 1 ,  𝑖 = 1, 2, … ,𝑚, which describes the extent to which the 

𝑖𝑡ℎ constraint is satisfied. 

      For model (2.1)-(2.2), we assume that the 𝑎𝑖1̃,  𝑎𝑖2.̃  are independent random 

parameters and follow the GE(𝛼𝑖𝑗, 𝜆𝑖𝑗 , 𝜇𝑖𝑗), 𝑗 = 1,2. In order to obtain the equivalent 

deterministic constraints of (2.2), it is required to find at first the probability 

distribution of the linear combination of 𝑌𝑖1̃ = 𝑎𝑖1̃𝑥1 +  𝑎𝑖2̃𝑥2 as introduced in theorem 

(1), where the joint PDF of  𝑎𝑖1̃,  𝑎𝑖2̃ is given by: 

𝑓(𝑎𝑖𝑗̃ )= ∏ 𝛼𝑖𝑗𝜆𝑖𝑗(1 − 𝑒
−𝜆𝑖𝑗(𝑎𝑖𝑗̃−𝜇𝑖𝑗))𝛼𝑖𝑗−1 𝑒−𝜆𝑖𝑗(𝑎𝑖𝑗̃−𝜇𝑖𝑗)2

𝑗=1                                   (2.3) 

𝑎𝑖𝑗̃ ˃ 𝜇𝑖𝑗 ;   𝛼𝑖𝑗, 𝜆𝑖𝑗 , 𝜇𝑖𝑗˃ 0;  j = 1,2  

Theorem (1). Consider the CC’s in (2.2) and let 𝑎𝑖𝑗̃ , j = 1,2  be independent random 

parameters that follow the GE(𝛼𝑖𝑗, 𝜆𝑖𝑗 , 𝜇𝑖𝑗) respectively, where 𝛼𝑖𝑗 , 𝑗 = 1,2 are integer 

values, and 𝜆𝑖𝑗, 𝜇𝑖𝑗˃ 0  ;  𝑗 = 1,2 then: 

1- the PDF and CDF of the random variable 𝑌𝑖1̃=∑ 𝑎𝑖𝑗̃𝑥𝑗
2
𝑗=1  are as follows, 

respectively: 

𝑓(𝑌𝑖1̃) = (∏ 𝛼𝑗𝜆𝑗
2
𝑗=1 )∑ ∑

𝐶𝑙1
𝛼1−1𝐶𝑙2

𝛼2−1

𝑥2𝜆1(𝛼1−𝑙1)−𝑥1𝜆2(𝛼2−𝑙2)

𝛼2−1
𝑙2=0

𝛼1−1
𝑙1=0

∙

[∑  (−1)𝑗𝑒
 
𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)

𝑥𝑗
 [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑌𝑖1̃]2

𝑗=1 ]; 𝑌𝑖1̃ ˃ ∑ 𝜇𝑖𝑗𝑥𝑗
2
𝑗=1 ; 𝜆𝑖𝑗, 𝜇𝑖𝑗˃ 0 ; 𝛼𝑖𝑗 = 1,2, … (2.4)    

𝐹(𝑦𝑖1̃) = (∏ 𝛼𝑖𝑗𝜆𝑖𝑗
2
𝑗=1 )∑ ∑ 𝐶𝑙1

𝛼𝑖1−1𝐶𝑙2
𝛼𝑖2−1𝛼𝑖2−1

𝑙2=0
𝛼𝑖1−1
𝑙1=0

∙

{∑
𝑒
 
𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)

𝑥𝑗
  [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑦𝑖1̃]

𝑥𝑚
𝑥𝑗
 [𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)]

2
−∏ 𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)

2
𝑗=1

2
𝑗=1
𝑗≠𝑚

 +
1

∏ 𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)
2
𝑗=1

}       ; 𝑌𝑖1̃ ˃ ∑ 𝜇𝑖𝑗𝑥𝑗
2
𝑗=1  ; 

𝜆𝑖𝑗, 𝜇𝑖𝑗˃ 0 ;    𝛼𝑖𝑗 = 1,2, …  ;     𝑗 = 1,2      (2.5) 

2- the equivalent deterministic constraint of the CC (2.2) is as follows: 
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∑ ∑ 𝐶𝑙1
𝛼𝑖1−1𝐶𝑙2

𝛼𝑖2−1

𝛼𝑖2−1

𝑙2=0

𝛼𝑖1−1

𝑙1=0 {
 

 
∑

𝑒
 
𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)

𝑥𝑗
  [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑏𝑖]

𝑥𝑚
𝑥𝑗
 [𝜆𝑖𝑗(𝛼𝑖𝑗 − 𝑙𝑗)]

2
−∏ 𝜆𝑖𝑗(𝛼𝑖𝑗 − 𝑙𝑗)

2
𝑗=1

2

𝑗=1
𝑗≠𝑚

 

}
 

 
≥ 𝑅𝑖 

;   𝑖 = 1, 2, … ,𝑚           (2.6) 

where; 𝑅𝑖 =
𝛾𝑖

∏ 𝛼𝑖𝑗𝜆𝑖𝑗
2
𝑗=1

− ∑ ∑ 𝐶𝑙1
𝛼𝑖1−1𝐶𝑙2

𝛼𝑖2−1𝛼𝑖2−1
𝑙2=0

𝛼𝑖1−1
𝑙1=0

1

∏ 𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)
2
𝑗=1

 

 

Proof: The proof of Theorem (1) is based on the Transformation technique.  

Firstly; Let us define the variable 𝑌𝑖2̃=𝑎𝑖1̃𝑥2 . There is an one-to-one relationship 

between 𝑌𝑖1̃, 𝑌𝑖2̃. Then: 

𝑎𝑖1̃= 𝑔1
−1(𝑌1̃, 𝑌2̃)= 

𝑌𝑖1̃

𝑥1
 - 
𝑌𝑖2̃

𝑥1
      ; 𝑎𝑖2̃= 𝑔2

−1(𝑌𝑖1̃, 𝑌𝑖2̃)=   
𝑌2̃

𝑥2
                                           (2.7) 

The Determinant of the Jacobian for (2.7) is: 

J= |
𝜕(𝑎𝑖1̃, 𝑎𝑖2̃)

𝜕(𝑌𝑖1̃,𝑌𝑖2̃)
|= |

1

𝑥1

−1

𝑥1

0
1

𝑥2

|= 
1

𝑥1𝑥2
 

Therefore, the Joint probability density function for 𝑌𝑖1̃, 𝑌𝑖2̃ is as follows: 

 𝑓(𝑌𝑖1̃, 𝑌𝑖2̃) =
1

𝑥1𝑥2
 𝛼𝑖1𝜆𝑖1 [1 − 𝑒

−𝜆𝑖1( 
𝑌𝑖1̃
𝑥1
 − 

𝑌𝑖2̃
𝑥1
 −𝜇𝑖1)]

𝛼𝑖1−1

 𝑒
−𝜆𝑖1( 

𝑌𝑖1̃
𝑥1
 − 

𝑌𝑖2̃
𝑥1
 −𝜇𝑖1)𝛼𝑖2𝜆𝑖2 ∙  

    [1 − 𝑒
−𝜆𝑖2(

𝑌𝑖2̃
𝑥2
 −𝜇𝑖2)]

𝛼𝑖2−1

 𝑒
−𝜆𝑖2(

𝑌𝑖2̃
𝑥2
 −𝜇𝑖2)

                                                            (2.8) 

and the marginal probability density function of 𝑌𝑖1̃  could be derived as follows: 

 𝑓(𝑌𝑖1̃) =
𝛼𝑖1𝜆𝑖1𝛼𝑖2𝜆𝑖2

𝑥1𝑥2
 ∫ [1 − 𝑒

−𝜆𝑖1( 
𝑌𝑖1̃
𝑥1
  −𝜇𝑖1)𝑒

𝜆𝑖1
𝑥1
 𝑌𝑖2̃ ]

𝛼𝑖1−1

∙ 

𝑌𝑖1̃−𝜇𝑖1𝑥1

𝑌𝑖2̃= 𝜇𝑖2𝑥2

   

     𝑒
−𝜆𝑖1( 

𝑌𝑖1̃
𝑥1
  −𝜇𝑖1)𝑒

𝜆𝑖1
𝑥1
 𝑌𝑖2̃ [1 − 𝑒

− 
𝜆𝑖2
𝑥2
 𝑌𝑖2̃ 𝑒𝜆𝑖2𝜇𝑖2]

𝛼𝑖2−1

 𝑒
− 
𝜆𝑖2
𝑥2
 𝑌𝑖2̃ 𝑒𝜆𝑖2𝜇𝑖2 d𝑌𝑖2̃             (2.9) 

 By using the binomial expansion we find that: 

[1 − 𝑒
−𝜆𝑖1( 

𝑌𝑖1̃
𝑥1
  −𝜇𝑖1)𝑒

𝜆𝑖1
𝑥1
 𝑌𝑖2̃ ]

𝛼𝑖1−1

= ∑ 𝐶𝑙1
𝛼𝑖1−1𝛼𝑖1−1

𝑙1=0
(−𝑒

−𝜆𝑖1( 
𝑌𝑖1̃
𝑥1
  −𝜇𝑖1)𝑒

𝜆𝑖1
𝑥1
 𝑌𝑖2̃ )

𝛼𝑖1−1−𝑙1

 

(2.10) 

Similarly;  

[1 − 𝑒
− 
𝜆𝑖2
𝑥2
 𝑌𝑖2̃ 𝑒𝜆𝑖2𝜇𝑖2]

𝛼𝑖2−1

= ∑ 𝐶𝑙2
𝛼𝑖2−1𝛼𝑖2−1

𝑙2=0
(−𝑒

− 
𝜆𝑖2
𝑥2
 𝑌𝑖2̃ 𝑒𝜆𝑖2𝜇𝑖2)

𝛼𝑖2−1−𝑙2

              (2.11)  

 

Then, by substituting (2.10) and (2.11) in (2.9), we get: 
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 𝑓(𝑌𝑖1̃) =
𝛼𝑖1𝜆𝑖1𝛼𝑖2𝜆𝑖2

𝑥1𝑥2
∫ ∑ 𝐶𝑙1

𝛼𝑖1−1𝛼𝑖1−1
𝑙1=0

(−𝑒
−𝜆𝑖1( 

𝑌𝑖1̃
𝑥1
  −𝜇𝑖1)𝑒

𝜆𝑖1
𝑥1
 𝑌𝑖2̃ )

𝛼𝑖1−1−𝑙1

∙
𝑌𝑖1̃−𝜇𝑖1𝑥1

 𝑌𝑖2̃= 𝜇𝑖2𝑥2

𝑒
𝜆𝑖1
𝑥1
 𝑌𝑖2̃ 𝑒

−𝜆𝑖1( 
𝑌𝑖1̃
𝑥1
  −𝜇𝑖1)∑ 𝐶𝑙2

𝛼𝑖2−1𝛼𝑖2−1
𝑙2=0

(−𝑒
− 
𝜆𝑖2
𝑥2
 𝑌𝑖2̃ 𝑒𝜆𝑖2𝜇𝑖2)

𝛼𝑖2−1−𝑙2

 𝑒
− 
𝜆𝑖2
𝑥2
 𝑌𝑖2̃ 𝑒𝜆𝑖2𝜇𝑖2  d𝑌𝑖2̃   

   (2.12) 

  The function in (2.12) can be rewritten as follows: 

 

 𝑓(𝑌𝑖1̃) =
𝛼𝑖1𝜆𝑖1𝛼𝑖2𝜆𝑖2

𝑥1𝑥2
 ∑ ∑ 𝐶𝑙1

𝛼𝑖1−1𝐶𝑙2
𝛼𝑖2−1 (𝑒

−𝜆𝑖1( 
𝑌𝑖1̃
𝑥1
  −𝜇𝑖1)(𝛼𝑖1−𝑙1)) ∙

𝛼𝑖2−1
𝑙2=0

𝛼𝑖1−1
𝑙1=0

(𝑒𝜆𝑖2𝜇𝑖2(𝛼𝑖2−𝑙2)) ∫  
𝑌𝑖1̃−𝜇𝑖1𝑥1

𝑌𝑖2̃= 𝜇𝑖2𝑥2
𝑒
 𝑌𝑖2̃(

𝑥2𝜆𝑖1(𝛼𝑖1−𝑙1)−𝑥1𝜆𝑖2(𝛼𝑖2−𝑙2)

𝑥1𝑥2
)
d𝑌𝑖2̃                               (2.13) 

𝑓(𝑌𝑖1̃) = (∏ 𝛼𝑖𝑗𝜆𝑖𝑗
2
𝑗=1 )∑ ∑

𝐶𝑙1

𝛼𝑖1−1𝐶𝑙2

𝛼𝑖2−1

𝑥2𝜆𝑖1(𝛼𝑖1−𝑙1)−𝑥1𝜆𝑖2(𝛼𝑖2−𝑙2)

𝛼𝑖2−1
𝑙2=0

𝛼𝑖1−1
𝑙1=0

∙

[ 𝑒
− 
𝜆𝑖2(𝛼𝑖2−𝑙2)

𝑥2
 𝑌𝑖1̃𝑒

 
𝜆𝑖2(𝛼𝑖2−𝑙2)(∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 )

𝑥2
 
− 𝑒

− 
𝜆𝑖1(𝛼𝑖1−𝑙1)

𝑥1
  𝑌𝑖1̃𝑒

 
𝜆𝑖1(𝛼𝑖1−𝑙1)(∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 )

𝑥1
 
]    (2.14) 

 𝑓(𝑌𝑖1̃) = (∏ 𝛼𝑖𝑗𝜆𝑖𝑗
2
𝑗=1 )∑ ∑

𝐶𝑙1

𝛼𝑖1−1𝐶𝑙2

𝛼𝑖2−1

𝑥2𝜆𝑖1(𝛼𝑖1−𝑙1)−𝑥1𝜆𝑖2(𝛼𝑖2−𝑙2)

𝛼𝑖2−1
𝑙2=0

𝛼𝑖1−1
𝑙1=0

∙

[ 𝑒
 
𝜆𝑖2(𝛼𝑖2−𝑙2)

𝑥2
 [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑌𝑖1̃] − 𝑒

 
𝜆𝑖1(𝛼𝑖1−𝑙1)

𝑥1
  [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑌𝑖1̃]]    ; 𝑌𝑖1̃ ˃ ∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1  ; 

𝜆𝑖𝑗, 𝜇𝑖𝑗˃ 0 ; 𝛼𝑖𝑗 = 1,2, … ;   𝑗 = 1,2.          (2.15) 

 

Equation (2.15) is the PDF of 𝑌𝑖1̃=∑ 𝑎𝑖𝑗̃𝑥𝑗
2
𝑗=1  as indicated in equation (2.4). 

 

Secondly, we can obtain the corresponding CDF as follows: 

 

F(𝑦𝑖1̃)=∫ 𝑓(𝑌𝑖1̃) 𝑑𝑌𝑖1̃
𝑦𝑖1̃
∑ 𝜇𝑖𝑗𝑥𝑗
2
𝑗=1

                                                                                 (2.16) 

𝐹(𝑦𝑖1̃) = ∫ (∏ 𝛼𝑖𝑗𝜆𝑖𝑗
2
𝑗=1 )∑ ∑

𝐶𝑙1

𝛼𝑖1−1𝐶𝑙2

𝛼𝑖2−1

𝑥2𝜆𝑖1(𝛼𝑖1−𝑙1)−𝑥1𝜆𝑖2(𝛼𝑖2−𝑙2)

𝛼𝑖2−1
𝑙2=0

𝛼𝑖1−1
𝑙1=0

∙

𝑦𝑖1̃

∑ 𝜇𝑖𝑗𝑥𝑗
2
𝑗=1

[ 𝑒
 
𝜆𝑖2(𝛼𝑖2−𝑙2)

𝑥2
 [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑌𝑖1̃] − 𝑒

 
𝜆𝑖1(𝛼𝑖1−𝑙1)

𝑥1
  [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑌𝑖1̃]]  𝑑𝑌𝑖1̃                                (2.17) 

𝐹(𝑦𝑖1̃) = (∏ 𝛼𝑖𝑗𝜆𝑖𝑗
2
𝑗=1 )∑ ∑

𝐶
𝑙1

𝛼𝑖1−1𝐶
𝑙2

𝛼𝑖2−1

𝑥2𝜆𝑖1(𝛼𝑖1−𝑙1)−𝑥1𝜆𝑖2(𝛼𝑖2−𝑙2)

𝛼𝑖2−1
𝑙2=0

𝛼𝑖1−1
𝑙1=0

{ −
𝑥2

𝜆𝑖2(𝛼𝑖2−𝑙2)
∙

[𝑒
 
𝜆𝑖2(𝛼𝑖2−𝑙2)

𝑥2
 [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑦𝑖1̃] − 1] +

𝑥1

𝜆𝑖1(𝛼𝑖1−𝑙1)
[𝑒
 
𝜆𝑖1(𝛼𝑖1−𝑙1)

𝑥1
  [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑦𝑖1̃] − 1]}     (2.18) 
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𝐹(𝑦𝑖1̃) =

(∏ 𝛼𝑖𝑗𝜆𝑖𝑗
2
𝑗=1 )∑ ∑ 𝐶𝑙1

𝛼𝑖1−1𝐶𝑙2
𝛼𝑖2−1𝛼𝑖2−1

𝑙2=0
𝛼𝑖1−1
𝑙1=0

{ 
𝑒
 
𝜆𝑖2(𝛼𝑖2−𝑙2)

𝑥2
 [∑ 𝜇𝑖𝑗𝑥𝑗
2
𝑗=1 −𝑦𝑖1̃]

𝑥1
𝑥2
 [𝜆𝑖2(𝛼𝑖2−𝑙2)]

2−∏ 𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)
2
𝑗=1  

+

𝑒
 
𝜆𝑖1(𝛼𝑖1−𝑙1)

𝑥1
  [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑦𝑖1̃]

𝑥2
𝑥1
 [𝜆𝑖1(𝛼𝑖1−𝑙1)]

2−∏ 𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)
2
𝑗=1

+
1

∏ 𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)
2
𝑗=1

}                                                     (2.19) 

 𝐹(𝑦𝑖1̃) = (∏ 𝛼𝑖𝑗𝜆𝑖𝑗
2
𝑗=1 )∑ ∑ 𝐶𝑙1

𝛼𝑖1−1𝐶𝑙2
𝛼𝑖2−1𝛼𝑖2−1

𝑙2=0
𝛼𝑖1−1
𝑙1=0

∙

{∑
𝑒
 
𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)

𝑥𝑗
  [∑ 𝜇𝑖𝑗𝑥𝑗

2
𝑗=1 −𝑦𝑖1̃]

𝑥𝑚
𝑥𝑗
 [𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)]

2
−∏ 𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)

2
𝑗=1

2
𝑗=1
𝑗≠𝑚

 +
1

∏ 𝜆𝑖𝑗(𝛼𝑖𝑗−𝑙𝑗)
2
𝑗=1

}                                        (2.20)  

 

The above function is the same as (2.5), which represents the CDF of 𝑌𝑖1̃=∑ 𝑎𝑖𝑗̃𝑥𝑗
2
𝑗=1 .  

Finally, by using a CCP technique, the equivalent deterministic constraint of the CC’s 

in (2.2) is as follows:       𝐹(𝑏𝑖) ≥ 𝛾𝑖            ;    𝑖 = 1, 2, … ,𝑚                                   (2.21) 

Here, F(∙) represents the CDF of the random variable 𝑦𝑖1̃ = ∑ 𝑎𝑖𝑗̃xj  
2
j=1  . Hence, by 

substituting (2.5) in constraint (2.21), we obtain the equivalent deterministic constraint 

of the CC’s (2.2) as given in (2.6). 

 

3. Special cases  

 
1) If 𝛼𝑖1 = 𝛼𝑖2 = 1 in (2.6), we obtain:  

𝑥2𝜆𝑖1

𝑥2𝜆𝑖1−𝑥1𝜆𝑖2
𝑒
− 
𝜆𝑖2
𝑥2
 𝑏𝑖+ 

𝜆𝑖2(∑ 𝜇𝑖𝑗𝑥𝑗
2
𝑗=1 )

𝑥2
 
−

𝑥1𝜆𝑖2

𝑥2𝜆𝑖1−𝑥1𝜆𝑖2
𝑒
− 
𝜆𝑖1
𝑥1
 𝑏𝑖+ 

𝜆𝑖1(∑ 𝜇𝑖𝑗𝑥𝑗
2
𝑗=1 )

𝑥1
 
≤ 1 − 𝛾𝑖  

; 𝑖 = 1, 2, … ,𝑚.    (2.22) 

This result is equivalent to results provided by El-Dash, (1984) and Hafez et al. 

(2018a). 

(2) If 𝛼𝑖1 = 𝛼𝑖2 = 1, 𝜇𝑖1 = 𝜇𝑖2 = 0 in (2.6), we obtain: 

𝑥2𝜆𝑖1

𝑥2𝜆𝑖1−𝑥1𝜆𝑖2
𝑒
− 
𝜆𝑖2
𝑥2
 𝑏𝑖 −

𝑥1𝜆𝑖2

𝑥2𝜆𝑖1−𝑥1𝜆𝑖2
𝑒
− 
𝜆𝑖1
𝑥1
 𝑏𝑖 ≤ 1 − 𝛾𝑖          ; 𝑖 = 1, 2, … ,𝑚            (2.23) 

This result is equivalent to results provided by Biswal et al. (1998). 

 

4. Numerical example 

 
     In this section, a numerical example is presented to illustrate the procedure of the 

transformation from probabilistic programming model into an equivalent deterministic 

model based on the assumption of GE distributed random parameters. Consider the 

following CCP model: 
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Max . Z = 3x1 +  5x2                                                            (4.1) 

    𝑆. 𝑇:                    𝑃𝑟(𝑎𝑖1̃x1  + 𝑎𝑖2̃x2  ≤  100) ≥ 0.9                   , x1, x2 ≥ 0      (4.2)  

 

Here; x1, x2 are decision variables, 𝑎𝑖1̃, 𝑎𝑖2̃ are independent Random parameters 

following GE distributions, such that 𝑎𝑖1̃~GE(𝛼𝑖1 = 2, 𝜆𝑖1 = 1, 𝜇𝑖1 = 2) 
and  𝑎𝑖2̃~GE(𝛼𝑖2 = 2, 𝜆𝑖2 = 2, 𝜇𝑖2 = 3). 
      Depending on Theorem (1) and by substituting values of the parameters in (2.6), 

the equivalent deterministic model of model (4.1)- (4.2) becomes as follows: 

Max . Z = 3x1 +  5x2                                                                     (4.3)   

S.T      
(2𝑥2)𝑒

− 
400
𝑥2

 + 
8𝑥1+12𝑥2

𝑥2
 

2𝑥2−4𝑥1
+
(4𝑥1)𝑒

− 
200
𝑥1

 + 
4𝑥1+6𝑥2

𝑥1
 

4𝑥1−2𝑥2
+
(4𝑥2)𝑒

− 
200
𝑥2

 + 
4𝑥1+6𝑥2

𝑥2
 

2𝑥2−2𝑥1
+

(2𝜆2𝑥1)𝑒
− 
200
𝑥1

 + 
4𝑥1+6𝑥2

𝑥1
 

2𝑥1−2𝑥2
+
(2𝑥2)𝑒

− 
400
𝑥2

 + 
8𝑥1+12𝑥2

𝑥2
 

𝑥2−4𝑥1
+
(8𝑥1)𝑒

− 
100
𝑥1

 + 
2𝑥1+3𝑥2

𝑥1
 

4𝑥1−𝑥2
+

(4𝑥2)𝑒
− 
200
𝑥2

 + 
4𝑥1+6𝑥2

𝑥2
 

𝑥2−2𝑥1
+
(8𝑥1)𝑒

− 
100
𝑥1

 + 
2𝑥1+3𝑥2

𝑥1
 

2𝑥1−𝑥2
≤ 8.1                ,x1, x2 ≥ 0                       (4.4) 

This model is nonlinear programming model and can approximated to linear 

programming model. 

  

5. Conclusion 
 

     In this paper, we introduced the PDF and CDF of a linear combination of two 

random parameters, which follow GE(𝛼𝑖𝑗, 𝜆𝑖𝑗, 𝜇𝑖𝑗), 𝑗 = 1,2. Then; by using the CCP 

technique, the equivalent deterministic model under the assumption that two L.H.S 

parameters are random and follow bivariate GE(𝛼𝑖𝑗, 𝜆𝑖𝑗 , 𝜇𝑖𝑗) is presented. Also, some 

special cases are introduced, this cases satisfy the result provided by Biswal et al. 

(1998), El-Dash, (1984) and Hafez et al. (2018a). Hence, this paper is considered a 

generalization to cases of random parameters following single or two-parameter 

exponential distribution. 
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