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Abstract

In this paper, the chance-constrained programming (CCP) technique is considered,
when exist some dependent exponential distributed random parameters. Firstly, a
proposed bivariate exponential distribution is presented. Secondly, a transforming
method to convert chance constraints to its equivalent deterministic ones. That
through two cases: (i) dividual (joint) constraints, (ii) individual constraints.

Finally a numerical example is introduced to illustrate the converting method of the
chance constraints to its equivalent deterministic ones.

Keywords: Bivariate exponential distributions, CCP, Downton bivariate distribution,
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1. Introduction

(CCP) technique is considered one of the most applicable technique of the stochastic
programming [7,13,14,22]. It was first introduced by Charnes and Cooper (1959). In
the literature of (CCP), various models and approaches have been suggested by
several researches [4,5,7,8,9,19,20,21,22,23].
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The most of researches have dealt with independent exponential distributed random
parameters &;;, or b,,i=12,..,m ,j=12,..,n [3715]. Recently, few
researches have dealt with dependent some random parameters as Hafez and other

[14,15,16], Ismail and other [17], EI-Dash [8,9,10].

In this paper, the following linear chance constraints are investigated.

n
Pr {Z ai]- X]' < bi , i= 1,2} > Y (11)
j=1
2 n
Pl‘ {Z 511 X] + Z ai]' X]' < bl} = Yi » i= 3,4, e, (12)
j=1 j=3

Where &j; or b; are random parameters and ajj, by, ¢j are constants and 0 <y, y; <
1 and x; > 0 donate to tolerance measures and decision variables respectively.

2. A proposed Bivariate Exponential Distribution

In this section a bivariate exponential distribution is presented. This distribution is an
extension of Farlie, Gumbel and Morgenstern bivariate exponential distribution when
A > 0,i=1,2 rather than A; = 1 [1,2,24].This distribution is very important for
insurance, economic, demographic, reliability sector, etc [17,22].

Let 3;; and i;, are exponential random variables with parameters Aj;,A;; >

0 respectively and correlation coefficient p ,—i <p< % .

Definition (2.1): Let f(3;4,3;2) , F(aj1, aj2) are joint density and cumulative function
of (3j1, 3;,) respectively, then:

f(ay, 3jp) = M e Mat28{] 4 o (2e™M81 — 1) (272282 — D)} al < 1, dy,8,0,1

>0 (2.1)
F(aj,a;) = P.(8; < ay,8, <ap) = [1—e™M31][1 - e™%23%2][1 4+ a e M131+2222)] (2.2)
! <p< ! ! 2.3
- — _ — = — .
7<P<3 p=zu (2.3)

it is easy to prove that:

fff(él,éz)déldéz =1, Floo,) =1
0 0
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It is noted that when 3,4, 3;, are independent then p = o = 0 in turn:
f(@1, 8ip) = WA, e”Pafrtheda) ) (2.4)

F(ay,ay) = [1 — e™M131][1 — e72%] (2.5)

3. Probability Distribution of Z = 2 =1 ajj X;

Let (3;,,3;,) are two dependent exponential distributed random variables and follow
the suggested bivariate distribution in (2.1) - (2.3). The following theorem gives the
probability distribution of

Z; —Z] 145X, 520, j=12,..,n

Theorem (3.1): Let f(Z;) and F(z;) donate to a density and cumulative functions of
7; respectively, then [11]:

Ay, g,
f(Z) = ciM2,(1 + ) [e X1 —eX ] - zmza{cz

_2}‘12 i}‘zi
e 6

—2h1,  —Ag, A1, =22,
e X1 —eXe +c3[exlz—e X2

‘ A —22,
F(z) =c(1+ ) [?\le (1 —eX: Z') — 2\, <1 —eX Z')] a{cz [Ale <1 —ex

M, =22y, =2h,
—2\1X; (1 —e Xz ) +c3 [2?\2x1 <1 —eX ') — MiXy <1 —e Xz ‘>] - [Ale <1 —e X ‘>
—22,
A%y <1 e )]} (3.2)

where:

Cr = (xy —4x)71,
C2 = (7\2X1 - 2)\1X2)_1 ,and C3 = (2)\2){1 - )\1X2)_1 (3.3)

Proof: Since Z; = a;;x, + dizx, , X1,X; =0 ,and k = &j,x; inturn [J| =

A1Ap

X1X2

A —_7\1~_<A2x1—)\1x2)E —_7\1~_()\2X1—)\1X2)E M, Mg Ao
=2 %" X1Xz 1+ aldexs X1Xz —2ex X —2eXz +1 —
X1X2

f(7, k) = e~Mdinthadiz) {1 4 o (2e7M% — 1)(2e7M2%2 — 1)}
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Z
My Ay [ (e
f(ii)zgexfzfe (2;1)(21 2)kdk

X1X2
Z 4
M a =2A1, =200% ~A X)) =2, ~Qaxy—MXo)p
+ 4e %1 e X1X2 dk—2e x1 e XX dk
X1X2
0 0
Z Z
—_7\12 —(27\2X1—7\1X2)E _ —_7\12 —(7\2X1—7\1X2)E _
—2e*1 J-e X1X2 dk + e *1 fe X1X2 dk
0 0

__)‘12 __)‘Zz _2}‘17 ﬁz __}‘17 _27‘22
=M (1 +a)|ext  —eX | =20 adc,|e X1 T —eX2 | +czleXt T —e X2

—2A1 . —2Az,

Also
Zj

F(z) =P.(Zi <z) = f f(Z;) dz;
0

Zj Zj
__}Wzi __}‘Zzi i}‘lzi __)‘Zzi
=ML +a) | lext " —exe T dZ; — 20 a<¢c, | |e X1 TP —e X2 | dZ;
0 0
Zj Zj
_—}\121 i}\zii - _leii i}‘zzi -
+cg | lexr T —e X2 T|dZj—cy | |e *r T —e X2 |dF;
0
A1, Az,
=c(1+a)|x (1l—ex1 ™) =x,(1—ex™

—2M, A,
—aicy | Ax[1—e Xt ) =20x, |1 —ex2 ™
M, =22z,
+eg[20,x (1 —exa ™ | = x, (1 —e X2
—2h -2
- [Ale <1 —e X ‘) — 2M%, <1 —e X2 ‘)]},

4. The equivalent deterministic constraints

Case (i): Let by, b, follow bivariate exponential distribution in (2.1), (2.2), then [10,

14]:
n - n - n n
B (D =6 ) b =F(D ays ) au)zy —
j=1 j=1 j=1 j=1
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[1 —eM Zj"=1aljxj] [1 — e 21’11321"1] [1 + qe- (M Zlianx A, 2}'=1a2ixi)] >y (4.1)

Case (ii): Let (3;1,3;,) follow the proposed distribution in (2.1), (2.2) and consider
the chance constraint in (1.3):

n
Pr (511X1 + 512X2 + ai]' X]' < b1> = Yi » i= 1,2, e, M
Zi=3

from the relationship in (3.2), the above constraints are equivalent to the following
deterministic ones:

Mp_yn oo Aol yn oo
Q1+ @) o, (1 _ewl Z’=3a”x')> % (1 _ewl Z’*a”xl))]

22 n
—a {Cz )\le <1 —e xll(bi_2j=3aijxj))
-\ n
—2X4X, (1 - ex_zz(bi-ijsaini))]
—A n oo —2Aa(p _yn o
+ c3 [2)\2)(1 <1 — ex_ll(bi_zj=3 au"l)) - %, (1 e Xzz(bl Z,=3a,,x]))]

=2\ (. _yn Z2Az(p _gn o
oo ) (- o 2

=12,..,m (4.2)

5. Numerical example

Convert the following chance constraints to its equivalent deterministic ones:

() P(x;+2x, 2b;,3%; +x, <by) =09
(i) P.(A1x; + d,%, + 5x3 < 100) > 0.9

(by, b,) follow proposed distribution with p = 0.2 , A, = 0.125, 2, = 0.200 respectively,
also (a,,, ,,) follow proposed distribution with p' = 0.1 , 2, = 0.4, A, = 0.20 .

Solution:

(i) From (2.3), then a = 4p = 4(0.2) = 0.8
P.(x, + 2%, = by, 3% +x, < by)

X1+2Xp o

- f f AAge= (BB (1 4 o(2¢B1 — 1)(2e~M2b2 — 1)} db, db,

0 3Xq1+Xo
_—

L1+ a)(Bxy + x,) (e Cat2x2) — 1) 4 %, (3x, + x,)(e72Ma¥2x2) — 1) > 0.9
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E—
(1.08x, + 0.36x,)(e™(0-125%1+0-25%2) — 1) 4 (0.6x, + 0.2x,)(e~(025%1+0.5%2) _ 1))
>0.9 (1)

(ii) From (2.3), we have o' = 4p' = 4(0.1) = 0.4, in turn
Pr(alxl + 52X2 + 5X3 S 100) = Pr(i S 100 - 5X3) (2)

from (3.2) and substituting in (2), we have:

—(20-x3) —(80—4x3)
4x, (1—e %2 )]—0.4{(02X o [02x1(1—e * )

0.
—(40-2x3) —(40-2x3) —(40-2x3)
St P 1 mmers)
e O Y O N G T Gy

07 —(40-2x3)
(0.1x1—0.2x ) [0 2% (1 —e ® )

—(20-x3)
~0.8x, (1—e x2 )]

—(40-2x3)
2 (1= )|}

>09 3)

X1—X2

It is noted that the equivalent deterministic constraints in (1), (3) are nonlinear and
may be approximated to linear constraints.
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