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Abstract 

 

In this paper, a suggested approach to solve (PLGP) problems is presented, when some 

(or all) random aspiration levels b̃i follow generalized exponential distributions 

𝐆𝐄(𝛌𝐢,𝛍𝐢,𝛂𝐢). This approach allows to obtain: i) best compromise solution of (PLGP) 

problem, ii) upper limits of the random deviational variables d̃i
−, d̃i

+ and its 

probabilities, and iii) the actual tolerance measures γi
∗ (or the actual risk measures R∗ =

(1 − γi
∗) ). Finally a numerical example is presented to illustrate the procedure steps. 

 

Keywords: Chance Constrained Programming (CCP), 𝐆𝐄(𝛌𝐢,𝛍𝐢,𝛂𝐢) , Linear Goal 

Programming (LGP), Probabilistic Programming (PP), Stochastic Programming (SP). 
 

 

1. Introduction 
 

Up to now, there are many areas of (GP) which have not been completely researched, 

such as (PLGP). 

The (LGP) model becomes a (PLGP) model when some or all of the parameters are 

random variables with certain distributions [5, 12]. The (PLGP) technique is one of the 

most important techniques for optimal decision making under uncertainty. Where there 

are many problems in practical applications of (GP) having random variable parameters 

[5, 6]. Charnes, Cooper, Neihaus and Sholtz (1968) have jointly developed a manpower 

planning model which considers the effects of Markov process from period to period  
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[3]. Contini (1968) used generalized inverse method to study (CCGP) problems, when 

the vector of targets b̃i represents random variables having a normal distributions [4]. 

Lee (1972) presented some applications of (PLGP) technique in management and 

economic sectors. Also Keown, Keown and Taylor III (1978) presented some 

applications in banking sector [11]. El-Dash (1984) presented the mathematical 

definition of random deviational variables and approach to transform (PLGP) model to 

another deterministic one, when some random aspiration levels follow exponential 

distributions with one or two random parameters [5]. As yet, the studies were 

introduced to solve (PGP) problems still very few. 

In this paper the El-Dash approach of (PLGP) is developed when some aspiration levels 

are random variables and follow 𝐆𝐄(𝛌𝐢,𝛍𝐢,𝛂𝐢) [7, 8]. 
 

2. PLGP Model 
 

Let the general LGP model as following: 

 

Find  X , d−, d+ , such that [10, 9]: 
 

Lexico. Min. A = {g1(d
−, d+), g2(d

−, d+), … , gt(d
−, d+), … , gk(d

−, d+)}                                            (2.1) 
 

S. T.    ∑ aijxj + di
− − di

+ = bi      ,          i = 1,2, … ,M
n
j=1                                                                             (2.2)  

 

xj  , di
− , di

+ ≥ 0   ,       di
−. di

+ = 0     ,          i = 1,2, … ,M                                      (2.3) 

 

Where gt(d
−, d+) is the objective function with priority  t   , t = 1,2, … k and 

bi , xj , di
−, di

+ are aspiration levels, decision variables, and under and over deviational 

variables respectively, i = 1,2, … ,M   ,    
j = 1,2, … , n. 

When some (or all) bi are random variables with a certain probability distributions and 

denoted by b̃i, in turn, the goals in (2.2) may be classified to 3 sets of goals: 
 

 

G1 :     ∑ aijxj − d̃i
+ = b̃i       ,          i = 1,2, … ,m1

n
j=1                                                                                    (2.4)  

 

G2 :     ∑ aijxj + d̃i
− = b̃i       ,           i = m1+1,m1+2, … ,m2

n
j=1                                                                   (2.5)  

           

G3 :     ∑ aijxj + di
− − di

+ = bi      ,         i = m2 + 1,m2 + 2,… ,M
n
j=1                                                       (2.6)  

 

G1, G2 are probabilistic goal’s sets, where d̃i
+, d̃i

− are random over and under deviational 

variables [5] and:  
 

d̃i
+ = max{0 , ∑ aijxj − b̃i

n
j=1 }            ,          i = 1,2, … ,m1                                                                          (2.7)  
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d̃i
− = max{0 , b̃i − ∑ aijxj

n
j=1 }          ,           i = m1+1,m1+2, … ,m2                                                           (2.8)  

 

In this paper, b̃i ~ GE(λi,μi,αi) with cumulative function F(bi) and its inverse function 

F−1(bi) as following [7, 8]: 

 

F(b̃i) = [1 − e
−(bi−μi)/λi]

αi
  , b̃i > μi         ,        i = 1,2, … ,m2                              (2.9) 

 

F−1(b̃i) = [μi − λi  ln (1 − b̃i
1/αi)]             ,        i = 1,2, … ,m2                                       (2.10) 

 

In next section, the G1, G2 are transformed to deterministic ones [5, 7]. 
 

3. Transformation 𝐆𝟏 and 𝐆𝟐 to Deterministic Goals 
 

Let a given certain tolerance measures  γi ,   0 ≤ γi < 1   , i = 1,2, … ,m2. The goals 

(2.4),(2.5) can be written as following chance constraints [13]: 
 

Pr(∑ aijxj ≤ b̃i
n
j=1 ) = γi      

           
→                                                                                         (2.11)   

 

∑ aijxj
n
j=1 = F−1(1 − γi)     , i = 1,2, … ,m                                                                            (2.12)  

also 
 

Pr(∑ aijxj ≥ b̃i
n
j=1 ) = γi      

           
→                                                                                         (2.13)   

 

∑ aijxj
n
j=1 = F−1(γi)     , i = m1+1,m1+2, … ,m2                                                                (2.14)  

 

Note: the equation in (2.11),(2.13) may be inequalities ≥ γi or ≤ γi. 
 

The constraints in (2.12),(2.14) are transformed to deterministic goals as following 

[5, 9]: 
 

∑ aijxj
n
j=1 − di

+ = F−1(1 − γi)   ,   i = 1,2, … ,m1                                                               (2.15)  

 

∑ aijxj
n
j=1 + di

− = F−1(γi)        ,       i = m1+1,m1+2, … ,m2                                            (2.16)  

 

it is noted that the above constraints are linear. 

Here 

di
+ = max {0, ∑ aijxj

m
j=1 − F−1(1 − γi)}        ,      i = 1,2, … ,m1                                      (2.17)  

 

di
− = max {0, F−1(γi) − ∑ aijxj

n
j=1 }         ,       i = m1+1,m1+2, … ,m2                         (2.18)  

 

to satisfy the constraints (2.11),(2.13), that is required : 
 

min di
+            ,   i = 1,2, … ,m1                                                              (2.19) 
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min di
−            ,   i = m1+1,m1+2, … ,m2                                          (2.20) 

 

In turn, the deterministic (LGP) model (2.1),(2.6),(2.15),(2.16), can be solved by 

sequential method or modified simplex method [9, 10] and determine best compromise 

solution (x∗ , d+
∗
 , d−

∗
 ). The following theorem states the relationship between d̃i

+, d̃i
− 

and di
+∗ , di

−∗ respectively. 

 

Theorem. 

Assume that di
+ > 0      , i = 1,2, … ,m1   or    di

− > 0       , i = m1+1,m1+2, … ,m2    

are the upper limits of d̃i
+ or  d̃i

− respectively, then: 

1) min   Pr(0 ≤ d̃i
+ < di

+) = [1 − (1 − γi)
1/αi] [1 − e−d

+∗/λi]                ,   i =

1,2, … ,m1                                                                                                                                              (3.1) 

and the actual tolerance measures 

γi
∗ = γi − [1 − (1 − γi)

1/αi] [1 − e−d
+∗/λi]    ,   i = 1,2, … ,m1                                                           (3.2) 

 

2) min   Pr(0 ≤ d̃i
− < di

−) = (1 − γi
1/αi) (ed

−∗/λi − 1)    ,    i =

m1+1,m1+2, … ,m2                                    (3.3) 

and the actual tolerance measures 

γi
∗ = γi − {(1 − γi

1/αi) (ed
−∗/λi − 1)}    ,    i = m1+1,m1+2, … ,m2                                           (3.4) 

in turn 
R∗ = 1 − γi

∗         ,    i = 1,2, … ,m2 
 

Proof. 

The function Pr(0 ≤ d̃i
+ < di

+)     ,   i = 1,2, … ,m1 or Pr(0 ≤ d̃i
− < di

+)   ,    i =

m1+1,m1+2, … ,m2  are monotonic increasing functions of di
+ or di

− > 0 respectively 

[5], in turn: 
 

1) min   Pr(0 ≤ d̃i
+ < di

+) = Pr(0 ≤ d̃i
+ < di

+∗) 
 

= ∫ f(b̃i) db̃i

F−1(1−γi)+di
+∗

F−1(1−γi)

= {1 − e
ln[1−(1−γi)

1
αi  −di

+∗]

} − {1 − e
ln[1−(1−γi)

1
αi  ]

}                                         

 

                                              = (1 − e−d
+∗/λi) − (1 − γi)

1

αi (1 − e
−
d+
∗

λi )     ,       i = 1,2, … ,m1  

 

                          = [1 − (1 − γi)
1/αi] [1 − e−d

+∗/λi]   ,    i = 1,2, … ,m1 

2) by same way: 
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min   Pr(0 ≤ d̃i
− < di

−) = Pr(0 ≤ d̃i
− < di

−∗)                                                                                                  
 

                        = ∫ f(b̃i) db̃i

F−1(γi)

F−1(γi)−di
−∗

= {1 − eln(1−γi
1/αi)} − {1 − eln(1−γi

1/αi)+d−
∗
/λi}   

 

    = (1 − γi
1/αi) (ed

−∗/λi − 1)                  ,   i = m1+1,m1+2, … ,m2      

 

and actual tolerance measures 
 

                              γi
∗ = γi − [(1 − γi

1

αi)(e
d−
∗

λi − 1)]              ,   i = m1+1,m1+2, … ,m2                               

 

4. A Numerical Example 
 

Consider the following constraints: 

 
x1 + x2 ≤ 5                                                                                                         (1) 

3x1 + 4x2 ≥ 24                                                                                                      (2) 

x1 + 2x2 ≤ b̃                                                                                                         (3) 

x1, x2 ≥ 0        , b̃ ~ GE(λ=3,μ=1,α=2)                                                   (4) 

 

The decision maker wants to construct deterministic LGP model to satisfy the 

following objectives according to its priorities. 

First priority: satisfy constraints (1),(2), 

Second priority: satisfy constraint (3) with tolerance measure γ = 0.9 

 

Find x1, x2, d1
+, d2

−, d3
+ such that: 

 

Lexico.   min A = {a1, a2} = {(d1
+ + d2

−)(d3
+ )} 

S. T.                x1 + x2 − d1
+ = 5 

                            3x1 + 4x2 + d2
− = 24 

                                                             x1 + 2x2 − d3
+ = F−1(0.10) = 2.1404 

                                                    x1, x2, d1
+, d2

−, d3
+ ≥ 0 

 

The best compromise solution of the above model by using sequential method [9, 10] 

is: 
 

{a1
∗ = 1 , a2

∗ = 9.86}  , x1
∗ = 0 , x2

∗ = 6 , d1
+ = 1 , d2

− = 0 , d3
+ = 9.86   

in turn, the actual tolerance measure: 

γ3
∗ = γi − [1 − (1 − γi)

1 αi⁄ ][1 − e−d3
+ λ⁄ ] 

 

= 0.9 − [1 − 0.68377][0.96262] 
 

= 0.59559 ≃ 0.6                             
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5. Conclusions 
 

This paper presents a new approach to transform (PLGP) model to deterministic (LGP) 

model, when some aspiration levels follow  𝐆𝐄(𝛌𝐢,𝛍𝐢,𝛂𝐢), in turn, it is solved by sequential 

method or modified simplex method. This approach allows to determine the best 

compromise solution and the actual tolerance and risk measures respectively. 
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