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Abstract 
 

Current assessments of credit and financial risk based on deterministic analyses 

provide only a limited understanding of current and future solvency rates. This 

paper offers an alternate model using two-state Markov chains that produces a 

more comprehensive and accurate system and allows for broader and more 

complex analyses of present and future situations. 

Building off findings made in the development of the Altman Z-score, this 

proposed model applies stochastic processes and probability spaces to 

multivariate normal populations to account for the uncertainty of market 

conditions. Where one-step Markov chains demonstrate the relevance of this 

model for finite and infinite variables, the player’s downfall theorem indicates that 

the nth value is only dependent on the value before it. Using the Chapman-

Kolmogorov equation, multi-step transition probabilities then lead to the final 

two-state Markov chain. 
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1. Introduction: credit and financial risk assessment 
 

Representing complex, non-linear and open systems that are characterized by 

chaotic dynamics, mathematical models are applied to interpret and simulate 

financial markets and personal finances. This includes business evaluations 

produced by banks and other institutions, which are based on a compilation of 

individual analyses of budget indicators.  

Although this information is coalesced and organized in a comprehensive 

system that incorporates sector data, historical series and qualitative factors, the 

projections resulting from such a process, especially for insolvency forecasting, 

are limited by univariate procedures. 

It should be said that some studies (e.g. Beaver [3]) have demonstrated the 

discrete predictive abilities of these assessments for certain companies, especially 

in relation to the use of the cash flow ratio on total debts—when properly 

weighted, the Probability of Default of up to 80% of the companies assessed was 

correctly classified. At t – 1, where t is the default year, the accuracy rose to 90%. 

Generally, however, a purely deterministic analysis provides only a vague 

snapshot of market conditions that assumes time to be periodal and therefore 

discounts other decay variables. Alongside a Bayesian basic facility, the disparate 

treatment of the various assessment criteria, including profitability, financial 

structure and available liquidity, renders this model ineffectual for more 

demanding assessments involving longer periods or more complex portfolios. 

This procedure further warrants revision following recent guidelines 

introduced by the European Banking Authority regarding the renewal of certain 

international accounting standards. This includes IFRS 9, which contains the first 

mention of expected credit losses. Specific technical provisions must now be met 

to verify the conditions of probable default. 

A mathematical model that simultaneously accounts for all related variables 

and provides more predictive instruments is therefore crucial. Where the former 

refers broadly to interchangeable components, it includes the cost of provisions, 

variables for risk segments and possible loss prevention and mitigation measures.  

The latter focuses on the technical requirements of the system and enabling 

any company to generate results. These may be from forbearance procedures or 

stochastic evaluations of the impact of a new investment, financial or otherwise, 

on settlement, development and outlook rating. 

A simplified version of the model we aim to construct was formed during the 

development of the Altman Z-score [1] in which a single matrix of variance and 

covariance represents the relevant populations. Applied a year in advance, this 

model predicted unfavourable events or default with 95% accuracy (error α = 6%; 

β = 3%).  

As our model involves multivariate normal populations, we take up the linear 

discriminating analysis proposed by Fisher [4], with classification score: 

 

𝑆𝑗 = 𝑎1𝑋1𝑗 + 𝑎2𝑋2𝑗 + …+ 𝑎𝑖𝑋𝑖𝑗 + …+ 𝑎𝑛𝑋𝑛𝑗 
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where: 

𝑆𝑗  = the score of the j-th enterprise;  

𝑋𝑖𝑗 = the descriptive variable of the i-th feature of the j-th enterprise, with 

         𝑥𝑖 representing the column vector of those variables; and 

𝑎𝑗 = the coefficient of variable 𝑋𝑖𝑗. 

If two (or more) known populations A and B, respectively “non-

performing” and “in Bonis,” are present within time t, the allocation of 

company j to either population depends on the distance of 𝑆𝑗   from the average 

scores of A and B: 

 

𝑆𝑗 = ( 𝑥𝐴 − 𝑥𝐵) 𝑉−1𝑥𝑗 

 

Applied to samples of populations A and B, column vectors 𝑥𝐴 and 𝑥𝐵 

correlate with the averages of the selected variables, while V refers to an n by 

n matrix of variances and covariances, as derived from the union of the two 

samples relative to the average 𝑥. This configuration will allow multinormal 

populations to produce quadratic discriminating functions. 

 

2. Markov chains: the one-step process 
 

Whether discrete or in steps, the stochastic process that a countable set 

may undergo depends on the number of values assumed by its causal 

variables. If set T in a family of random variables 𝑋 = {𝑋𝑡: 𝑡 ∈ T } is discrete, 

the discrete-time process is given as {𝑋𝑛 ∶  𝑛 ∈  N}. If set T is continuous, 

however, its intersection with R,  𝑅+ or any subset of R would result in a 

continuous-time process. 

Here, we focus on discrete-time process {𝑋𝑛}. Where each variable 𝑋𝑛 can 

assume only a countable value within the space of S, the nature of S as either 

infinite set 𝑆∞ = {0, 1, 2, ...} or finished set 𝑆𝑑 = {0, 1, 2, ..., d} determines 

whether the variables are finite or infinite (cf. Jarrow et al. [6]). 

Within either of these parameters, probability can be calculated for the 

instant when n is in the state i, or 𝑋𝑛 = i: 

 

𝑃𝑖𝑗
𝑛= 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) 

 

Reaching the state j at the instant n + 1, the Markov chain for {𝑋𝑛}, n = 1, 2, …,  

is then defined as:  

 

𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛−1 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋0 = 𝑖0) = 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) = 𝑃𝑖𝑗
𝑛 

 

For all significant probabilities of each state 𝑖0, 𝑖1, … , 𝑖𝑛−1, 𝑖, 𝑗 where n ≥ 0, 𝑃𝑖𝑗
𝑛 

represents the probability of a one-step transition for a Markov chain (cf. Israel et 

al. [5]). 

 



 

56                                                                                                      Marco Desogus 

 

 

If we take 𝑋𝑛 to be the present state of the process, with past states 

𝑋𝑛−1, … , 𝑋1,𝑋0, then the future state 𝑋𝑛+1 depends only on the present state for 

every instant n. 

As such, to determine the probability of transition from state i to j, we take up 

a homogenous Markov chain, for which: 

 

P(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) = 𝑃𝑖𝑗 

And, therefore: 

𝑃𝑖𝑗 = P(𝑋1 = 𝑗|𝑋0 = 𝑖) 

 

Where this law is independent of the time and place of the transition, the 

conditions to satisfy it are: 

𝑃𝑖𝑗 ≥ 0, 𝑖, 𝑗 ≥ 0,∑𝑃𝑖𝑗

𝑗𝜖𝑆

= 1 

Extrapolating this equation, the one-step transition matrix P presents the 

evolution of this particular Markov chain for every instant that n ≥ 1: 

 

𝑃∞ =

[
 
 
 
 
 
𝑃00 𝑃01 𝑃02

𝑃10 𝑃11 𝑃12

𝑃20 𝑃21 𝑃22

… 𝑃0𝑗 …

… 𝑃1𝑗 …

… 𝑃2𝑗 …

⋮ ⋮ ⋮
𝑃𝑖0 𝑃𝑖1 𝑃𝑖2

⋮ ⋮ ⋮

⋱ ⋮ ⋮
… 𝑃𝑖𝑗 …

⋱ ⋮ ⋮ ]
 
 
 
 
 

 

 

Should the space of the states be finite, the matrix would take the form d × d: 

 

𝑃𝑑 =

[
 
 
 
 
𝑃11 𝑃12 𝑃13

𝑃10 𝑃11 𝑃12

𝑃20 𝑃21 𝑃22

… 𝑃1𝑑

… 𝑃2𝑑

… 𝑃3𝑑

⋮  ⋮   ⋮
𝑃𝑑1 𝑃𝑑2 𝑃𝑑3

⋱ ⋮
… 𝑃𝑑𝑑]

 
 
 
 

 

 

In both cases, matrix P remains stochastic as each element never falls below 0, 

and the sum of each row vector is 1. 

Here, we develop the player’s downfall theorem to better illustrate the 

process. Assuming the role of an entrepreneur, the player makes a series of 

investments that carry an inherent level of risk. Where a positive return refers to 

full remuneration of the input capital, the probability of achieving this outcome 

for each investment is p = a. The probability of loss is q = 1 – p = b (b > a); 

investments are assumed to stop when the player’s equity reaches value N or 0. 

After n investments, the entrepreneur amasses a wealth of 𝑋𝑛 and the 

preceding family of values forms a Markov chain. Therefore, for all previous 

instants when 𝑋𝑛 = 𝑖 (for 0 < i < N): 
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𝑃(𝑋𝑛+1 = 𝑖 + 1|𝑋𝑛 = 𝑖,  𝑋𝑛−1 = 𝑖𝑛−1, 𝑋𝑛−2 = 𝑖𝑛−2, … ,  𝑋1 = 𝑖1,  𝑋0 = 𝑖0) = 𝑎 
At instant n + 1, the player’s wealth depends only on the wealth possessed in 

the previous instant. In other words, the transition probabilities at any point in 

time are 𝑃𝑖,𝑖+1 = 𝑎; 𝑃𝑖,𝑖−1 = b for 0 < 𝑖 < 𝑁;  𝑃0,0 = 1; and 𝑃𝑁,𝑁 = 1: 

 

𝑃 =

[
 
 
 
 
 
1 0 0
b 0 a
0 b 0

0 0 0
0 0 0
a 0 0

0 0 b
0 0 0
0 0 0

0 a 0
b 0 a
0 0 1]

 
 
 
 
 

 

 

In the case that N = 5, for example, the space of states involves 5 + 1 

elements. In a one-step transition matrix, the elements 𝑃0,0 = 1 e 𝑃𝑁,𝑁 = 1 

indicate that at the instant 𝑛∗ ≥ 0, the chain leads to state 0 or state N. However, 

as P(𝑋𝑛+1 = 0|𝑋𝑛 = 0) = 1 and P(𝑋𝑛+1 = 𝑁|𝑋𝑛 = 𝑁) = 1 for every 𝑛 ≥ 𝑛∗, 

these states of loss are temporary. 

 

3. Multi-step transition probabilities 
 

A variation of the Chapman-Kolmogorov equation allows the further 

calculation of the probability of transition in n-steps (cf. Negri [7]).  

Where {𝑋𝑛} is a Markov chain with the space of state S, 𝑃𝑖𝑗
(𝑛)

 is the 

probability that the chain has transitioned from state i to state j n instants before 

for every instance when n ≥ 1: 

 

𝑃𝑖𝑗
(𝑛)

= P(𝑋𝑛+𝑚 = 𝑗|𝑋𝑚 = 𝑖) 

 

A homogenous chain, 𝑃𝑖𝑗
(𝑛)

 does not depend on m: 

 

𝑃𝑖𝑗
(𝑛)

= P(𝑋𝑛 = 𝑗|𝑋0 = 𝑖) 

As 𝑃𝑖𝑗
(1)

= 𝑃𝑖𝑗: 

𝑃𝑖𝑗
(𝑛)

= ∑𝑃𝑖ℎ
𝑛−1

ℎ𝜖𝑆

𝑃ℎ𝑗 

therefore: 

 

𝑃𝑖𝑗
(𝑛)

=
P(𝑋𝑛 = 𝑗, 𝑋0 = 𝑖)

P(𝑋0 = 𝑖)
= ∑

P(𝑋𝑛 = 𝑗, 𝑋𝑛−1 = ℎ, 𝑋0 = 𝑖)

P(𝑋0 = 𝑖)
ℎ𝜖𝑆

 

= ∑P(𝑋𝑛 = 𝑗|𝑋𝑛−1 = ℎ, 𝑋0 = 𝑖)P(𝑋𝑛−1 = ℎ|𝑋0 = 𝑖)

ℎ𝜖𝑆

 

= ∑P(𝑋𝑛 = 𝑗|𝑋𝑛−1 = ℎ)𝑃𝑖ℎ
𝑛−1

ℎ𝜖𝑆

= ∑P(𝑋1 = 𝑗|𝑋0 = ℎ)𝑃𝑖ℎ
𝑛−1

ℎ𝜖𝑆
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from which we return to:  

𝑃𝑖𝑗
(𝑛)

= ∑𝑃𝑖ℎ
𝑛−1

ℎ𝜖𝑆

𝑃ℎ𝑗 

 

A 𝑃(𝑛) matrix can thus be constructed using the probabilities 𝑃𝑖𝑗
(𝑛)

 to reach 

𝑃(𝑛) = 𝑃(𝑛−1). P is then deduced as the product of matrices for infinite values, and 

𝑃(2) = 𝑃 · 𝑃 =  𝑃2 and 𝑃(𝑛) = 𝑃𝑛. We also determine that 𝑃(𝑚+𝑛) = 𝑃(𝑚) · 𝑃(𝑛) 

as: 

 

𝑃𝑖𝑗
(𝑚+𝑛)

= ∑𝑃𝑖ℎ
(𝑚)

ℎ𝜖𝑆

𝑃ℎ𝑗
(𝑛)

 

 

The probability 𝜋𝑛 is of note as it assumes the chain is in a certain state i at 

the instant n: 

 

𝜋𝑘
𝑛 = P(𝑋𝑛 = 𝑘), ∇𝑘 ∈ 𝑆 

 

 

4. Two-state Markov chain 
 

We propose a two-state Markov chain as a more comprehensive model for 

effectual assessments of companies and their solvency prospects (cf. Desogus and 

Casu [3]). 

As earlier mentioned, the state of a company can be classified as either Non-

performing or in Bonis. The Non-performing state corresponds with 0 and in 

Bonis with 1. Regardless of its state prior to day n, if a company is in state 0 on 

day n, the probability that it will be in state 1 on day n + 1 is α. Conversely, if the 

same company is in state 1 on day n, the probability that it will be in state 0 on 

day n +1 is β. This is again independent of its status in the days before n. The 

evolution of the company’s state during the days n = 1, 2, …, n is indicated by the 

chain {𝑋𝑛}. 
To avoid a static system of 0 or 1, let us assume that α and β are never 0 in 

the same instance. Likewise, let us also assume that neither α nor β are 1 at the 

same time to prevent a deterministic system. The probabilities of a company’s 

state should therefore be 0 < α + β < 2. 

The transition matrix of the resulting Markov chain is: 

 

P = [
1 − 𝛼 𝛼

𝛽 1 − 𝛽
] 

 

Resolving the equations, the n-step transition matrix is: 

 

𝑃(𝑛) =
(1 − 𝛼 − 𝛽)𝑛

𝛼 + 𝛽
[

𝛼 −𝛼
−𝛽 𝛽 ] +

1

𝛼 + 𝛽
[
𝛽 𝛼
𝛽 𝛼

] 
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The distribution of 𝑋𝑛 variables is then calculated to determine the probability of 

the company being in state 0 or 1 at the instant n: 

 

𝑃(𝑋𝑛 = 0) =
𝛽

𝛼 + 𝛽
+ (1 − 𝛼 − 𝛽)𝑛(𝜋0

0 −
𝛽

𝛼 + 𝛽
) 

and: 

𝑃(𝑋𝑛 = 1) =
𝛽

𝛼 + 𝛽
+ (1 − 𝛼 − 𝛽)𝑛(𝜋1

0 −
𝛼

𝛼 + 𝛽
) 

 

Representing state 0 when n = 0 in the first equation, 𝜋0
0 = P(𝑋0 = 0). In the 

second equation, 𝜋1
0 reflects the state 1 when n = 1, or 𝜋1

0 = 1 − 𝜋0
0 = P(𝑋0 = 1). 

For the hypothesis | 1 − α − β | < 1: 

 

lim
𝑛→+∞

P(𝑋𝑛 = 0) =
𝛽

𝛼 + 𝛽
 

and: 

lim
𝑛→+∞

P(𝑋𝑛 = 0) =
𝛼

𝛼 + 𝛽
 

 

5. Conclusions 
 

The proposed model is positioned within the new needs expressed by the 

regulatory system, specifically on credit risk assessments.  

An alternate series of mathematical-financial calculations must be applied to 

properly assess the inherent uncertainty of dynamic and complex systems, such as 

markets and expected returns on investments, and to produce more accurate 

predictions that inform crucial decisions for portfolio strategies. 

We believe that a two-state Markov chain model can conduce to this 

achievement. 
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