International Journal of Contemporary Mathematical Sciences Vol. 15, 2020, no. 3, 121 - 126 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2020.91443

Generalized Somewhat Λ -Sets

C. W. Baker

Department of Mathematics Indiana University Southeast New Albany, IN 47150-6405, USA

This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright © 2020 Hikari Ltd.

Abstract

The notion of a generalized somewhat Λ -set is introduced. The basic properties of these sets are developed. It is shown that the class of generalized Λ -sets is properly contained in the class of generalized somewhat Λ -sets. Conditions sufficient for a function to preserve generalized somewhat Λ -sets are investigated.

Mathematics Subject Classification: 54A06, 54D10

Keywords: somewhat Λ -set, generalized somewhat Λ -set

1 Introduction

In 1986 Maki [5] introduced the notions of a Λ -set and a generalized Λ -set. These concepts have been generalized and extended by a number of authors. For example, Ganster, Jafari, and Noiri [4] investigated pre- Λ -sets and Caldas, Jafari and Noiri [3] studied Λ -generalized sets. In this note we continue this line of investigation by introducing the concepts of a somewhat Λ -set and a generalized somewhat Λ -set The basic properties of these sets are developed. For example, it is shown that a set A is a generalized somewhat Λ -set if and only if $\Lambda_{sw}(A) \subseteq \operatorname{Cl}(A)$, where $\Lambda_{sw}(A)$ denotes the intersection of all somewhat open sets containing A. Also it is established that the class of generalized Λ -sets is properly contained in the class of generalized somewhat Λ -sets and that the generalized somewhat Λ -sets are closed under union but not under intersection. Conditions sufficient for a function to preserve generalized

122 C. W. Baker

somewhat Λ -sets are investigated. For example, it is shown that, if $f: X \to Y$ is contra somewhat Λ -continuous and open, then $f^{-1}(B)$ is a generalized somewhat Λ -set whenever B is a generalized somewhat Λ -set.

2 Preliminaries

The symbols X and Y represent topological spaces with no separation properties assumed unless explicitly stated. All sets are considered to be subsets of topological spaces. The closure and interior of a set A are signified by Cl(A) and Int(A), respectively.

Definition 2.1 A subset A of a space X is said to be somewhat open [2] if $A = \emptyset$ or there exists $x \in A$ and an open set U such that $x \in U \subseteq A$. A set is called somewhat closed if its complement is somewhat open.

The collection of all somewhat open sets in a space X will be denoted by SW(X) and the intersection of all somewhat open sets in a space X containing a set A will be denoted by $\Lambda_{sw}(A)$. The collection of all open sets containing a set A will be denoted by $\Lambda(A)$. Maki [5] used the notation A^{Λ} and also the notation $\ker(A)$ (the kernel of A) is used.

Definition 2.2 A subset A is a space X is said to be a Λ -set [5] if $A = \Lambda(A)$.

Definition 2.3 A set A is said to be a generalized Λ -set (briefly a $_g\Lambda$ -set) [5] if $\Lambda(A) \subseteq F$ whenever $A \subseteq F$ and F is closed.

3 Somewhat Λ -sets and the operator Λ_{sw}

Definition 3.1 A set A is said to be a somewhat Λ -set if $A = \Lambda_{sw}(A)$.

The following lemma gives the basic properties of the operator Λ_{sw} .

Lemma 3.2 The following statements hold for subsets A and B of a space X and a collection $\{A_{\alpha} : \alpha \in \mathcal{A}\}\$ of subsets of X:

- (a) $A \subseteq \Lambda_{sw}(A)$.
- (b) If $A \subseteq B$, then $\Lambda_{sw}(A) \subseteq \Lambda_{sw}(B)$.
- (c) $\Lambda_{sw}(\Lambda_{sw}(A)) = \Lambda_{sw}(A)$.
- (d) If $A \in SW(X)$, then $A = \Lambda_{sw}(A)$.

- (e) $\Lambda_{sw}(\cup \{A_\alpha : \alpha \in \mathcal{A}\}) = \cup \{\Lambda_{sw}(A_\alpha) : \alpha \in \mathcal{A}\}).$
- (f) $\Lambda_{sw}(\cap \{A_{\alpha} : \alpha \in \mathcal{A}\}) \subseteq \cap \{\Lambda_{sw}(A_{\alpha}) : \alpha \in \mathcal{A}\}.$
- *Proof.* (a), (b), (d), and (f) are immediate consequences of the definition of Λ_{sw} .
- (c). Since $A \subseteq \Lambda_{sw}(A)$, it follows from (b) that $\Lambda_{sw}(A) \subseteq \Lambda_{sw}(\Lambda_{sw}(A))$. For the reverse inclusion, assume that $x \notin \Lambda_{sw}(A)$. Then there exists $U \in SW(X)$ such that $A \subseteq U$ and $x \notin U$. Then $\Lambda_{sw}(A) \subseteq U$ and hence $\Lambda_{sw}(\Lambda_{sw}(A)) \subseteq U$. Thus $x \notin \Lambda_{sw}(\Lambda_{sw}(A))$, which proves that $\Lambda_{sw}(\Lambda_{sw}(A)) \subseteq \Lambda_{sw}(A)$.
- (e) Let $\{A_{\alpha} : \alpha \in \mathcal{A}\}$ be a family of subsets of X. Since for every $\alpha \in \mathcal{A}$, $\Lambda_{sw}(A_{\alpha}) \subseteq \Lambda_{sw}(\cup_{\alpha \in \mathcal{A}} A_{\alpha}), \ \cup_{\alpha \in \mathcal{A}} \Lambda_{sw}(A_{\alpha}) \subseteq \Lambda_{sw}(\cup_{\alpha \in \mathcal{A}} A_{\alpha}).$ For the reverse inclusion, assume that $x \notin \cup_{\alpha \in \mathcal{A}} \Lambda_{sw}(A_{\alpha})$. Then for every $\alpha \in \mathcal{A}$, $x \notin \Lambda_{sw}(A_{\alpha})$. Thus for every $\alpha \in \mathcal{A}$ there exists $U_{\alpha} \in SW(X)$ for which $A_{\alpha} \subseteq U_{\alpha}$ and $x \notin U_{\alpha}$. Then $\cup_{\alpha \in \mathcal{A}} U_{\alpha} \in SW(X), \ \cup_{\alpha \in \mathcal{A}} A_{\alpha} \subseteq \cup_{\alpha \in \mathcal{A}} U_{\alpha}$ and $x \notin \cup_{\alpha \in \mathcal{A}} A_{\alpha}$. Therefore $x \notin \Lambda_{sw}(\cup_{\alpha \in \mathcal{A}} A_{\alpha})$, which proves that $\Lambda_{sw}(\cup_{\alpha \in \mathcal{A}} A_{\alpha}) \subseteq \cup_{\alpha \in \mathcal{A}} \Lambda_{sw}(A_{\alpha})$.

4 Generalized somewhat Λ -sets

Definition 4.1 A subset A of a space X is said to be a generalized somewhat Λ -set (briefly a ${}_{g}\Lambda_{sw}$ -set) if $\Lambda_{sw}(A) \subseteq F$ whenever $A \subseteq F$ and F is a closed subset of X.

Since for every set A, $\Lambda_{sw}(A) \subseteq \Lambda(A)$, every ${}_g\Lambda$ -set is a ${}_g\Lambda_{sw}$ -set. Also every Λ -set is a Λ_{sw} -set. The following example shows that a ${}_g\Lambda_{sw}$ -set is not necessarily a ${}_g\Lambda$ -set and that a Λ_{sw} -set is not necessarily a Λ -set.

Example 4.2 Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Since $\Lambda_{sw}(\{c\}) = \{c\}$, but $\Lambda(\{c\}) = X$, $\{c\}$ is a Λ_{sw} -set but not a Λ -set. Also $\{c\}$ is a ${}_{g}\Lambda_{sw}$ set but not a ${}_{g}\Lambda$ -set.

Theorem 4.3 A subset A of a space X is a ${}_{g}\Lambda_{sw}$ -set if and only if $\Lambda_{sw}(A) \subseteq Cl(A)$.

Proof. Assume A is a ${}_{g}\Lambda_{sw}$ -set. Since $A \subseteq \operatorname{Cl}(A)$, $\Lambda_{sw}(A) \subseteq \operatorname{Cl}(A)$. Assume $\Lambda_{sw}(A) \subseteq \operatorname{Cl}(A)$. If $A \subseteq F$, where F is closed, then $\Lambda_{sw}(A) \subseteq \operatorname{Cl}(A) \subseteq F$ and hence A is a ${}_{g}\Lambda_{sw}$ -set.

Theorem 4.4 If A is a ${}_{g}\Lambda_{sw}$ -set, then $\Lambda_{sw}(A) - A$ does not contain a nonempty somewhat open set (or equivalently does not contain a nonempty open set).

124 C. W. Baker

Proof. Assume A is a ${}_g\Lambda_{sw}$ -set and U is a nonempty somewhat open set such that $U \subseteq \Lambda_{sw}(A) - A$. Then there exists a nonempty open set V such that $V \subseteq U$ Thus $V \subseteq X - A$ and $V \subseteq \Lambda_{sw}(A)$. Also, since $A \subseteq X - V$, which is closed, $\Lambda_{sw}(A) \subseteq X - V$ and hence $V \subseteq (X - \Lambda_{sw}(A)) \cap \Lambda_{sw}(A)$ and thus $V = \emptyset$. This contradiction implies that $\Lambda_{sw}(A) - A$ does not contain a nonempty somewhat open set.

Theorem 4.5 Assume $\Lambda_{sw}(A)$ is open. If $\Lambda_{sw}(A) - A$ does not contain a nonempty somewhat open set, then A is a ${}_{g}\Lambda_{sw}$ -set.

Proof Suppose A is not a ${}_{g}\Lambda_{sw}$ -set. Then for some closed set F, $A \subseteq F$, but $\Lambda_{sw}(A) \cap (X - F)$ is a nonempty open (and hence somewhat open) subset of $\Lambda_{sw}(A) - A$.

Corollary 4.6 If $\Lambda_{sw}(A)$ is open, then A is a ${}_{g}\Lambda_{sw}$ -set if and only if $\Lambda_{sw}(A)$ —A does not contain a nonempty somewhat open set (or equivalently does not contain a nonempty open set).

The $_g\Lambda_{sw}$ -sets are obviously closed under union. However, as the next example shows, they are not closed under intersection.

Example 4.7 Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a, b\}\}$. Let $A = \{a, c\}$ and $B = \{b, c\}$. Since the only closed set containing either A or B is X, both A and B are ${}_{g}\Lambda_{sw}$ -sets. However, $A \cap B = \{c\}$ is not a ${}_{g}\Lambda_{sw}$ -set.

5 Preserving $_g\Lambda_{sw}$ -sets

Theorem 5.1 If $f: X \to Y$ is continuous and has the property that $\Lambda_{sw}(f(A)) \subseteq f(\Lambda_{sw}(A))$ for every ${}_{g}\Lambda_{sw}$ -set $A \subseteq X$, then f(A) is a ${}_{g}\Lambda_{sw}$ -set whenever A is a ${}_{g}\Lambda_{sw}$ -set.

Proof. Let $A \subseteq X$ be a ${}_{g}\Lambda_{sw}$ -set and assume that $f(A) \subseteq F$, where F is closed. Then $A \subseteq f^{-1}(F)$ and, since $f^{-1}(F)$ is closed, $\Lambda_{sw}(A) \subseteq f^{-1}(F)$ and hence $f(\Lambda_{sw}(A)) \subseteq F$. Since $\Lambda_{sw}(f(A)) \subseteq f(\Lambda_{sw}(A))$ by assumption, $\Lambda_{sw}(f(A)) \subseteq F$, which proves that f(A) is a ${}_{g}\Lambda_{sw}$ -set.

Example 5.2 Let $X = \{a, b, c\}$ have the topologies $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{X, \emptyset, \{a, b\}\}$. The identity mapping $f : (X, \tau) \to (X, \sigma)$ is continuous but does not have the property that $\Lambda_{sw}(f(A) \subseteq f(\Lambda_{sw}(A)))$ for every ${}_{g}\Lambda_{sw}$ -set $A \subseteq X$.

Definition 5.3 A function $f: X \to Y$ is said to be contra-1-somewhat continuous [2] provided that for every closed set $F \subseteq Y$ such that $f^{-1}(F) \neq \emptyset$, there exists a nonempty open set $U \subseteq X$ such that $U \subseteq f^{-1}(F)$

Theorem 5.4 [2] A function $f: X \to Y$ is contra-1-somewhat continuous if and only if $f^{-1}(V)$ is somewhat closed for every open set $V \subseteq Y$.

The proof of the following result is analogous to that of Theorem 5.1.

- **Theorem 5.5** If $f: X \to Y$ is contra-1-somewhat continuous and has the property that $\Lambda_{sw}(f(A)) \subseteq f(\Lambda_{sw}(A))$ for every ${}_{g}\Lambda_{sw}$ -set $A \subseteq X$, then f(A) is a ${}_{g}\Lambda_{sw}$ -set whenever A is a ${}_{g}\Lambda_{sw}$ -set.
- Corollary 5.6 If $f: X \to Y$ is either contra-1-continuous or continuous and has the property that $\Lambda_{sw}(f(A)) \subseteq f(\Lambda_{sw}(A))$ for every ${}_g\Lambda_{sw}$ -set $A \subseteq X$, then f(A) is a ${}_g\Lambda_{sw}$ -set whenever A is a ${}_g\Lambda_{sw}$ -set.
- **Corollary 5.7** If $f: X \to Y$ is either contra-1-continuous or continuous and $f(\Lambda_{sw}(A))$ is a Λ_{sw} -set for every ${}_{g}\Lambda_{sw}$ -set $A \subseteq X$, then f(A) is a ${}_{g}\Lambda_{sw}$ -set whenever A is a ${}_{g}\Lambda_{sw}$ -set.
- Corollary 5.8 If $f: X \to Y$ is contra-continuous and has the property that $\Lambda_{sw}(f(A)) \subseteq f(\Lambda_{sw}(A))$ for every ${}_{g}\Lambda_{sw}$ -set $A \subseteq X$, then f(A) is a ${}_{g}\Lambda_{sw}$ -set whenever A is a ${}_{g}\Lambda_{sw}$ -set.
- **Definition 5.9** A function $f: X \to Y$ is said to be somewhat open (respectively, m-somewhat open) if f(A) is somewhat open for every open (respectively, somewhat open) set A.
- **Lemma 5.10** If $f: X \to Y$ is injective and m-somewhat open, then $\Lambda_{sw}(f(A)) \subseteq f(\Lambda_{sw}(A))$ for every $A \subseteq X$.
- Proof. Let $A \subseteq X$. Then $\Lambda_{sw}(f(A)) = \bigcap \{W \subseteq Y : f(A) \subseteq W, W \in SW(Y)\} \subseteq \bigcap \{f(U) : A \subseteq U, U \in SW(X)\} = f(\bigcap \{U \subseteq X : A \subseteq U, U \in SW(X)\}) = f(\Lambda_{sw}(A)).$
- **Theorem 5.11** If $f: X \to Y$ is contra-1-continuous, injective and m-somewhat open, then f(A) is a ${}_{g}\Lambda_{sw}$ -set whenever A is a ${}_{g}\Lambda_{sw}$ -set.
- **Lemma 5.12** If $f: X \to Y$ is open, then $f^{-1}(Cl(B)) \subseteq Cl(f^{-1}(B))$ for every $B \subseteq Y$.
- **Definition 5.13** A function $f: X \to Y$ is said to be contra somewhat Λ -continuous if $f^{-1}(F)$ is a Λ_{sw} -set for every closed set $F \subseteq Y$.
- **Theorem 5.14** If $f: X \to Y$ is contra somewhat Λ -continuous and open, then $f^{-1}(B)$ is a ${}_{q}\Lambda_{sw}$ -set whenever B is a ${}_{q}\Lambda_{sw}$ -set.

126 C. W. Baker

Proof. Assume B is a ${}_{g}\Lambda_{sw}$ -set in Y. Using Theorem 4.3 and Lemma 5.12 we obtain $\Lambda_{sw}(f^{-1}(B)) \subseteq \Lambda_{sw}(f^{-1}(\operatorname{Cl}(B))) = f^{-1}(\operatorname{Cl}(B)) \subseteq \operatorname{Cl}(f^{-1}(B))$. Then by Theorem 4.3 $f^{-1}(B)$ is a ${}_{g}\Lambda_{sw}$ -set.

Theorem 5.15 If $f: X \to Y$ is somewhat open and has the property that $\Lambda_{sw}(f^{-1}(B)) \subseteq f^{-1}(\Lambda_{sw}(B))$ for every ${}_{g}\Lambda_{sw}$ -set $B \subseteq Y$ and $\Lambda_{sw}(f^{-1}(B))$ is open for every ${}_{g}\Lambda_{sw}$ -set $B \subseteq Y$, then $f^{-1}(B)$ is a ${}_{g}\Lambda_{sw}$ -set whenever B is a ${}_{g}\Lambda_{sw}$ -set.

Proof Let B be ${}_g\Lambda_{sw}$ -set in Y. Assume $f^{-1}(B)\subseteq F$, where F is closed in X. Since B is a ${}_g\Lambda_{sw}$ -set , it follows from Theorem 4.4 that $\Lambda_{sw}(B)-B$ does not contain a nonempty somewhat open set. Suppose $\Lambda_{sw}(f^{-1}(B))\not\subseteq F$. Then $f(\Lambda_{sw}(f^{-1}(B))\cap(X-F))\subseteq f(\Lambda_{sw}(f^{-1}(B))\cap(X-f^{-1}(B))=f(\Lambda_{sw}(f^{-1}(B))-f^{-1}(B))\subseteq f(f^{-1}(\Lambda_{sw}(B))-f^{-1}(B))=f(f^{-1}(\Lambda_{sw}(B)-B))\subseteq \Lambda_{sw}(B)-B$. Therefore $f(\Lambda_{sw}(f^{-1}(B))\cap(X-F))$ is a nonempty somewhat open subset of $\Lambda_{sw}(B)-B$, which is a contradiction. Thus $\Lambda_{sw}(f^{-1}(B))\subseteq F$ which proves that $f^{-1}(B)$ is a ${}_g\Lambda_{sw}$ -set.

References

- [1] C. W. Baker, Contra-somewhat continuous functions, *Missouri J. Math. Sci.*, **27** (2015), 87-94. https://doi.org/10.35834/mjms/1449161371
- [2] C. W. Baker, Somewhat open sets, Gen. Math. Notes, 34 (2016), 29-36.
- [3] M. Caldas, S. Jafari, and T. Noiri, On Λ -generalized closed sets in topological spaces, *Acta Math. Hungar.*, **118** (2008), 337–343. https://doi.org/10.1007/s10474-007-6224-1
- [4] M. Ganster, S. Jafari, and T. Noiri, On pre-Λ-sets and pre-V-sets, Acta Math. Hungar., 95 (2002), 337–343.
 https://doi.org/10.1023/a:1015605426358
- [5] H. Maki, Generalized Λ-sets and the associated closure operator, The Special Issue in Commemoration of Prof. Kazusada Ikeda's Retirement, (1986), 139–146.

Received: May 11, 2020; Published: May 23, 2020