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Abstract 

 

Neonatal mortality rate Measures the social, economic, health care and 

environmental conditions in which children live. In this paper, the density 

function of neonatal mortality rate in Egypt is estimated nonparametrically using 

the kernel density estimation method. Suggested kernel density estimator for 

nonnegative random variables is introduced using the Lomax density as a kernel 

function. The asymptotic bias, variance, mean squared error (MSE), integrated 

mean squared error (IMSE), and the optimal bandwidth of the proposed Lomax 

estimator are investigated. We also introduce a simulation study to compare the 

proposed estimator with other estimators.  

 

 

1. Introduction 
 

Neonatal mortality rate is the number of neonates dying before reaching 

28 days of age, per 1,000 live births in a given year. In this paper the density 

function of neonatal mortality rate in Egypt is estimated nonparametrically using 

the kernel density. The kernel density estimator method was introduced by 

Rosenblatt (1956). He considered 𝑓(𝑥) as an estimator of the unknown density 

𝑓(𝑥): 

                  𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1          , −∞ ≤ 𝑥 ≤ ∞                             (1) 
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Here 𝑛 is the sample size; 𝐾(∙) and ℎ are the kernel function and the bandwidth 

respectively, where the kernel function 𝐾(∙) is assumed to be symmetric density 

function. 

Parzen (1962) studied the statistical properties of the symmetric kernel 

density estimator in equation (1), and proved that 𝑓(𝑥) is biased and consistent 

estimator. He also obtained the optimal bandwidth ℎ𝑜𝑝𝑡 which minimizes the 

integrated mean squared error of 𝑓(𝑥) . Bagai and Rao (1995) studied the 

statistical properties of the kernel density estimator in the case of using 

asymmetric kernel function; also they found the optimal kernel function and the 

optimal bandwidth ℎ𝑜𝑝𝑡 which minimizes the integrated mean squared errors 

(IMSE). Chen (1999) proposed using the density of Beta distribution as the kernel 

function when 𝑥 ∈ [0,1]. Chen (2000) suggested using the density of Gamma 

distribution as the kernel function for density estimation when 𝑥 ∈ [0, ∞). Scaillet 

(2004) used inverse Gaussian and reciprocal inverse Gaussian probability density 

functions as kernels for densities defined on [0;+1) support. Bouezmarni and 

Scaillet (2005) studied the consistency of both, the asymmetric kernel density 

estimator and the smoothed histogram. They proved that they both have good 

finite sample properties. Bouezmarni et al. (2011) suggested using the gamma 

kernels for the density and the hazard rate functions for right censored data; they 

also studied IMSE, the asymptotic normality and the law of iterated logarithm of 

this estimator. Markovich (2016) introduced new kernel estimator as a 

combination of the asymmetric gamma and Weibull kernels, also the theoretical 

asymptotic properties of the proposed density estimator and the optimal 

bandwidth selection for the estimate as a MISE are derived. Abo-El-Hadid (2019) 

suggested using the Rayleigh distribution as a kernel function and studied the 

statistical properties of this estimator and obtained the optimal bandwidth. 

 The rest of this paper is organised as follows: In Section 2, we outline the 

framework of the Lomax kernel density estimator. In Section 3 the bandwidth 

selection problem is discussed. Section 4 provides the results of a simulation 

study in which the behaviour of the Lomax kernel estimator is compared with the 

other density estimators. The density of the Egyptian Neonatal mortality rate data 

is estimated in section 5. Finally, in section 6, a brief conclusion is provided.      

 

2. The Lomax Kernel 
 

Let 𝑥1, . . . , 𝑥𝑛 be a random sample from a distribution with an unknown 

density function 𝑓(𝑥). We propose the use of Lomax kernel for density estimation 

in this paper.  The Lomax kernel function is defined as: 

𝐾(𝑢) =
𝛼

𝜆
[1 +

𝑢

𝜆
]

−𝛼−1

                , 𝑢 ≥ 0,   𝛼, 𝜆 > 0                  (2)  

 

where 

𝐸(𝑢) = ∫ 𝑢𝐾(𝑢)
∞

0
𝑑𝑢 =

𝜆

𝛼−1
                           (3)  

𝐸(𝑢𝑟) =
𝜆𝑟⌈(𝛼−𝑟)⌈(1+𝑟)

⌈𝑟
                                   (4)  
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Where 𝜆 is the scale parameter, and 𝛼 is the shape parameter. Then the Lomax 

kernel density estimator is as follows: 

𝑓(𝑥) =
1

𝑛ℎ𝜆
∑  [1 +

(
𝑥−𝑥𝑖

ℎ
)

𝜆
]

−𝛼−1

n
𝑖=1            ,

𝑥−𝑥𝑖

ℎ
≥ 0     (5)  

It can be shown that the expectation of the kernel density estimator is: 

𝐸[𝑓(𝑥)] = 𝐸 [
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1 ] =
1

ℎ
∫ 𝐾 (

𝑥−𝑥𝑖

ℎ
) 𝑓(𝑥)𝑑𝑥           (6)  

Let 𝑢 =
𝑥−𝑥𝑖

ℎ
     

∴ 𝐸[𝑓(𝑥)] =
1

ℎ
∫ 𝐾(𝑢) 𝑓(𝑥 − 𝑢ℎ)ℎ𝑑𝑢                     (7)  

Using Taylor expansion for f(x − uh) yields that: 

𝐵𝑖𝑎𝑠[𝑓(𝑥)] ≃ −ℎ𝑓 ′(𝑥) ∫ 𝑢𝐾(𝑢) 𝑑𝑢 +
ℎ2

2
 𝑓 ′′(𝑥) ∫ 𝑢2𝐾(𝑢) 𝑑𝑢       (8) 

Note that for the Lomax kernel function from equations (3) and (4): 

∫ 𝑢𝐾(𝑢)
∞

0
𝑑𝑢 =

𝜆

𝛼−1
,     ∫ 𝑢2𝐾(𝑢)

∞

0
𝑑𝑢 =

2𝜆2

𝛼2−3𝛼+2
                 (9)  

Then the asymptotic bias of the Lomax kernel density estimator is: 

𝐵𝑖𝑎𝑠[𝑓(𝑥)] ≃
−ℎ𝜆

𝛼−1
𝑓 ′(𝑥) +

ℎ2𝜆2

𝛼2−3𝛼+2
 𝑓 ′′(𝑥)           (10)  

Also, it can be shown that the variance of the kernel density estimator is: 

𝑉𝑎𝑟[𝑓(𝑥)] =
1

𝑛ℎ2   {𝐸 [ 𝐾 (
𝑥−𝑥𝑖

ℎ
)]

2

− [𝐸𝐾 (
𝑥−𝑥𝑖

ℎ
)]

2

}             (11)  

  =
1

𝑛ℎ2 {∫ [ 𝐾 (
𝑥−𝑥𝑖

ℎ
)]

2

𝑓(𝑥𝑖)𝑑𝑥𝑖 − [∫ 𝐾 (
𝑥−𝑥𝑖

ℎ
) 𝑓(𝑥𝑖)𝑑𝑥𝑖]

2

}  

let 𝑢 =
𝑥−𝑥𝑖

ℎ
, then 

𝑉𝑎𝑟[𝑓(𝑥)] =
1

𝑛ℎ2
{ℎ ∫ 𝐾2(𝑢)𝑓(𝑥 − 𝑢ℎ)𝑑𝑢 − [ℎ ∫ 𝐾(𝑢) 𝑓(𝑥 −  𝑢ℎ)𝑑𝑢]2}  

Again by Taylor expansion: 𝑓(𝑥 − 𝑢ℎ) = 𝑓(𝑥) − 𝑢ℎ𝑓 ′(𝑥) +
𝑢2ℎ2

2!
 𝑓 ′′(𝑥) + ⋯  

∴ 𝑉𝑎𝑟[𝑓(𝑥)] ≃
1

𝑛ℎ
𝑓(𝑥) ∫ 𝐾2(𝑢)𝑑𝑢                            (12)  

Using the Lomax kernel function: 

∫ 𝐾2(𝑢)
∞

0
𝑑𝑢 = ∫

𝛼2

𝜆2 [1 +
𝑢

𝜆
]

−2𝛼−2∞

0
𝑑𝑢            (13)  

let 𝑧 = 1 +
𝑢

𝜆
, then: 

𝑑𝑧

𝑑𝑢
=

1

𝜆
         , 𝑑𝑢 = 𝜆 𝑑𝑧  

∴ ∫
𝛼2

𝜆2 [1 +
𝑢

𝜆
]

−2𝛼−2∞

0
𝑑𝑢 = ∫

𝛼2

𝜆2

∞

0
  𝑧 −2𝛼−2    𝜆 𝑑𝑧             (14)  

=
𝛼2

𝜆
∫ 𝑧 −2𝛼−2∞

0
   𝑑𝑧 =

𝛼2

𝜆
   [

𝑧 −2𝛼−1

−2𝛼−1
]

0

∞

                (15)  

Undo substitution z = 1 +
𝑢

𝜆
  

∫ 𝐾2(𝑢)
∞

0
𝑑𝑢 =

𝛼2

𝜆
   [

(1+
𝑢

𝜆
) −2𝛼−1

−2𝛼−1
]

0

∞

                       (16)  

=    [
𝛼2

𝜆(−2𝛼−1)(1+
𝑢

𝜆
)(1+

𝑢

𝜆
) 2𝛼

]
0

∞

                             (17)  
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=    [−
𝛼2

𝜆(2𝛼+1)(𝑢+𝜆)(1+
𝑢

𝜆
) 2𝛼

]
0

∞

                             (18)  

∫ 𝐾2(𝑢)
∞

0
𝑑𝑢 =

𝛼2

2𝛼𝜆+𝜆
                       (19)  

Substitute equation (19) into equation (12), then the asymptotic variance of the 

Lomax kernel density estimator is: 

𝑉𝑎𝑟[𝑓(𝑥)] =
𝛼2 𝑓(𝑥)

𝑛ℎ(2𝛼𝜆+𝜆)
                                 (20)  

Combining (10) and (20), the mean squared errors for 𝑓(𝑥) is: 

𝑀𝑆𝐸[𝑓(𝑥)] = 𝑉𝑎𝑟[𝑓(𝑥)] + 𝐵𝑖𝑎𝑠2[𝑓(𝑥)] =
𝛼2 𝑓(𝑥)

𝑛ℎ(2𝛼𝜆+𝜆)
 +

ℎ2𝜆2

(𝛼−1)2 (𝑓 ′(𝑥))
2

  +

𝑜(ℎ2)      (21)  

Where 𝑜(ℎ2) higher than second order terms of ℎ. Also, the asymptotic IMSE for 

𝑓(𝑥) is: 

𝐼𝑀𝑆𝐸[𝑓(𝑥)] ≃
𝛼2 

𝑛ℎ(2𝛼𝜆+𝜆)
 +

ℎ2𝜆2

(𝛼−1)2   ∫ (𝑓 ′(𝑥))
2

 𝑑𝑥                    (22)  

 

3. The optimal bandwidth 
 

The optimal bandwidths which minimize the IMSE for 𝑓(𝑥) is obtained as 

follows: 
𝜕  𝐼𝑀𝑆𝐸[�̂�(𝑥)]

𝜕ℎ
= −

𝛼2 

𝑛ℎ2(2𝛼𝜆+𝜆)
 +

2ℎ𝜆2

(𝛼−1)2   ∫ (𝑓 ′(𝑥))
2

 𝑑𝑥   = 0           (23)  

∴ ℎ𝑜𝑝𝑡 = [
2𝑛𝜆2(2𝛼𝜆+𝜆)

𝛼2(𝛼−1)2   ∫ (𝑓 ′(𝑥))
2

 ]

−1
3⁄

                  (24)  

Now let us replace the unknown term ∫ (f ′(x))
2

  in (24) by the Lomax density as 

a reference distribution. Let: 

𝑓(𝑥) =
𝛼

𝜆
[1 +

𝑥

𝜆
]

−𝛼−1

                , 𝑥 ≥ 0,   𝛼, 𝜆 > 0               (25)  

∴ 𝑓 ′(𝑥) =
𝛼(−𝛼−1)

𝜆
[1 +

𝑥

𝜆
]

−𝛼−2

 ( 
1

𝜆
)                           (26)  

∴ 𝑓 ′(𝑥) =
𝛼(−𝛼−1)

𝜆2 [1 +
𝑥

𝜆
]

−𝛼−2

                            (27)  

and hence 

∫ (𝑓 ′(𝑥))
2

 𝑑𝑥 = ∫
𝛼2(−𝛼−1)2

𝜆4 [1 +
𝑥

𝜆
]

−2𝛼−4−∞

0
                            (28)  

Again let 𝑧 = 1 +
𝑥

𝜆
, then  𝑑𝑥 = 𝜆 𝑑𝑧  

∴ ∫ (𝑓 ′(𝑥))
2

 𝑑𝑥 = ∫
𝛼2(−𝛼−1)2

𝜆4 𝑧−2𝛼−4−∞

0
    𝜆 𝑑𝑧             (29)  

=    [
𝛼2(−𝛼−1)2   𝑧−2𝛼−3

𝜆3(−2𝛼−3)
]

0

∞

                             (30)  

Undo substitution z = 1 +
𝑥

𝜆
 

∴ ∫ (𝑓 ′(𝑥))
2

 𝑑𝑥 =    [
𝛼2(−𝛼−1)2

𝜆3(−2𝛼−3)(1+
𝑥

𝜆
)

2𝛼+3]

0

∞

                  (31)  
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=    [
𝛼2(𝛼+1)2

𝜆3(2𝛼+3)
]                                        (32)  

Substituting (32) into (24), we get 

 

ℎ𝑜𝑝𝑡 = [
2𝑛𝜆2(2𝛼𝜆+𝜆)

𝛼2(𝛼−1)2   ∙  
𝛼2(𝛼+1)2

𝜆3(2𝛼+3)
]

−1
3⁄

                       (33)  

= [
2𝑛𝜆2(2𝛼𝜆+𝜆)(𝛼+1)2

𝜆(𝛼−1)2(2𝛼+3)
  ]

−1
3⁄

                       (34)  

 

4. Simulation 
 

In this section, the influence of Lomax kernel estimator is examined using a 

simulation study. The Lomax kernel was given in equation (2). The Lomax kernel 

is compared with the most widely used kernel functions:  

 

1) The Gaussian kernel which is symmetric about zero:  

 

𝐾(𝑢) =
1 

 𝜎√2𝜋
    𝑒(−

1

2
𝑢2) ,                            0 < 𝑢 < ∞  

 

2) The Gamma kernel which is asymmetric kernel: 

 

𝐾(𝑢) =
𝛽𝑟𝑢𝑟−1 𝑒−𝛽𝑢

 Γ𝑟
                         r, 𝛽 > 0,    0 < 𝑢 < ∞  

 

To evaluate the suggested Lomax estimator, we select the exponential random 

variable with (𝜃 = .5, 𝜃 =1, and 𝜃 =2). We generate the exponential i.i.d samples 

with sample sizes  𝑛 ∈ {10, 100, 1000, }. For each simulated sample, the optimal 

bandwidths are calculated for each distribution. Then, the actual and the estimated 

densities are plotted; and the following errors’ measures are computed: 

 

Mean squared error (MSE) =
∑ (𝑓(𝑥𝑖)−�̂�(𝑥𝑖))

2
𝑛
𝑖=1

n
                    (35)  

Mean absolute error (MAE) =
∑ |𝑓(𝑥𝑖)−�̂�(𝑥𝑖)|𝑛

𝑖=1

𝑛
                        (36)  

Mean absolute percentage error (MAPE) = ∑ |
𝑓(𝑥𝑖)−�̂�(𝑥𝑖)

𝑛∙𝑓(𝑥𝑖)
|𝑛

𝑖=1         (37)  

 

These above measures are used to compare the fits obtained by different kernels. 

For all three measures, smaller values indicate a better fitting model. MSE is 

commonly-used measure of accuracy of fitted values but it is highly affected by 

outliers than MAE. MAPE expresses accuracy as a percentage of the error 

 

The values of the above goodness of fit measures are given in tables (1,2,3) 

below:  

 



 

108                                                                                      Samah M. Abo-El-Hadid 

 

 
Table (1): Goodness of fit measure's of the difference between the actual density and the estimated 

densities with 𝜃 = .5 

Sample Size Measure 
Estimated density 

Gaussian kernel Gamma kernel Lomax 

𝑛 = 10 

MSE 0.115271 0.0835603 0.0108429 

MAE 0.286971 0.243102 0.0792544 

MAPE 0.735817 0.67068 0.196878 

𝑛=100 

MSE 0.0659428 0.0501063 0.0166454 

MAE 0.199204 0.166958 0.0869625 

MAPE 1.22588 0.78857 0.469903 

𝑛=1000 

MSE 0.0713222 0.0532124 0.0152329 

MAE 0.210702 0.174348 0.0785587 

MAPE 1.06445 0.753061 0.237755 

Table (2): Goodness of fit measure's of the difference between the actual density and the estimated 

densities with 𝜃 = 1 

Sample Size Measure 
Estimated density 

Gaussian kernel Gamma kernel Lomax 

𝑛 = 10 

MSE 0.437947 0.411517 0.254002 

MAE 0.603266 0.584701 0.456779 

MAPE 1.72574 1.4069 0.945377 

𝑛=100 

MSE 0.379856 0.332857 0.214483 

MAE 0.543075 0.469493 0.365412 

MAPE 1.42119 1.37828 0.776492 

𝑛=1000 

MSE 0.355446 0.296394 0.182367 

MAE 0.538791 0.447678 0.339461 

MAPE 1.28718 1.0154 0.681375 

Table (3): Goodness of fit measure's of the difference between the actual density and the estimated 

densities with 𝜃 = 2 

Sample Size Measure 
Estimated density 

Gaussian kernel Gamma kernel Lomax 

𝑛 = 10 

MSE 1.32134 1.10478 1.01706 

MAE 0.969244 0.835095 0.797891 

MAPE 1.53093 1.40952 1.1792 

𝑛=100 

MSE 1.19339 0.978609 0.909661 

MAE 0.919006 0.787027 0.737417 

MAPE 1.52037 1.08411 0.98922 

𝑛=1000 

MSE 0.948175 0.835279 0.724036 

MAE 0.752042 0.653885 0.643588 

MAPE 1.21059 0.889223 0.755419 

The above tables shows that under the generated exponential i.i.d samples, the 

estimated densities get closer to the original density function as the parameter 𝜃 

decreases; and also the estimated densities get closer to the actual density as the 

sample size increases, and the suggested Lomax kernel always outperforms the 

others kernels, while the Gaussian kernel is the worst one. 
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Figures (1), (2) and (3), present the actual density with the estimated densities 

using: Lomax kernel; Gaussian Kernel and Gamma kernel at the different values 

of parameter 𝜃 and different sample size.  

 

 

  

(a) (b) 

 
(c) 

Fig. (1): The actual Exponential density (𝜃 =.5) with its kernel estimation using Lomax kernel; 

Gaussian kernel; and Gamma kernel with sample sizes (a)  n=10,   (b)  n=100,   and (c)  n=1000   

 

 

  
(a) (b) 

 
(c) 

Fig. (2): The actual Exponential density (𝜃 =1) with its kernel estimation using Lomax kernel; 

Gaussian kernel; and Gamma kernel with sample sizes   (a)  n=10,   (b)  n=100, and (c)  n=1000 
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(a) (b) 

 
(c) 

Fig. (3): The actual Exponential density (𝜃 =2) with its kernel estimation using Lomax kernel; 

Gaussian kernel; and Gamma kernel with sample sizes   (a)  n=10,   (b)  n=100, and (c)  n=1000   

The above figures show that under the generated exponential i.i.d samples, the 

three kernel functions gets closer to the original density function as the sample 

size increases for different values of parameter 𝜃. Also, among the three kernel 

functions, the suggested Lomax kernel always outperforms the others while the 

Gaussian kernel is the worst one.  

 

5. Application 
 

In this section, we apply the proposed Lomax kernel estimator to the Egyptian 

annual neonatal mortality rate data from 1960 to 2016 

(www.indexmundi.com/facts/egypt/mortality-rate). Figure (4) shows the 

estimated distribution of Neonatal mortality rate data using both the parametric 

Lomax distribution and the nonparametric Lomax distribution.  
 

 
Fig. (4): The histogram; parametric and nonparametric Lomax estimator of Neonatal mortality rate 

data 

The above figure indicates the flexibility of Lomax kernel in modelling the 

Neonatal mortality rate distributions. It shows that the nonparametric Lomax 

estimator agrees well with the neonatal mortality rate data. 

2 4 6 8 10 12

0.5

1.0

1.5

2.0

Gamma kernel

Gaussian kernel

Lomax kernel

Actual

2 4 6 8

0.5

1.0

1.5

2.0

Gamma kernel

Gaussian kernel

Lomax kernel

Actual

2 4 6 8

0.5

1.0

1.5

2.0

Gamma kernel

Gaussian kernel

Lomax kernel

Actual

 parametric Lomax ـــــــــ

------Lomax kernel 



 

Egyptian neonatal mortality rate analysis                                                           111 

 

 

Conclusion 
 

We consider the nonparametric estimation of the neonatal mortality rate density 

function using the Lomax Kernel function. The theoretical asymptotic properties 

of the proposed density estimator are derived. Also a simulation study was 

introduced.  the Gaussian, Gamma, and Lomax kernels get closer to the actual 

density function as the sample size increases for different values of parameter 𝜃, 

but the suggested Lomax kernel always outperforms the others while the Gaussian 

kernel is the worst one.  

 

References 
 

[1] Abo-El-Hadid, S., Density Function Estimation Using Rayleigh Kernel, 

Journal of Applied Probability & Statistics, 14 (2019), 1-11. 

 

[2] Bagai, I. and P.  Rao, Kernel Type Density Estimates for Positive Valued 

Random Variables, The Indian Journal of Statistics, 57 (1995), 56- 67. 

 

[3] Bouezmarni, T and O. Scaillet, Consistency of Asymmetric Kernel 

Density Estimators and Smoothed Histograms with Application to Income Data, 

Econometric Theory, 21 (2005), 390–412.  

https://doi.org/10.1017/s0266466605050218 

 

[4]  Bouezmarni, T., A. El Ghouch and M. Mesfioui, Gamma Kernel 

Estimators for Density and Hazard Rate of Right Censored Data, Journal of  

Probability & Statistics, 2011 (2011), 1-16. https://doi.org/10.1155/2011/937574 

 

[5] Chen, S. X., Beta Kernel Estimators for Density Functions, Computational 

Statistics and Data Analysis, 31 (1999), 131-145. 

https://doi.org/10.1016/s0167-9473(99)00010-9 

 

[6] Chen, S. X., Probability Density Function Estimating Using Gamma 

Kernels, Annals Institute of Mathematical Statistics, 52 (2000), 471-480. 

https://doi.org/10.1023/a:1004165218295 

 

[7] Indicators for Monitoring the Millennium Development Goals, The United 

Nations, New York, 2003. 

 

[8] Kleiber, Christian; Kotz, Samuel, Statistical Size Distributions in 

Economics and Actuarial Sciences, Wiley Series in Probability and Statistics, 470, 

John Wiley & Sons, 2003. https://doi.org/10.1002/0471457175 

 

[9] Lomax, K. S., Business Failures; Another example of the analysis of 

failure data, Journal of the American Statistical Association, 49 (1954), 847–852. 

https://doi.org/10.1080/01621459.1954.10501239 

https://www.hindawi.com/65798610/
https://www.hindawi.com/90172738/
https://www.hindawi.com/61484370/
https://books.google.com/books?id=7wLGjyB128IC&pg=PA60
https://books.google.com/books?id=7wLGjyB128IC&pg=PA60
https://en.wikipedia.org/wiki/Journal_of_the_American_Statistical_Association


 

112                                                                                      Samah M. Abo-El-Hadid 

 

 

[10] Markovich, L. A., Gamma Kernel Estimation of Multivariate Density and 

its Derivative on the Nonnegative Semi-axis by Dependent Data, Cornell 

University Library, 2015, arXiv preprint ArXiv:1410.2507 

 

[11] Markovich, L. A., Gamma-Weibull kernel estimation of the heavy tailed 

densities, Cornell University Library, 2016, ArXiv preprint arXiv:1604.06522v1. 

 

[12] Parzen, E., On Estimation of a Probability Density Function and Mode, 

Annals of Mathematical Statistics, 33 (1962), 1065-1076.    

https://doi.org/10.1214/aoms/1177704472 

 

[13]  Rosenblatt, M., Remarks on Some Nonparametric Estimates of Density 

Function, Annals of Mathematical Statistics, 27 (1956), 832-837. 

https://doi.org/10.1214/aoms/1177728190 

 

[14] Scaillet, O., Density Estimation Using Inverse and Reciprocal Inverse 

Gaussian Kernels, Journal of Nonparametric Statistics, 16 (2004), 217-226. 

https://doi.org/10.1080/10485250310001624819 

 

 

Received: June 15, 2019; Published: July 9, 2019 

http://arxiv.org/abs/1410.2507
http://arxiv.org/abs/1410.2507

