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Abstract 

 

This paper aims to determine the reorder level R  when the lead time 

demand has the Marshall–Olkin extended Weibull distribution which is 

introduced by Marshall and Olkin in 1997. Using some methods of estimations 

such as maximum likelihood, method of moments, percentile based estimation 

and least squares the three unknown parameters of the distribution are estimated.  

Using the value of R and the estimated parameters according to each method 

the most important functions in inventory models such as the protection lost sales 

RP  (i.e., the probability of not going out of stock) and the potential lost sales RS  

(i.e., the unsatisfied demand) were obtained. Finally some conclusions are 

presented.  
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1. Introduction 
 

In classical inventory models our main focus is on identifying the protection 

lost sales (i.e., the probability of not going out of stock) and the potential lost sales 
(i.e., the unsatisfied demand) when both demand and lead time have a certain proba- 
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bility distribution. If the probability density function (p.d.f) of demand during lead 

time (i.e., lead time demand) is ( )f x , then for a reorder level system of control 

with reorder R  the protection RP , the mean of potential lost sales RS  and the 

variance of potential lost sales RV  are given by Burgin and Wild (1967) as: 

 

0

( ) , 0 (1)

R

RP f x dx x     

 

( ) ( ) , 0 (2)R

R

S x R f x dx x



      

 

 
2

( ) (3)R R

R

V x R S f x dx



    

Where, x  is random variable that represents the demand for a particular 

time period, and R  is the reorder level. 

In order to determine the previous functions the distribution of lead time 

demand distribution must has the following general characteristics [Burgin and 

Wild (1975)]: 

(1) It should be able to represent only non-negative values of demand. 

(2) It should be able to represent frequency distribution changing from; 

(a) mono- tonically decreasing to (b) unimodal distributions heavily skewed 

to the right and finally to (c) normal type distributions (truncated to zero). 

Here, the main obstacle is to find a probability distribution to which these 

characteristics apply to. Since these previous characteristics are satisfied in the 

Marshall–Olkin extended Weibull (MOEW) distribution which is introduced by 

Marshall and Olkin in 1997, with the following probability density function; 

 
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2
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where, 1   ,   and   are the shape parameters and   is the scale 

parameter. Then the cdf ( )F x  of MOEW distribution for 0x   is given by;  

Where,   is the shape parameter and   is the scale parameter. Then the cdf 

( )F x  of MOEW distribution for 0x   is given by;  
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The MOEW hazard rate function takes the form; 
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For all values of  1   and 1   we find that the function ( )h x  is 

increasing, in contrast the function turns into decreasing function if 1   and 

1  .  

Figures (1) below illustrate the graphical representation for some of selected 

parameter values for functions (4) and (6) respectively. The Figure indicate that 

the MOEW distribution is very versatile and the value of   has essential effect on 

its skewness and kurtosis. From the figure we note that this distribution can be 

used in several problems since its hazard rate function hesitant between increasing 

and decreasing.  

 

 
Figure (1): Graphical representation of the p.d.f for MOEW distribution at 

different values of parameters 

 

2. Methods of Estimation 
 

In this section, we will introduce some methods for estimating the 

parameters, ,   and   of the MOEW distribution. Let 1 2( , ,..., )nx x x x  is a 

random sample of size n  from the MOEW distribution with unknown parameters 

,   and  . 

 

2.1. Maximum Likelihood Estimators 

The method of maximum likelihood is the most frequently used method of 

parameter estimation. Its success stems from their well-estimated characteristics, 

including consistency, asymptotic efficiency and invariance property. Using the 

maximum likelihood method, the estimators of three unknown parameters ,   

and  , can be obtained by taking the natural log of the likelihood function of a 

random sample consisting of observation  ,  1,2,...,ix i n  from a distribution with 

p.d.f. (4) is; 
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The log–likelihood function without constant term is given by;  

1 1 1

( ) ( , , ) ( 1) ( ) 2 (1 ) (8)i
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By taking the partial derivatives of the log–likelihood function with respect 

to the three parameters in L , to get; 
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Setting the above derivatives in equations (9) equal to zero and then, solving 

these three nonlinear likelihood estimating equations numerically to yield the 

maximum likelihood estimates. 

 

2.2. Ordinary and Weighted Least-Squares Estimators 

The least square and weighted least square estimators were proposed by 

Swain, Venkatraman, and Wilson (1988) to estimate the parameters of Beta 

distributions. In this paper, we apply the same technique for the MOEW 

distribution. The least square estimators of the unknown parameters   ,   , and 

  of MOEW distribution can be obtained by minimizing the function; 

2

( )

1

( ) (10)
1

n

j

j

j
F X

n

 
  

  

With respect to three unknown parameters   ,   , and  . 

Suppose that ( )( )jF X denotes the distribution function of the ordered 

random variables (1) (2) ( )... nX X X   , where  (1) (2) ( ), ,..., nX X X  is a random 

sample of size n  from a distribution function (.)F . Therefore, in this case, the 

least square estimators ˆ
OLSE  , ÔLSE  , and ˆ

OLSE , of the parameters   ,   , and 

  can be obtained by minimizing the function; 
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With respect to   ,   , and  . 

The weighted least square estimators of the three unknown parameters   , 

  , and   can be obtained by minimizing the function; 
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With respect to unknown parameters to   ,   , and  . The weights ( )jw  

are equal to 
2

( )

1 ( 1) ( 2)

( ) ( 1)j

n n

V X n j

 
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 
. Therefore, in this case, the weighted least 

square estimators ˆ
WLSE  , ŴLSE  , and ŴLSE , of the parameters   ,   , and   

can be obtained by minimizing the function; 
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With respect to   ,   , and  . 

 

3. Simulation Study 

 

In this section, we will conduct a Monte Carlo simulation study to evaluate 

the performance of the different methods of estimation discussed in the previous 

section the simulation study is conducted by using Mathcad program version 14. 

We evaluate the performance of the different estimators in terms of their mean 

squared errors (MSEs).We generate 1000 samples of MOEW distribution, when 

(20,50,100,150)n    and by choosing ( , , ) (2,2.5,10)      respectively. The 

average value of estimates and RMSEs of MLEs, LSEs and WLSEs are obtained 

and presented in tables (1) to (4).   

 

Table (1): Average values estimates and the corresponding RMSEs for 20n    

 

 ̂
 

̂
 

̂
 

MLE 1.967 (0.367) 2.702 (0.656) 8.903 (14.952) 

OLSE 2.010 (0.351) 2.492 (0.668) 8.928 (2.836) 

WLSE 2.021 (0.353) 2.476 (0.634) 9.505 (1.927) 
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Table (2): Average values estimates and the corresponding RMSEs for 50n   

 

 ̂
 

̂
 

̂
 

MLE 1.978 (0.216) 2.592 (0.342) 8.863 (14.708) 

OLSE 1.997 (0.212) 2.510 (0.381) 9.197 (2.453) 

WLSE 2.00 (0.216) 2.512 (0.354) 9.730 (1.423) 

   
 

 
   

Table (3): Average values estimates and the corresponding RMSEs for 100n   

 

 ̂
 

̂
 

̂
 

MLE 1.996 (0.154) 2.542 (0.242) 8.515 (16.585) 

OLSE 2.003 (0.157) 2.509 (0.275) 9.572 (1.791) 

WLSE 2.005 (0.158) 2.509 (0.259) 9.835 (1.112) 

   
 

 
   

Table (4): Average values estimates and the corresponding RMSEs for 150n   

 

 ̂
 

̂
 

̂
 

MLE 1.996 (0.127) 2.525 (0.186) 8.050 (14.687) 

OLSE 2.003 (0.127) 2.496 (0.216) 9.723 (1.443) 

WLSE 2.003 (0.128) 2.503 (0.203) 9.910 (0.822) 

 

From previous tables it can be noted that, all the estimates shows the 

property of consistency i.e., the larger the sample size, the lower RMSEs. By 

comparing between the different methods of estimation, the results presented in 

the previous tables show that the WLSEs method is the best method for estimating 

the parameters    ,   , and   in terms of RMSEs in most cases. If we arrange 

the three estimation methods based on the RMSEs criterion from the best to the 

worst, according to   are OLSE, WLSE and MLE, according to   are MLE, 

WLSE and OLS, finally according to   are WLSE, OLSE and MLE.  

 

4. Determination of Reorder Level R ,  Mean and Variance of 

Potential Lost Sales for the Marshall–Olkin extended Weibull 

distribution 
 

If we operate a classic reorder level system of inventory control then the 

protection RP  for the the Marshall–Olkin extended Weibull distribution defined by 

p.d.f. (4) and a reorder level R  is; 
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2
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In the case of out of stock, there should be a measure of the unmet demand 

which is called (potential lost sales), so for a reorder level R  the mean of the 

potential lost sales RS  of the MOEW distribution is given by; 

 

1

2
 ( ). . (15)
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R

x e
S x R dx

e


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
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
 


  

 

The variance of potential lost sales for the MOEW distribution can be 

obtained by the following function; 

 

 
1

2

2
. . (16)
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R R
x
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x e
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e
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 
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
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Now after estimating the three unknown parameters   ,   , and   for the 

MOEW distribution we are interested in determining the reorder level R  for a 

given protection levels RP (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) . Our main 

focus is on finding R  for a given RP  in equation (1). Therefore; 

 
1( ) (17)RR F P  

 

The value of R  in (17) can easily be obtained in case of MOEW 

distribution using Mathcad program version 14. Table (5) shows the different 

values of the reorder level R which was estimated based on estimates of the 

parameter values for MOEW distribution according to each of the three previous 

estimation methods. Using MLE, OLSE and WLSE estimates, then for the 

protection lost sales RP  with reorder level system of R  the mean of  potential lost 

sales RS , and  the variance of potential lost sales RV  can be obtained also in table 

(5) as follow, 
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Table (5): The Reorder level R  for ( 20; 50; 100; 150)n n n n     using MLE, LSE and WLSE methods of estimation.   

 RP
 

R
 

RS
 RV

 
20n   50n   100n   150n   20n   50n   100n   150n   20n   50n   100n   150n   

MLE 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.678 

0.825 

0.920 

0.994 

1.058 

1.119 

1.181 

1.251 

1.347 

0.665 

0.816 

0.914 

0.991 

1.058 

1.121 

1.186 

1.259 

1.360 

0.649 

0.802 

0.902 

0.981 

1.049 

1.114 

1.180 

1.255 

1.359 

0.637 

0.791 

0.891 

0.971 

1.040 

1.105 

1.173 

1.250 

1.355 

0.37188 

0.24572 

0.17425 

0.12610 

0.09079 

0.06359 

0.04199 

0.02458 

0.01056 

0.38563 

0.25599 

0.18204 

0.13202 

0.09523 

0.06681 

0.04419 

0.02591 

0.01116 

0.39233 

0.26142 

0.18628 

0.13527 

0.09766 

0.06856 

0.04538 

0.02663 

0.01148 

0.39605 

0.26471 

0.18889 

0.13727 

0.09914 

0.06962 

0.04608 

0.02704 

0.01165 

0.03985 

0.02874 

0.02199 

0.01709 

0.01316 

0.00978 

0.00679 

0.00412 

0.00178 

0.04350 

0.03151 

0.02419 

0.01885 

0.01455 

0.01084 

0.00755 

0.00459 

0.00199 

0.04550 

0.03306 

0.02542 

0.01984 

0.01533 

0.01144 

0.00797 

0.00485 

0.00211 

0.04671 

0.03401 

0.02618 

0.02045 

0.01580 

0.01179 

0.00822 

0.00500 

0.00217 

OLSE 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.651 

0.806 

0.906 

0.986 

1.055 

1.120 

1.187 

1.264 

1.369 

0.660 

0.815 

0.915 

0.993 

1.062 

1.127 

1.193 

1.269 

1.373 

0.667 

0.821 

0.921 

0.999 

1.067 

1.132 

1.198 

1.273 

1.377 

0.668 

0.823 

0.923 

1.002 

1.070 

1.135 

1.201 

1.277 

1.381 

0.37266 

0.24882 

0.17897 

0.13189 

0.09717 

0.07008 

0.04813 

0.02981 

0.01415 

0.39047 

0.26111 

0.18722 

0.13707 

0.09998 

0.07110 

0.04786 

0.02877 

0.01292 

0.40879 

0.27612 

0.19915 

0.14631 

0.10687 

0.07596 

0.05096 

0.03038 

0.01340 

0.42276 

0.28841 

0.20950 

0.15480 

40.1136 

0.08112 

0.05464 

0.03269 

0.01445 

0.04452 

0.03274 

0.02568 

0.02049 

0.01622 

0.01245 

0.00899 

0.00577 

0.00275 

0.04594 

0.03378 

0.02628 

0.02075 

0.01622 

0.01226 

0.00868 

0.00540 

0.00244 

0.04832 

0.03611 

0.02829 

0.02237 

0.01746 

0.01315 

0.00925 

0.00570 

0.00253 

20.0509 

0.03867 

0.03056 

0.02430 

0.01902 

0.01436 

0.01012 

0.00624 

0.00276 

WLSE 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.659 

0.815 

0.916 

0.994 

1.063 

1.128 

1.195 

1.272 

1.377 

0.670 

0.825 

0.925 

1.003 

1.070 

1.135 

1.201 

1.276 

1.379 

0.672 

0.826 

0.926 

1.003 

1.071 

1.135 

11.20 

1.276 

1.379 

0.673 

0.827 

0.927 

1.005 

1.073 

1.137 

1.203 

1.279 

1.382 

0.38014 

0.25537 

0.18464 

0.13672 

0.10118 

0.07331 

0.05060 

0.03152 

0.01508 

0.39776 

0.26738 

0.19252 

0.14145 

0.10350 

0.07381 

0.04981 

0.02999 

0.01348 

0.41225 

0.27914 

0.20173 

0.14847 

0.10862 

7310.07 

0.05194 

0.03100 

0.01369 

0.42523 

0.29051 

0.21123 

0.15620 

0.11472 

0.08190 

0.05515 

0.03296 

0.01453 

0.04574 

0.03408 

0.02693 

0.02159 

0.01715 

0.01321 

0.00957 

0.00616 

0.00296 

0.04676 

0.03476 

0.02721 

0.02156 

0.01688 

0.01277 

0.00905 

0.00564 

0.00255 

0.04875 

6620.03 

0.02877 

0.02279 

0.01780 

0.01342 

0.00945 

0.00582 

0.00258 

0.05107 

0.03889 

0.03077 

0.02448 

0.01916 

0.01445 

0.01018 

0.00627 

0.00277 
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The probability of going out of stock RH  is the complement of probability of 

not going out of stock RP  which is computed as;  

1

2
0

1   . (18)
(1 )

R x

R
x

x e
H dx

e





 


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

 


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
  

We note that there is an inverse relationship between the reorder point R  

and both of the complement of protection lost sales RH , and the mean of  

potential lost sales RS .  

 

The results can be displayed graphically for this case, in figure (2) and (3) as 

follows; 

 

Figure (2): the relation between reorder level ( )R  and potential lost sales ( )RS  for 

different methods of estimation and different samples sizes.  
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Figure (3): the relation between reorder level ( )R  and protection lost sales ( )RP  

for different methods of estimation and different samples sizes.  

 

5. Summary and Conclusions 
 

Marshall–Olkin extended Weibull distribution, introduced by Marshall and 

Olkin in 1997, is an important distribution that can be used in inventory model 

applications as an alternative to gamma distribution, which was presented by 

Burgin in 1973 because it represent only for non–negative values of demand, its 

frequency distribution changing from; mono–tonically decreasing to uni–modal 

distributions heavily skewed to the right and finally to normal type distributions 

(truncated to zero). These are the characteristics that must be met in the 

distribution of lead time demand in inventory control.  

A Monte Carlo simulation study was conducted to evaluate the performance 

of the different three methods of estimation (maximum likelihood, least square 

and weighted least square) the simulation study is conducted by using Mathcad 

program version 14. The performance of the different estimators in terms of their 

mean squared errors (MSEs) was evaluated. Thousand samples of MOEW 

distribution, when (20,50,100,150)n   were generated and by choosing 

( , , ) (2,2.5,10)     respectively. 
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The average value of estimates and RMSEs of the methods of estimation are 

obtained and presented. 

Using the estimated values of the three distribution parameters ˆ ˆ,   and ̂  

it was possible to obtain the important functions of the inventory models such as 

reorder level R , mean RS  and variance RV  of the unsatisfied demand  were 

obtained at different values for the probability of not going out of stock RP .  

The results have shown that; 

 The WLSEs method is the best method for estimating the parameters ,  , 

and   in terms of RMSEs in most cases. 

 There is an inverse relationship between the reorder level R  and both of the 

complement of protection lost sales RH , and the mean of  potential lost 

sales RS . 

 MOWE distribution provides a very good distribution for lead time 

distribution in inventory control. 
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