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Abstract

An independent set is a set of vertices in a graph, no two of which
are adjacent. A maximal independent set is an independent set that
is not a proper subset of any other independent set. Note that in gen-
eral counting the number of maximal independent sets in a graph is
NP-complete [5]. In this paper, we give two linear-time algorithms to
characterize all the maximal independent sets of the path Pn and the
cycle Cn.
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1 Introduction

Let G = (V,E) be a simple undirected graph. An independent set is a subset
S of V such that no two vertices in S are adjacent. The set of all the maximal
independent sets of a graph G is denoted by I(G). A maximal independent set
is an independent set that is not a proper subset of any other independent set.
The set of all the maximal independent sets of a graph G is denoted by MI(G)
and its cardinality by mi(G). Denote Pn a path of order n and Cn a cycle of
order n. For notation and terminology in graphs we follow [1] in general.

The problem of determining the largest value of mi(G) in a general graph
of order n and those graphs achieving the largest number was proposed by
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Erdős and Moser, and solved by Moon and Moser [4]. It was then extensively
studied for various classes of graphs in the literature, including trees, forests,
(connected) graphs with at most one cycle, bipartite graphs, connected graphs,
k-connected graphs, (connected) triangle-free graphs; for a survey see [2]. Note
that in general counting the number of maximal independent sets in a graph is
NP-complete [5, 6]. Lin and Su [3] proved this problem to remain NP-complete
when restricted to directed path graphs but a further restriction to rooted
directed path graphs admits a solution in polynomial time. In this paper, we
give two linear-time algorithms to characterize all the maximal independent
sets of the path Pn and the cycle Cn. The following properties are needed.

Lemma 1.1. Suppose that S is an independent set in a graph G. Let v1 and
v2 be two distinct vertices in S. Then vi /∈ N [vj] for i 6= j.

Proof. Suppose there exists an independent set S in G such that vi ∈ N [vj],
where vi, vj ∈ S. Then vi and vj are adjacent in G, this is a contradiction. We
complete the proof.

Lemma 1.2. Let S be an independent set of a graph G. If N [S] = V (G), then
S ∈ MI(G).

Proof. Let S be an independent set of a graph G and N [S] = V (G). If
S /∈ MI(G), then there exists a set S∗ ∈ MI(G) and S ⊂ S∗. Note that
N [S∗] − N [S] 6= ∅. This means that N [S] 6= V (G), it is a contradiction. We
complete the proof.

2 The maximal independent sets of a path Pn

In this section, we provide a constructive characterization of the path Pn, where
n ≥ 1 and Pn : 1, 2, . . . , n. In order to give a constructive characterization of
MI(Pn), we introduce two operations.

Operation O1. Assume S ′ ∈ Tk−2. Add a new number k and let S = S ′∪{k}.
Operation O2. Assume S ′ ∈ Tk−3. Add a new number k − 1 and let S =
S ′ ∪ {k − 1}.

Let T1 = {{1}}, T2 = {{1}, {2}}, T3 = {{1, 3}, {2}}, T4, . . . , Tk−2, Tk−1, Tk . . .
be a sequence of sets, where Tk be the collection of the sets S which can be
obtained from some S ′ ∈ Tk−i−1 by the Operation Oi, where i = 1 and 2.

Lemma 2.1. For n ≥ 1, Tn ⊆MI(Pn).

Proof. We prove this lemma by induction on n, where n ≥ 1. It’s true for
n = 1, 2 and 3. Assume that it’s true for all n′ < n and let S ∈ Tn, where
n ≥ 4. Suppose a is the largest number in S, by the operation O1 and operation
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O2, then a = n or n− 1. Let S ′ = S − {a}. Then S ′ ∈ Tn−2 or S ′ ∈ Tn−3. By
the operation O1 and operation O2, we can see that a /∈ N [S ′]. We consider
two cases.
Case 1. a = n. Then S is obtained from S ′ by the Operation O1 and
S ′ ∈ Tn−2. By the induction hypothesis, S ′ ∈ MI(Pn−2). Hence S is an
independent set of Pn and N [S] = N [S ′] ∪ N [a] = V (Pn−2) ∪ N [n] = V (Pn).
By Lemma 1.2, S ∈MI(Pn).
Case 2. a = n − 1. Then S is obtained from S ′ by the Operation O2
and S ′ ∈ Tn−3. By the induction hypothesis, S ′ ∈ MI(Pn−3). Hence S is an
independent set of Pn and N [S] = N [S ′]∪N [a] = V (Pn−3)∪N [n−1] = V (Pn).
By Lemma 1.2, S ∈MI(Pn).

By Case 1 and Case 2, S ∈ MI(Pn). Thus it’s also true for n, and we
complete the proof.

In the following theorem, we will show that Tn is the characterization of
Pn.

Theorem 2.2. For n ≥ 1, MI(Pn) = Tn.

Proof. By Lemma 2.1, we obtain that Tn ⊆ MI(Pn). Now we want to show
that MI(Pn) ⊆ Tn and prove it by induction on n, where n ≥ 1. It’s true for
n = 1, 2 and 3. Assume that it’s true for all n′ < n, where n ≥ 4. Suppose
S ∈MI(Pn), we have either n ∈ S or n− 1 ∈ S.
Case 1. n ∈ S. Let S ′ = S − {n}. Then S ′ ∈ MI(Pn−2), by the induction
hypothesis, S ′ ∈ Tn−2. We can see that S can be obtained from S ′ by Operation
O1. This means that S ∈ Tn.
Case 2. n − 1 ∈ S. Let S ′ = S − {n − 1}. Then S ′ ∈ MI(Pn−3), by the
induction hypothesis, S ′ ∈ Tn−3. We can see that S can be obtained from S ′

by Operation O2. This means that S ∈ Tn.
By Case 1 and Case 2, we obtain that S ∈ Tn, thus it’s also true for n.

Hence MI(Pn) ⊆ Tn. We complete the proof.

By Theorem 2.2, we can see that MI(Pn) = Tn. The following algorithm is
designed to determine the set Tn. Hence we provide a constructive characteri-
zation of MI(Pn).

For n ≥ 4 and 1 ≤ i ≤ 2, let T (i)
n be the collection of all maximal indepen-

dent sets S of Pn which are obtained from some S ′ ∈ Tn−i−1 by the Operation
Oi. In the following lemma, we calculate the cardinality mi(Pn).

Lemma 2.3. For n ≥ 4, we have the following results.
(i) T (1)

n ∩ T (2)
n = ∅.

(ii) mi(Pn) = mi(Pn−2) + mi(Pn−3), where mi(P1) = 1, mi(P2) = 2 and
mi(P3) = 2.
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Algorithm 1 The collection Tn of all the maximal independent sets of Pn

Input: A positive integer n ≥ 4.
Output: Tn.
1: initialize T1 = {{1}}, T2 = {{1}, {2}} and T3 = {{1, 3}, {2}}
2: for i = 4; i < n + 1; i + + do
3: if S ∈ Ti−2 then S = S ∪ {i};
4: if S ∈ Ti−3 then S = S ∪ {i− 1};
5: Ti = ∪S;
6: end for
7: Print Tn

Proof. (i) Suppose that T (1)
n ∩ T (2)

n 6= ∅, and let S ∈ T (i)
n for i = 1 and 2.

Since S ∈ T (1)
n , we obtain that n ∈ S. Similarly, S ∈ T (2)

n , then we obtain that
n− 1 ∈ S. Note that Tn = MI(Pn), then S ∈ MI(Pn) and |S ∩ {n− 1, n}| = 1.

This is a contradiction, hence T (1)
n ∩ T (2)

n = ∅. (ii)By Theorem 2.2 and (i), we

have that mi(Pn) = |Tn| = |T (1)
n ∪ T (2)

n | = |T (1)
n | + |T (2)

n | = |Tn−2| + |Tn−3| =
mi(Pn−2) + mi(Pn−2).

3 The maximal independent sets of a cycle Cn

In this section, we provide a constructive characterization of the path Cn,
where n ≥ 3 and Cn : 1, 2, . . . , n, 1. Since we want to calculate the recursive
formula for mi(Cn) and provide a constructive characterization of the path Cn,
we don’t continue the results in section 2. Hence we give a new constructive
characterization of MI(Cn). The following operations are needed.

Operation Q1. Assume S ′ ∈ Θk−2 and m is the largest value in S ′. Add a
new number m + 2 and let S = S ′ ∪ {m + 2}.
Operation Q2. Assume S ′ ∈ Θk−3 and m is the largest value in S ′. Add a
new number m + 3 and let S = S ′ ∪ {m + 3}.

Let Θ3 = {{1}, {2}, {3}},Θ4 = {{1, 3}, {2, 4}},Θ5 = {{1, 3}, {1, 4}, {2, 4},
{2, 5}, {3, 5}},Θ6, . . . , Θk−3,Θk−2,Θk, . . . be a sequence of sets, where Θk be
the collection of the sets S which can be obtained from some S ′ ∈ Θk−i−1 by
the Operation Qi, where i = 1 and 2.

Lemma 3.1. For n ≥ 3, Θn ⊆MI(Cn).

Proof. We prove this lemma by induction on n, where n ≥ 3. It’s true for
n = 3, 4 and 5. Assume that it’s true for all n′ < n and let S ∈ Θn, where
n ≥ 6. Suppose that S is obtained from S ′ by the Operation Q1 or Q2. Then
S ′ ∈ Θn−i, where i = 2 or 3. By the induction hypothesis, S ′ ∈ MI(Cn−i).
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Let a and m be the largest and the second largest numbers in S, respectively.
So S − S ′ = {a} and a = m + i.
Claim 1. S ∈ I(Cn).

Note that S ′ ∈MI(Cn−i), where i = 2 or 3. Suppose that S /∈ I(Cn), then
1 ∈ S ′ and a = n. So m = n − i and n − i ∈ S ′. Thus {1, n − i} ⊂ S ′, this
contradicts that S ′ ∈ I(Cn−i). Hence S ∈ I(Cn).
Claim 2. N [S] = V (Cn).

Suppose there exists a vertex u in Cn such that u /∈ N [S]. Note that
S ′ ∈ MI(Cn−i), where i = 2 or 3. So m ≥ n − i − 2 and a = m + i ≥ n − 2,
hence u = 1 or u = n. If u = 1, then 2 /∈ S ′ and n /∈ S. So a ≤ n − 1 and
m = a − i ≤ n − i − 1, thus n − i /∈ S ′. These mean that 1 /∈ N [S ′], this
contradicts that S ′ ∈ MI(Cn−i). Hence u = n. Then 1 /∈ S ′ and n − 1 /∈ S.
So a ≤ n − 2 and m = a − i ≤ n − i − 2, thus n − i − 1 /∈ S ′. These mean
that n− i /∈ N [S ′], this contradicts that S ′ ∈MI(Cn−i). Hence we obtain that
N [S] = V (Cn).

By Claim 1, Claim 2 and Lemma 1.2, S ∈MI(Cn). Thus it’s also true for
n. We complete the proof.

Theorem 3.2. For n ≥ 3, MI(Cn) = Θn.

Proof. By Lemma 3.1, we obtain that Θn ⊆ MI(Cn). Now we want to prove
MI(Cn) ⊆ Θn and prove it by induction on n, where n ≥ 3. Suppose there
exists a maximal independent set S ∈ MI(Cn) and S /∈ Θn such that n is
as small as possible. Then n ≥ 6. Let a and m be the largest and the
second largest numbers in S, respectively. Since S ∈ MI(Cn), we have that
n− 2 ≤ a ≤ n and a = m + k, where k = 2 or 3. Let S ′ = S − {a}. Note that
a /∈ S ′. We consider three cases.
Case 1. a = n. Then 1 /∈ S and m = n − k, where k = 2 or 3. Thus
S ′ ∈ MI(Cm), by the hypothesis, S ′ ∈ Θm. Hence S can be obtained from S ′

by Operation Q1 or Q2, it means that S ∈ Θn. This is a contradiction.
Case 2. a = n − 1. Then 1 ∈ N [S ′] and m = n − 3 or n − 4. If m = n − 3,
then S ′ ∈MI(Cn−2). By the hypothesis, S ′ ∈ Θn−2. Hence S can be obtained
from S ′ by Operation Q1, it means that S ∈ Θn. This is a contradiction, so
m = n − 4. Then S ′ ∈ MI(Cn−3). By the hypothesis, S ′ ∈ Θn−3. Hence S
can be obtained from S ′ by Operation Q2, it means that S ∈ Θn. This is a
contradiction.
Case 3. a = n − 2. Then n /∈ S and 1 ∈ S. So m = n − 4 or n − 5. Note
that a /∈ S ′. If m = n − 4, then n − 2 /∈ S ′ and S ′ ∈ MI(Cn−2). By the
hypothesis, S ′ ∈ Θn−2. Hence S can be obtained from S ′ by Operation Q1, it
means that S ∈ Θn. This is a contradiction, so m = n − 5. Then n − 3 /∈ S ′

and S ′ ∈MI(Cn−3). By the hypothesis, S ′ ∈ Θn−3. Hence S can be obtained
from S ′ by Operation Q2, it means that S ∈ Θn. This is a contradiction.
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By Case 1, Case 2 and Case 3, MI(Cn) ⊆ Θn. Hence MI(Cn) = Θn. We
complete the proof.

By Theorem 3.2, we can see that MI(Cn) = Θn. The following algorithm
is designed to determine the set Θn. Hence we provide a constructive charac-
terization of MI(Cn).

Algorithm 2 The collection Θn of all the maximal independent sets of Cn

Input: A positive integer n ≥ 6.
Output: Θn.
1: initialize Θ3 = {{1}, {2}, {3}}, Θ4 = {{1, 3}, {2, 4}}, Θ5 =
{{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}}

2: for i = 6; i < n + 1; i + + do
3: if S ∈ Θi−2 and m is the maximal number in S, then S = S ∪{m+ 2};
4: if S ∈ Θi−3 and m is the maximal number in S, then S = S ∪{m+ 3};
5: Θi = ∪S;
6: end for
7: Print Θn

For n ≥ 6 and 1 ≤ i ≤ 2, let Θ
(i)
n be the collection of all the maximal

independent sets S of Cn which are obtained from some S ′ ∈ Θk−i−1 by the
Operation Qi. In the following lemma, we calculate the cardinality mi(Cn).

Lemma 3.3. For n ≥ 6, we have the following results.
(i) Θ

(1)
n ∩Θ

(2)
n = ∅.

(ii) mi(Cn) = mi(Cn−2) + mi(Cn−3), where mi(C3) = 3, mi(C4) = 2 and
mi(C5) = 5..

Proof. (i) Suppose that Θ
(1)
m ∩Θ

(2)
m 6= ∅ for some m ≥ 6. Assume S ∈ Θ

(i)
m for

i = 1, 2. By Theorem 3.2, S ∈MI(Cn). Let a be the largest number in S. By
the Operation Q1 and Operation Q2, then {a−2, a−3} ⊂ S. This contradicts

that S ∈ MI(Cn), hence Θ
(1)
n ∩Θ

(2)
n = ∅..

(ii)By Theorem 3.2 and (i), we have that mi(Cn) = |Θn| = |Θ(1)
n ∪Θ

(2)
n | =

|Θ(1)
n |+ |Θ(2)

n | = |Θn−2|+ |Θn−3| = mi(Cn−2) + mi(Cn−3).
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