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Abstract

Let L = {H1, H2, . . . ,Hr} be a family of subgraphs of a graph G.
An L-decomposition of G is an edge-disjoint decomposition of G into
positive integer αi copies of Hi, where i ∈ {1, 2, . . . , r}. Let S(Ck/2) and
Sk denote a sun and a star with k edges, respectively. In this paper, we
prove that a balanced complete bipartite graph with 2n vertices has a
{S(Ck/2), Sk}-decomposition if and only if 8 ≤ k ≤ n, k ≡ 0 (mod 4)
and n2 ≡ 0 (mod k).
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1 Introduction

Let L = {H1, H2, . . . , Hr} be a family of subgraphs of a graph G. An L-
decomposition of G is an edge-disjoint decomposition of G into positive integer
αi copies of Hi, where i ∈ {1, 2, . . . , r}. Furthermore, if each Hi is isomorphic
to a graph H, then we say that G has an H-decomposition.

For positive integers m and n, Km,n denotes the complete bipartite graph
with parts of sizes m and n. A complete bipartite graph is balanced if m = n.
A k-star, denoted by Sk, is the complete bipartite graph K1,k. The vertex of
degree k in Sk is the center of Sk. A k-cycle, denoted by Ck, is a cycle of length
k. A k-sun S(Ck) is obtained from Ck by adding a pendant edge to each vertex
of Ck.
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Decompositions of graphs into k-stars have been a important topic of re-
search in graph theory; see [16, 17, 18]. The concept of a sun graph was defined
by Harary [9]. Anitha and Lekshmi [4, 5] have decomposed K2k into k-sun,
Hamilton cycles, and perfect matchings. Liang and Guo [10, 11] gave the ex-
istence spectrum of a k-sun system of order v as k = 3, 4, 5, 6, 8 by using a
recursive construction. Recently, Fu et al. [6] investigate the problem of the
decomposition of complete tripartite graphs into 3-suns and find the necessary
and sufficient condition for the existence of a k-sun system of order v in [7, 8].

The study of {G,H}-decomposition was introduced by Abueida and Daven
in [1]. Abueida and Daven [2] investigated the problem of {Kk, Sk}-decomposi-
tion of the complete graph Kn. Abueida and O’Neil [3] settled the existence
problem for {Ck, Sk−1}-decomposition of the complete multigraph λKn for
k ∈ {3, 4, 5}. Recently, Lee [12, 13] established necessary and sufficient con-
ditions for the existence of a {Ck, Sk}-decomposition of a complete bipartite
graph and {Pk, Sk}-decomposition of a balanced complete bipartite graph. In
this paper, we consider the existence of {S(Ck/2), Sk}-decompositions of the
balanced complete bipartite graph, giving necessary and sufficient conditions.

2 Preliminaries

Let G be a graph. The degree of a vertex x of G, denoted by degG x, is the
number of edges incident with x. For A ⊆ V (G) and B ⊆ E(G), we use G[A]
and G − B to denote the subgraph of G induced by A and the subgraph of
G obtained by deleting B, respectively. When G1, G2 . . . , Gm are graphs, not
necessarily disjoint, we write G1 ∪ G2 ∪ · · · ∪ Gm or

⋃m
i=1Gi for the graph

with vertex set
⋃m
i=1 V (Gi) and edge set

⋃m
i=1E(Gi). When the edge sets are

disjoint, G =
⋃m
i=1Gi expresses the decomposition of G into G1, G2, . . . , Gm.

nG is the short notation for the union of n copies of disjoint graphs isomorphic
to G. For any vertex x of a digraph G, the outdegree deg+

G x (respectively,
indegree deg−G x) of x is the number of arcs incident from (respectively, to) x.
The following propositions will be helpful to the proof of our main result.

Proposition 2.1. (Sotteau [15]) For positive integers m, n and k, the graph
Km,n has a Ck-decomposition if and only if m,n and k are even, k ≥ 4,
min{m,n} ≥ k/2, and mn ≡ 0 (mod k).

Proposition 2.2. (Ma et al. [14]) For positive integers n and k, the graph
obtained by deleting a 1-factor from Kn,n has a Ck-decomposition if and only
if n is odd, k is even, 4 ≤ k ≤ 2n, and n(n− 1) ≡ 0 (mod k).

Proposition 2.3. (Yamamoto et al. [18]) For integers m and n with m ≥
n ≥ 1, the graph Km,n has an Sk-decomposition if and only if m ≥ k and
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{
m ≡ 0 (mod k) if n < k
mn ≡ 0 (mod k) if n ≥ k.

For positive integers k and n with 1 ≤ k ≤ n, the crown Cn,k is the
graph with vertex set {a0, a1, . . . , an−1, b0, b1, . . . , bn−1} and edge set {aibj : i =
1, 2, . . . , n, j ≡ i + 1, i + 2, . . . , i + k (mod n)}. For the edge aibj in Cn,k, the
label of aibj is j − i (mod n).

A matching in a graph G is a subset of edges of G that share no vertices. A
1-factor M in a graph G is a matching such that every vertex of G is incident
with one of the edges of M . Trivially, the edges labeled i (1 ≤ i ≤ k) form a
1-factor in Cn,k.

G is a bipartite graph with bipartition ({(a0, a1, . . . , am−1}, {(b0, b1, . . . ,
bn−1}). ThenGr×s is a bipartite graph with bipartition ({(aα,0aα,1, . . . , aα,m−1},
{(bβ,0, bβ,1, . . . , bβ,n−1}) and E(Gr×s) = {aα,ibβ,j : aibj ∈ E(G)} for 0 ≤ α ≤
r − 1, 0 ≤ β ≤ s− 1.

Throughout this paper, the subscripts of ai and bj will always be taken
modulo m and n, respectively.

Lemma 2.4. (Cn,3)
2×4 has an S(C2n)-decomposition.

Proof. Let (Cn,3)
2×4 =

⋃1
α=0

⋃3
β=0Gα,β, where Gα,β is a crown Cn,3 with bi-

partition ({aα,0, aα,1, . . . , aα,n−1}, {bβ,0, bβ,1, . . . , bβ,n−1}) for α ∈ {0, 1}, β ∈
{0, 1, 2, 3}. Let Cα,β be the union of edges labeled 1 and edges labeled 2 of
Gα,β, Fα,β be the union of edges labeled 3 of Gα′,β and edges labeled β + 1
of Gα,3, where α ∈ {0, 1}, β ∈ {0, 1, 2} and α′ 6= α. Since Cα,β is a 2n-
cycle of Gα,β, Fα,β are two copies of 1-factors of Gα′,β and Gα,3, it follows that
Cα,β ∪ Fα,β is a 2n-sun. Hence (Cn,3)

2×4 can be decomposed into 6 copies of
S(C2n).

Lemma 2.5. (Cn,2`)
2×2 has an S(C2n)-decomposition.

Proof. Let (Cn,2`)
2×2 =

⋃1
α=0

⋃1
β=0Gα,β, where Gα,β is a crown Cn,2` with bi-

partition ({aα,0, aα,1, . . . , aα,n−1}, {bβ,0, bβ,1, . . . , bβ,n−1}) for α, β ∈ {0, 1}. For
i = 0, 1, . . . , `− 1, let
C

(i)
0,0 be the union of edges labeled 2i+ 1 and edges labeled 2i+ 2 of G0,0;

C
(i)
1,1 be the union of edges labeled 2i+ 1 and edges labeled 2i+ 2 of G1,1;

F
(i)
0,0 be the union of edges labeled 2i + 1 of G1,0 and edges labeled 2i + 2 of
G0,1;

F
(i)
1,1 be the union of edges labeled 2i + 2 of G1,0 and edges labeled 2i + 1 of
G0,1.

Note that C
(i)
0,0 and C

(i)
1,1 are 2n-cycle of G0,0 and G1,1, respectively. In

additional, F
(i)
0,0 and F

(i)
1,1 are two copies of 1-factors of G0,1 and G1,0. It follows

that C
(i)
0,0 ∪ F

(i)
0,0 is a 2n-sun, so is C

(i)
1,1 ∪ F

(i)
1,1 for i = 0, 1, . . . , ` − 1. Hence

(Cn,2`)
2×2 can be decomposed into 2` copies of S(C2n).
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Lemma 2.6. If k ≡ 0 (mod 4) with k ≥ 8, then Kk/2,k can be decomposed
into k/2 copies of S(Ck/2).

Proof. Note that

Kk/2,k =

{
2(Ck/4,k/4)

2×2, if k/4 is even,
2(Ck/4,k/4−3)

2×2 ∪ (Ck/4,3)
2×4, if k/4 is odd.

By Lemmas 2.4 and 2.5, Kk/2,k can be decomposed into k/2 copies of S(Ck/2).

3 Main results

We first give necessary conditions for a {S(Ck/2), Sk}-decomposition of Kn,n.

Lemma 3.1. If Kn,n has a {S(Ck/2), Sk}-decomposition, then 8 ≤ k ≤ n,
k ≡ 0 (mod 4) and n2 ≡ 0 (mod k).

Proof. Since bipartite graphs contain no odd cycle, k/2 is even. It follows that
k ≡ 0 (mod 4). In addition, the minimum length of a cycle and the maximum
size of a star in Kn,n are 4 and n, respectively, we have 8 ≤ k ≤ n. Finally,
the size of each member in the decomposition is k and |E(Kn,n)| = n2; thus
n2 ≡ 0 (mod k).

We now show that the necessary conditions are also sufficient. The proof
is divided into cases n = k, k < n < 2k, and n ≥ 2k, which are treated in
Lemmas 3.2, 3.3, and 3.4, respectively.

Lemma 3.2. If k ≡ 0 (mod 4) with k ≥ 8, then Kk,k has a {S(Ck/2), Sk}-
decomposition.

Proof. Since Kk,k = Kk/2,k ∪ Kk/2,k, by Proposition 2.3 and 2.6, Kk/2,k has
an Sk-decomposition and Kk/2,k has an S(Ck/2)-decomposition, respectively.
Hence Kk,k has a {S(Ck/2), Sk}-decomposition.

Lemma 3.3. Let k be a multiple of 4 and let n be a positive integer with
8 ≤ k < n < 2k. If n2 is divisible by k, then Kn,n has a {S(Ck/2), Sk}-
decomposition.

Proof. Let n = k+r. From the assumption k < n < 2k, we have 0 < r < k. Let
t = r2/k. Since k | n2, we have k | r2, which implies that t is a positive integer.
Let Kn,n be the balanced complete bipartite graph with bipartition (A0∪A1∪
A2, B0 ∪ B1 ∪ B2), where Ai = {a(i)0,0, a

(i)
0,1, . . . , a

(i)
0,k/4−1, a

(i)
1,0, a

(i)
1,1, . . . , a

(i)
1,k/4−1},

Bj = {b(j)0,0, b
(j)
0,1, . . . , b

(j)
0,k/4−1, b

(j)
1,0, b

(j)
1,1, . . . , b

(j)
1,k/4−1} for i, j ∈ {0, 1}, A2 = {ak,

ak+1, . . . , ak+r−1} and B2 = {bk, bk+1, . . . , bk+r−1}.
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Let Gi = Kn,n[Ai ∪ {B0 ∪ B1}] for i = 0, 1, F = Kn,n[A2 ∪ (B0 ∪ B1)],
and H = Kn,n[A ∪ B2]. Clearly Kn,n = G0 ∪ G1 ∪ F ∪ H. Note that Gi =
((Kk/4,k/4)

2×2)1×2 for i = 0, 1, H is isomorphic to Kn,r, and F is isomorphic
to Kr,k, which has an Sk-decomposition by Proposition 2.3. Let p0 = dt/2e,
p1 = bt/2c and αi = 3dpi/2e + bpi/2c, βi = 3bpi/2c + dpi/2e for i ∈ {0, 1}.
In the following, we will show that G0 can be decomposed into p0 copies of
S(Ck/2), k/4 copies of Sk−α0 and k/4 copies of Sk−β0 , G1 can be decomposed
into p1 copies of S(Ck/2), k/4 copies of Sk−α1 and k/4 copies of Sk−β1 , H can
be decomposed into k/4 copies of Sα0 , k/4 copies of Sβ0 , k/4 copies of Sα1 ,
k/4 copies of Sβ1 and r copies of Sk.

We first show the required decomposition of G0 and G1. Since r < k,
we have r ≥ t + 1. Furthermore, since (t, t + 1) = 1 that r ≥ t + 2.
Thus, p0 = dt/2e ≤ (t + 1)/2 < r/2 < k/2. This assures us that there
exist p0 edge-disjoint k-sun graphs in G0 and p1 edge-disjoint k-sun graphs
in G1 by Lemma 2.6, respectively. Suppose that Q0,0, Q0,1, . . . , Q0,p0−1 and
Q1,0, Q1,1, . . . , Q1,p1−1 are edge-disjoint k-sun graphs in G0 and G1, respec-

tively. Let Wi = Gi − E(
⋃pi−1
h=0 Qi,h) and X

(i)
s,t = Wi[{a(i)s,t} ∪ (B0 ∪ B1)] where

i, s ∈ {0, 1} and t ∈ {0, 1, . . . , k/4−1}. Since degGi a
(i)
s,t = k and each Qi,h uses

three edges incident with a
(i)
s,t and one edge incident with a

(j)
s,t for s, i, j ∈ {0, 1},

i 6= j, t ∈ {0, 1, . . . , k/4− 1}, we have

degWi
a
(i)
s,t =

{
k − αi, if s = 0,
k − βi, if s = 1.

Then

X
(i)
s,t =

{
Sk−αi , if s = 0,
Sk−βi , if s = 1

with the center at A0 ∪ A1.
Next we show the required star-decompositions of H. Equivalently we

need show that there exists an orientation of H such that, i ∈ {0, 1}, t ∈
{0, 1, . . . , k/4− 1}, and w ∈ {k, k + 1, . . . , k + r − 1},

deg+
H a

(i)
s,t =

{
αi, if s = 0,
βi, if s = 1,

(1)

deg+
H bw = k. (2)

We begin the orientation. For t = 0, 1, . . . , k/4− 1, the edges

a
(0)
0,t bk+α0t, a

(0)
0,t bk+α0t+1, . . . , a

(0)
0,t bk+α0t+α0−1,

a
(0)
1,t bk(1+α0

4
)+β0t, a

(0)
1,t bk(1+α0

4
)+β0t+1, . . . , a

(0)
1,t bk(1+α0

4
)+β0t+β0−1,

a
(1)
0,t bk(1+α0

4
+
β0
4
)+α1t

, a
(1)
0,t bk(1+α0

4
+
β0
4
)+α1t+1

, . . . , a
(1)
0,t bk(1+α0

4
+
β0
4
)+α1t+α1−1

,

a
(1)
0,t bk(1+α0

4
+
β0
4
+
α1
4
)+β1t

, a
(1)
0,t bk(1+α0

4
+
β0
4
+
α1
4
)+β1t+1

, . . . , a
(1)
0,t bk(1+α0

4
+
β0
4
+
α1
4
)+β1t+β1−1
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are oriented from A0 ∪ A1, where the subscripts of b’s are taken modulo r in
the set of numbers {k, k + 1, . . . , k + r− 1}. Since max{α0, β0, α1, β1} = α0 ≤
2p0 + 1 ≤ t+ 2 ≤ r, this assures us that there are enough edges for the above
orientation. Finally, the edges which are not oriented yet are all oriented from
{bk, bk+1, . . . , bk+r−1} to A0 ∪ A1.

From the construction of the orientation, it is easy to see that (1) is satisfied,
and for all w,w′ ∈ {k, k + 1, . . . , k + r − 1}, we have

| deg−H bw − deg−H bw′ | ≤ 1. (3)

Thus we only need to check (2).
Since deg+

H bw + deg−H bw = k+ r for w ∈ {k, k+ 1, . . . , k+ r− 1}, it follows
from (3) that | deg+

H bw − deg+
H bw′ | ≤ 1 for w,w′ ∈ {k, k + 1, . . . , k + r − 1}.

Furthermore,

k+r−1∑
w=k

deg+
H bw = |E(Kn,r)| −

1∑
i=0

1∑
s=0

k/4−1∑
t=0

deg+
H a

(i)
s,t

= (k + r)r − (α0 + β0 + α1 + β1)(k/4)

= (k + r)r − (4p0 + 4p1)(k/4)

= (k + r)r − tk
= (k + r)r − r2

= kr

Thus deg+
H bw = k for w ∈ {k, k+1, . . . , k+r−1}. This proves (2). Hence there

exists a decomposition D of H into k/4 copies of Sα0 , k/4 copies of Sβ0 , k/4

copies of Sα1 and k/4 copies of Sβ1 with centers in {a(0)0,0, a
(0)
0,1, . . . , a

(0)
0,k/4−1}, {a

(0)
1,0,

a
(0)
1,1, . . . , a

(0)
1,k/4−1}, {b

(1)
0,0, b

(1)
0,1, . . . , b

(1)
0,k/4−1} and {b(1)1,0, b

(1)
1,1, . . . , b

(1)
1,k/4−1}, respec-

tively, as well as r copies of Sk with centers in {bk, bk+1, . . . , bk+r−1}. Let

X
′(i)
0,t be the αi-star with center a

(i)
0,t and X

′(i)
1,t be the βi-star with centers a

(i)
1,t in

D. Note that X
(i)
s,t ∪X

′(i)
s,t is a k-star for i, s ∈ {0, 1} and t ∈ {0, 1, . . . , k/4−1}.

Thus Kn,n can be decomposed into p0+p1 = t copies of S(Ck/2) and (k+r)+r =
k + 2r copies of Sk. This completes the proof.

Lemma 3.4. Let k be a multiple of 4 and let n be a positive integer with 8 ≤
k ≤ n/2. If n2 is divisible by k, then Kn,n has a {S(Ck/2), Sk}-decomposition.

Proof. Let n = qk + r where q and r are integers with 0 ≤ r < k. From the
assumption of k ≤ n/2, we have q ≥ 2. Note that

Kn,n = Kqk+r,qk+r = K(q−1)k,(q−1)k ∪Kk+r,(q−1)k ∪K(q−1)k,k+r ∪Kk+r,k+r.

Trivially, |E(K(q−1)k,(q−1)k)|, |E(Kk+r,(q−1)k)| and |E(K(q−1)k,k+r)| are multiples
of k. Thus (k + r)2 ≡ 0 (mod k) from the assumption that n2 is divisible by
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k. The case of r = 0, by Lemma 3.2, we obtain that Kk,k has a {S(Ck/2), Sk}-
decomposition. The other case of r 6= 0, by Lemma 3.3, Kk+r,k+r has a
{S(Ck/2), Sk}-decomposition for 0 < r < k. On the other hand, by Propo-
sition 2.3, K(q−1)k,(q−1)k, Kk+r,(q−1)k and K(q−1)k,k+r have Sk-decomposition.
Hence there exists a {S(Ck/2), Sk}-decomposition of Kn,n.

Now we are ready for the main result. It is obtained by combining Lem-
mas 3.1, 3.2, 3.3 and 3.4.

Theorem 3.5. Kn,n has a {S(Ck/2), Sk}-decomposition if and only if 8 ≤ k ≤
n, k ≡ 0 (mod 4) and n2 ≡ 0 (mod k).
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