#### International Journal of Contemporary Mathematical Sciences Vol. 13, 2018, no. 3, 141 - 148 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2018.8515

# Decompositions of Balanced Complete Bipartite Graphs into Suns and Stars

Min-Jen Jou and Jenq-Jong Lin

Ling Tung University, Taichung 40852, Taiwan

Copyright © 2018 Min-Jen Jou and Jenq-Jong Lin. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

Let  $L = \{H_1, H_2, \ldots, H_r\}$  be a family of subgraphs of a graph G. An L-decomposition of G is an edge-disjoint decomposition of G into positive integer  $\alpha_i$  copies of  $H_i$ , where  $i \in \{1, 2, \ldots, r\}$ . Let  $S(C_{k/2})$  and  $S_k$  denote a sun and a star with k edges, respectively. In this paper, we prove that a balanced complete bipartite graph with 2n vertices has a  $\{S(C_{k/2}), S_k\}$ -decomposition if and only if  $8 \le k \le n$ ,  $k \equiv 0 \pmod 4$  and  $n^2 \equiv 0 \pmod k$ .

Mathematics Subject Classification: 05C51

**Keywords:** sun, star, decomposition, balanced complete bipartite graph

## 1 Introduction

Let  $L = \{H_1, H_2, \ldots, H_r\}$  be a family of subgraphs of a graph G. An L-decomposition of G is an edge-disjoint decomposition of G into positive integer  $\alpha_i$  copies of  $H_i$ , where  $i \in \{1, 2, \ldots, r\}$ . Furthermore, if each  $H_i$  is isomorphic to a graph H, then we say that G has an H-decomposition.

For positive integers m and n,  $K_{m,n}$  denotes the complete bipartite graph with parts of sizes m and n. A complete bipartite graph is balanced if m = n. A k-star, denoted by  $S_k$ , is the complete bipartite graph  $K_{1,k}$ . The vertex of degree k in  $S_k$  is the center of  $S_k$ . A k-cycle, denoted by  $C_k$ , is a cycle of length k. A k-sun  $S(C_k)$  is obtained from  $C_k$  by adding a pendant edge to each vertex of  $C_k$ .

Decompositions of graphs into k-stars have been a important topic of research in graph theory; see [16, 17, 18]. The concept of a sun graph was defined by Harary [9]. Anitha and Lekshmi [4, 5] have decomposed  $K_{2k}$  into k-sun, Hamilton cycles, and perfect matchings. Liang and Guo [10, 11] gave the existence spectrum of a k-sun system of order v as k = 3, 4, 5, 6, 8 by using a recursive construction. Recently, Fu et al. [6] investigate the problem of the decomposition of complete tripartite graphs into 3-suns and find the necessary and sufficient condition for the existence of a k-sun system of order v in [7, 8].

The study of  $\{G, H\}$ -decomposition was introduced by Abueida and Daven in [1]. Abueida and Daven [2] investigated the problem of  $\{K_k, S_k\}$ -decomposition of the complete graph  $K_n$ . Abueida and O'Neil [3] settled the existence problem for  $\{C_k, S_{k-1}\}$ -decomposition of the complete multigraph  $\lambda K_n$  for  $k \in \{3, 4, 5\}$ . Recently, Lee [12, 13] established necessary and sufficient conditions for the existence of a  $\{C_k, S_k\}$ -decomposition of a complete bipartite graph and  $\{P_k, S_k\}$ -decomposition of a balanced complete bipartite graph. In this paper, we consider the existence of  $\{S(C_{k/2}), S_k\}$ -decompositions of the balanced complete bipartite graph, giving necessary and sufficient conditions.

## 2 Preliminaries

Let G be a graph. The degree of a vertex x of G, denoted by  $\deg_G x$ , is the number of edges incident with x. For  $A \subseteq V(G)$  and  $B \subseteq E(G)$ , we use G[A] and G - B to denote the subgraph of G induced by A and the subgraph of G obtained by deleting B, respectively. When  $G_1, G_2 \ldots, G_m$  are graphs, not necessarily disjoint, we write  $G_1 \cup G_2 \cup \cdots \cup G_m$  or  $\bigcup_{i=1}^m G_i$  for the graph with vertex set  $\bigcup_{i=1}^m V(G_i)$  and edge set  $\bigcup_{i=1}^m E(G_i)$ . When the edge sets are disjoint,  $G = \bigcup_{i=1}^m G_i$  expresses the decomposition of G into  $G_1, G_2, \ldots, G_m$ . G is the short notation for the union of G copies of disjoint graphs isomorphic to G. For any vertex G of a digraph G, the outdegree G of G is the number of arcs incident from (respectively, to) G in the following propositions will be helpful to the proof of our main result.

**Proposition 2.1.** (Sotteau [15]) For positive integers m, n and k, the graph  $K_{m,n}$  has a  $C_k$ -decomposition if and only if m, n and k are even,  $k \geq 4$ ,  $\min\{m,n\} \geq k/2$ , and  $mn \equiv 0 \pmod{k}$ .

**Proposition 2.2.** (Ma et al. [14]) For positive integers n and k, the graph obtained by deleting a 1-factor from  $K_{n,n}$  has a  $C_k$ -decomposition if and only if n is odd, k is even,  $4 \le k \le 2n$ , and  $n(n-1) \equiv 0 \pmod{k}$ .

**Proposition 2.3.** (Yamamoto et al. [18]) For integers m and n with  $m \ge n \ge 1$ , the graph  $K_{m,n}$  has an  $S_k$ -decomposition if and only if  $m \ge k$  and

$$\begin{cases} m \equiv 0 \pmod{k} & \text{if } n < k \\ mn \equiv 0 \pmod{k} & \text{if } n \ge k. \end{cases}$$

For positive integers k and n with  $1 \leq k \leq n$ , the *crown*  $C_{n,k}$  is the graph with vertex set  $\{a_0, a_1, \ldots, a_{n-1}, b_0, b_1, \ldots, b_{n-1}\}$  and edge set  $\{a_i b_j : i = 1, 2, \ldots, n, j \equiv i + 1, i + 2, \ldots, i + k \pmod{n}\}$ . For the edge  $a_i b_j$  in  $C_{n,k}$ , the label of  $a_i b_j$  is  $j - i \pmod{n}$ .

A matching in a graph G is a subset of edges of G that share no vertices. A 1-factor M in a graph G is a matching such that every vertex of G is incident with one of the edges of M. Trivially, the edges labeled i  $(1 \le i \le k)$  form a 1-factor in  $C_{n,k}$ .

G is a bipartite graph with bipartition  $(\{(a_0, a_1, \ldots, a_{m-1}\}, \{(b_0, b_1, \ldots, b_{m-1}\})\}$ . Then  $G^{r \times s}$  is a bipartite graph with bipartition  $(\{(a_{\alpha,0}a_{\alpha,1}, \ldots, a_{\alpha,m-1}\}, \{(b_{\beta,0}, b_{\beta,1}, \ldots, b_{\beta,n-1}\})\}$  and  $E(G^{r \times s}) = \{a_{\alpha,i}b_{\beta,j} : a_ib_j \in E(G)\}$  for  $0 \le \alpha \le r-1$ ,  $0 \le \beta \le s-1$ .

Throughout this paper, the subscripts of  $a_i$  and  $b_j$  will always be taken modulo m and n, respectively.

**Lemma 2.4.**  $(C_{n,3})^{2\times 4}$  has an  $S(C_{2n})$ -decomposition.

Proof. Let  $(C_{n,3})^{2\times 4} = \bigcup_{\alpha=0}^{1} \bigcup_{\beta=0}^{3} G_{\alpha,\beta}$ , where  $G_{\alpha,\beta}$  is a crown  $C_{n,3}$  with bipartition  $(\{a_{\alpha,0}, a_{\alpha,1}, \ldots, a_{\alpha,n-1}\}, \{b_{\beta,0}, b_{\beta,1}, \ldots, b_{\beta,n-1}\})$  for  $\alpha \in \{0,1\}, \beta \in \{0,1,2,3\}$ . Let  $C_{\alpha,\beta}$  be the union of edges labeled 1 and edges labeled 2 of  $G_{\alpha,\beta}$ ,  $F_{\alpha,\beta}$  be the union of edges labeled 3 of  $G_{\alpha',\beta}$  and edges labeled  $\beta+1$  of  $G_{\alpha,3}$ , where  $\alpha \in \{0,1\}, \beta \in \{0,1,2\}$  and  $\alpha' \neq \alpha$ . Since  $C_{\alpha,\beta}$  is a 2n-cycle of  $G_{\alpha,\beta}$ ,  $F_{\alpha,\beta}$  are two copies of 1-factors of  $G_{\alpha',\beta}$  and  $G_{\alpha,3}$ , it follows that  $C_{\alpha,\beta} \cup F_{\alpha,\beta}$  is a 2n-sun. Hence  $(C_{n,3})^{2\times 4}$  can be decomposed into 6 copies of  $S(C_{2n})$ .

Lemma 2.5.  $(C_{n,2\ell})^{2\times 2}$  has an  $S(C_{2n})$ -decomposition.

*Proof.* Let  $(C_{n,2\ell})^{2\times 2} = \bigcup_{\alpha=0}^{1} \bigcup_{\beta=0}^{1} G_{\alpha,\beta}$ , where  $G_{\alpha,\beta}$  is a crown  $C_{n,2\ell}$  with bipartition  $(\{a_{\alpha,0}, a_{\alpha,1}, \dots, a_{\alpha,n-1}\}, \{b_{\beta,0}, b_{\beta,1}, \dots, b_{\beta,n-1}\})$  for  $\alpha, \beta \in \{0, 1\}$ . For  $i = 0, 1, \dots, \ell-1$ , let

 $C_{0,0}^{(i)}$  be the union of edges labeled 2i+1 and edges labeled 2i+2 of  $G_{0,0}$ ;

 $C_{1,1}^{(i)}$  be the union of edges labeled 2i+1 and edges labeled 2i+2 of  $G_{1,1}$ ;

 $F_{0,0}^{(i)}$  be the union of edges labeled 2i + 1 of  $G_{1,0}$  and edges labeled 2i + 2 of  $G_{0,1}$ ;

 $F_{1,1}^{(i)}$  be the union of edges labeled 2i + 2 of  $G_{1,0}$  and edges labeled 2i + 1 of  $G_{0,1}$ .

Note that  $C_{0,0}^{(i)}$  and  $C_{1,1}^{(i)}$  are 2n-cycle of  $G_{0,0}$  and  $G_{1,1}$ , respectively. In additional,  $F_{0,0}^{(i)}$  and  $F_{1,1}^{(i)}$  are two copies of 1-factors of  $G_{0,1}$  and  $G_{1,0}$ . It follows that  $C_{0,0}^{(i)} \cup F_{0,0}^{(i)}$  is a 2n-sun, so is  $C_{1,1}^{(i)} \cup F_{1,1}^{(i)}$  for  $i = 0, 1, \ldots, \ell - 1$ . Hence  $(C_{n,2\ell})^{2\times 2}$  can be decomposed into  $2\ell$  copies of  $S(C_{2n})$ .

**Lemma 2.6.** If  $k \equiv 0 \pmod{4}$  with  $k \geq 8$ , then  $K_{k/2,k}$  can be decomposed into k/2 copies of  $S(C_{k/2})$ .

*Proof.* Note that

$$K_{k/2,k} = \begin{cases} 2(C_{k/4,k/4})^{2\times 2}, & \text{if } k/4 \text{ is even,} \\ 2(C_{k/4,k/4-3})^{2\times 2} \cup (C_{k/4,3})^{2\times 4}, & \text{if } k/4 \text{ is odd.} \end{cases}$$

By Lemmas 2.4 and 2.5,  $K_{k/2,k}$  can be decomposed into k/2 copies of  $S(C_{k/2})$ .

#### 3 Main results

We first give necessary conditions for a  $\{S(C_{k/2}), S_k\}$ -decomposition of  $K_{n,n}$ .

**Lemma 3.1.** If  $K_{n,n}$  has a  $\{S(C_{k/2}), S_k\}$ -decomposition, then  $8 \le k \le n$ ,  $k \equiv 0 \pmod{4}$  and  $n^2 \equiv 0 \pmod{k}$ .

*Proof.* Since bipartite graphs contain no odd cycle, k/2 is even. It follows that  $k \equiv 0 \pmod{4}$ . In addition, the minimum length of a cycle and the maximum size of a star in  $K_{n,n}$  are 4 and n, respectively, we have  $8 \le k \le n$ . Finally, the size of each member in the decomposition is k and  $|E(K_{n,n})| = n^2$ ; thus  $n^2 \equiv 0 \pmod{k}$ .

We now show that the necessary conditions are also sufficient. The proof is divided into cases n = k, k < n < 2k, and  $n \ge 2k$ , which are treated in Lemmas 3.2, 3.3, and 3.4, respectively.

**Lemma 3.2.** If  $k \equiv 0 \pmod{4}$  with  $k \geq 8$ , then  $K_{k,k}$  has a  $\{S(C_{k/2}), S_k\}$ -decomposition.

*Proof.* Since  $K_{k,k} = K_{k/2,k} \cup K_{k/2,k}$ , by Proposition 2.3 and 2.6,  $K_{k/2,k}$  has an  $S_k$ -decomposition and  $K_{k/2,k}$  has an  $S(C_{k/2})$ -decomposition, respectively. Hence  $K_{k,k}$  has a  $\{S(C_{k/2}), S_k\}$ -decomposition.

**Lemma 3.3.** Let k be a multiple of 4 and let n be a positive integer with  $8 \le k < n < 2k$ . If  $n^2$  is divisible by k, then  $K_{n,n}$  has a  $\{S(C_{k/2}), S_k\}$ -decomposition.

Proof. Let n = k+r. From the assumption k < n < 2k, we have 0 < r < k. Let  $t = r^2/k$ . Since  $k \mid n^2$ , we have  $k \mid r^2$ , which implies that t is a positive integer. Let  $K_{n,n}$  be the balanced complete bipartite graph with bipartition  $(A_0 \cup A_1 \cup A_2, B_0 \cup B_1 \cup B_2)$ , where  $A_i = \{a_{0,0}^{(i)}, a_{0,1}^{(i)}, \dots, a_{0,k/4-1}^{(i)}, a_{1,0}^{(i)}, a_{1,1}^{(i)}, \dots, a_{1,k/4-1}^{(i)}\}$ ,  $B_j = \{b_{0,0}^{(j)}, b_{0,1}^{(j)}, \dots, b_{0,k/4-1}^{(j)}, b_{1,0}^{(j)}, b_{1,1}^{(j)}, \dots, b_{1,k/4-1}^{(j)}\}$  for  $i, j \in \{0, 1\}$ ,  $A_2 = \{a_k, a_{k+1}, \dots, a_{k+r-1}\}$  and  $B_2 = \{b_k, b_{k+1}, \dots, b_{k+r-1}\}$ .

Let  $G_i = K_{n,n}[A_i \cup \{B_0 \cup B_1\}]$  for  $i = 0, 1, F = K_{n,n}[A_2 \cup (B_0 \cup B_1)]$ , and  $H = K_{n,n}[A \cup B_2]$ . Clearly  $K_{n,n} = G_0 \cup G_1 \cup F \cup H$ . Note that  $G_i = ((K_{k/4,k/4})^{2\times2})^{1\times2}$  for i = 0, 1, H is isomorphic to  $K_{n,r}$ , and F is isomorphic to  $K_{r,k}$ , which has an  $S_k$ -decomposition by Proposition 2.3. Let  $p_0 = \lceil t/2 \rceil$ ,  $p_1 = \lfloor t/2 \rfloor$  and  $\alpha_i = 3\lceil p_i/2 \rceil + \lfloor p_i/2 \rfloor$ ,  $\beta_i = 3\lfloor p_i/2 \rfloor + \lceil p_i/2 \rceil$  for  $i \in \{0, 1\}$ . In the following, we will show that  $G_0$  can be decomposed into  $p_0$  copies of  $S(C_{k/2})$ , k/4 copies of  $S_{k-\alpha_0}$  and k/4 copies of  $S_{k-\beta_0}$ ,  $G_1$  can be decomposed into  $p_1$  copies of  $S(C_{k/2})$ , k/4 copies of  $S_{\alpha_0}$ , k/4 copies of  $S_{\beta_0}$ , k/4 copies of  $S_{\beta_0$ 

We first show the required decomposition of  $G_0$  and  $G_1$ . Since r < k, we have  $r \ge t+1$ . Furthermore, since (t,t+1)=1 that  $r \ge t+2$ . Thus,  $p_0 = \lceil t/2 \rceil \le (t+1)/2 < r/2 < k/2$ . This assures us that there exist  $p_0$  edge-disjoint k-sun graphs in  $G_0$  and  $p_1$  edge-disjoint k-sun graphs in  $G_1$  by Lemma 2.6, respectively. Suppose that  $Q_{0,0}, Q_{0,1}, \ldots, Q_{0,p_0-1}$  and  $Q_{1,0}, Q_{1,1}, \ldots, Q_{1,p_1-1}$  are edge-disjoint k-sun graphs in  $G_0$  and  $G_1$ , respectively. Let  $W_i = G_i - E(\bigcup_{h=0}^{p_i-1} Q_{i,h})$  and  $X_{s,t}^{(i)} = W_i[\{a_{s,t}^{(i)}\} \cup (B_0 \cup B_1)]$  where  $i, s \in \{0, 1\}$  and  $t \in \{0, 1, \ldots, k/4-1\}$ . Since  $\deg_{G_i} a_{s,t}^{(i)} = k$  and each  $Q_{i,h}$  uses three edges incident with  $a_{s,t}^{(i)}$  and one edge incident with  $a_{s,t}^{(j)}$  for  $s, i, j \in \{0, 1\}$ ,  $i \neq j, t \in \{0, 1, \ldots, k/4-1\}$ , we have

$$\deg_{W_i} a_{s,t}^{(i)} = \begin{cases} k - \alpha_i, & \text{if } s = 0, \\ k - \beta_i, & \text{if } s = 1. \end{cases}$$

Then

$$X_{s,t}^{(i)} = \begin{cases} S_{k-\alpha_i}, & \text{if } s = 0, \\ S_{k-\beta_i}, & \text{if } s = 1 \end{cases}$$

with the center at  $A_0 \cup A_1$ .

Next we show the required star-decompositions of H. Equivalently we need show that there exists an orientation of H such that,  $i \in \{0,1\}, t \in \{0,1,\ldots,k/4-1\}$ , and  $w \in \{k,k+1,\ldots,k+r-1\}$ ,

$$\deg_H^+ a_{s,t}^{(i)} = \begin{cases} \alpha_i, & \text{if } s = 0, \\ \beta_i, & \text{if } s = 1, \end{cases}$$
 (1)

$$\deg_H^+ b_w = k. (2)$$

We begin the orientation. For  $t = 0, 1, \dots, k/4 - 1$ , the edges

$$a_{0,t}^{(0)}b_{k+\alpha_{0}t},a_{0,t}^{(0)}b_{k+\alpha_{0}t+1},\ldots,a_{0,t}^{(0)}b_{k+\alpha_{0}t+\alpha_{0}-1},\\ a_{1,t}^{(0)}b_{k(1+\frac{\alpha_{0}}{4})+\beta_{0}t},a_{1,t}^{(0)}b_{k(1+\frac{\alpha_{0}}{4})+\beta_{0}t+1},\ldots,a_{1,t}^{(0)}b_{k(1+\frac{\alpha_{0}}{4})+\beta_{0}t+\beta_{0}-1},\\ a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4})+\alpha_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4})+\alpha_{1}t+1},\ldots,a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4})+\alpha_{1}t+\alpha_{1}-1},\\ a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t+1},\ldots,a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t+\beta_{1}-1},\\ a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t+1},\ldots,a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t+\beta_{1}-1},\\ a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t+1},\ldots,a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1}}{4})+\beta_{1}t},a_{0,t}^{(1)}b_{k(1+\frac{\alpha_{0}}{4}+\frac{\beta_{0}}{4}+\frac{\alpha_{1$$

are oriented from  $A_0 \cup A_1$ , where the subscripts of b's are taken modulo r in the set of numbers  $\{k, k+1, \ldots, k+r-1\}$ . Since  $\max\{\alpha_0, \beta_0, \alpha_1, \beta_1\} = \alpha_0 \le 2p_0 + 1 \le t + 2 \le r$ , this assures us that there are enough edges for the above orientation. Finally, the edges which are not oriented yet are all oriented from  $\{b_k, b_{k+1}, \ldots, b_{k+r-1}\}$  to  $A_0 \cup A_1$ .

From the construction of the orientation, it is easy to see that (1) is satisfied, and for all  $w, w' \in \{k, k+1, \dots, k+r-1\}$ , we have

$$|\deg_H^- b_w - \deg_H^- b_{w'}| \le 1.$$
 (3)

Thus we only need to check (2).

Since  $\deg_H^+ b_w + \deg_H^- b_w = k + r$  for  $w \in \{k, k + 1, ..., k + r - 1\}$ , it follows from (3) that  $|\deg_H^+ b_w - \deg_H^+ b_{w'}| \le 1$  for  $w, w' \in \{k, k + 1, ..., k + r - 1\}$ . Furthermore,

$$\sum_{w=k}^{k+r-1} \deg_H^+ b_w = |E(K_{n,r})| - \sum_{i=0}^1 \sum_{s=0}^1 \sum_{t=0}^{k/4-1} \deg_H^+ a_{s,t}^{(i)}$$

$$= (k+r)r - (\alpha_0 + \beta_0 + \alpha_1 + \beta_1)(k/4)$$

$$= (k+r)r - (4p_0 + 4p_1)(k/4)$$

$$= (k+r)r - tk$$

$$= (k+r)r - r^2$$

$$= kr$$

Thus  $\deg_H^+ b_w = k$  for  $w \in \{k, k+1, \ldots, k+r-1\}$ . This proves (2). Hence there exists a decomposition  $\mathscr{D}$  of H into k/4 copies of  $S_{\alpha_0}$ , k/4 copies of  $S_{\beta_0}$ , k/4 copies of  $S_{\alpha_1}$  and k/4 copies of  $S_{\beta_1}$  with centers in  $\{a_{0,0}^{(0)}, a_{0,1}^{(0)}, \ldots, a_{0,k/4-1}^{(0)}\}$ ,  $\{a_{1,0}^{(0)}, a_{1,1}^{(0)}, \ldots, a_{1,k/4-1}^{(0)}\}$ ,  $\{b_{0,0}^{(1)}, b_{0,1}^{(1)}, \ldots, b_{0,k/4-1}^{(1)}\}$  and  $\{b_{1,0}^{(1)}, b_{1,1}^{(1)}, \ldots, b_{1,k/4-1}^{(1)}\}$ , respectively, as well as r copies of  $S_k$  with centers in  $\{b_k, b_{k+1}, \ldots, b_{k+r-1}\}$ . Let  $X_{0,t}^{'(i)}$  be the  $\alpha_i$ -star with center  $a_{0,t}^{(i)}$  and  $X_{1,t}^{'(i)}$  be the  $\beta_i$ -star with centers  $a_{1,t}^{(i)}$  in  $\mathscr{D}$ . Note that  $X_{s,t}^{(i)} \cup X_{s,t}^{'(i)}$  is a k-star for  $i, s \in \{0,1\}$  and  $t \in \{0,1,\ldots,k/4-1\}$ . Thus  $K_{n,n}$  can be decomposed into  $p_0+p_1=t$  copies of  $S(C_{k/2})$  and (k+r)+r=k+2r copies of  $S_k$ . This completes the proof.

**Lemma 3.4.** Let k be a multiple of 4 and let n be a positive integer with  $8 \le k \le n/2$ . If  $n^2$  is divisible by k, then  $K_{n,n}$  has a  $\{S(C_{k/2}), S_k\}$ -decomposition.

*Proof.* Let n = qk + r where q and r are integers with  $0 \le r < k$ . From the assumption of  $k \le n/2$ , we have  $q \ge 2$ . Note that

$$K_{n,n} = K_{qk+r,qk+r} = K_{(q-1)k,(q-1)k} \cup K_{k+r,(q-1)k} \cup K_{(q-1)k,k+r} \cup K_{k+r,k+r}.$$

Trivially,  $|E(K_{(q-1)k,(q-1)k})|$ ,  $|E(K_{k+r,(q-1)k})|$  and  $|E(K_{(q-1)k,k+r})|$  are multiples of k. Thus  $(k+r)^2 \equiv 0 \pmod{k}$  from the assumption that  $n^2$  is divisible by

k. The case of r = 0, by Lemma 3.2, we obtain that  $K_{k,k}$  has a  $\{S(C_{k/2}), S_k\}$ -decomposition. The other case of  $r \neq 0$ , by Lemma 3.3,  $K_{k+r,k+r}$  has a  $\{S(C_{k/2}), S_k\}$ -decomposition for 0 < r < k. On the other hand, by Proposition 2.3,  $K_{(q-1)k,(q-1)k}$ ,  $K_{k+r,(q-1)k}$  and  $K_{(q-1)k,k+r}$  have  $S_k$ -decomposition. Hence there exists a  $\{S(C_{k/2}), S_k\}$ -decomposition of  $K_{n,n}$ .

Now we are ready for the main result. It is obtained by combining Lemmas 3.1, 3.2, 3.3 and 3.4.

**Theorem 3.5.**  $K_{n,n}$  has a  $\{S(C_{k/2}), S_k\}$ -decomposition if and only if  $8 \le k \le n$ ,  $k \equiv 0 \pmod{4}$  and  $n^2 \equiv 0 \pmod{k}$ .

# References

- A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin., 19 (2003), 433–447.
   https://doi.org/10.1007/s00373-003-0530-3
- [2] A. Abueida and M. Daven, Mutidecompositons of the complete graph, *Ars Combin.*, **72** (2004), 17–22.
- [3] A. Abueida and T. O'Neil, Multidecomposition of  $\lambda K_m$  into small cycles and claws, Bull. Inst. Combin. Appl., 49 (2007), 32–40.
- [4] R. Anitha, R.-S. Lekshmi, N-sun decomposition of complete graphs and complete bipartite graphs, World Acad. Sci. Eng. Tech., 27 (2007), 262-266.
- [5] R. Anitha, R.-S. Lekshmi, N-sun decomposition of complete, complete bipartite and some Harary graphs, *Int. J. Math. Sci.*, **2** (2008), 33-38.
- [6] C.-M. Fu, N.-H. Jhuang, Y.-L. Lin and H.-M. Sung, From Steiner triple systems to 3-sun systems,  $Taiwanese\ J.\ Math.$ , **16** (2012), no. 2, 531–543. https://doi.org/10.11650/twjm/1500406600
- [7] C.-M. Fu, N.-H. Jhuang, Y.-L. Lin and H.-M. Sung, On the existence of k-sun systems, *Discrete Math.*, **312** (2012), 1931–1939.
- [8] C.-M. Fu, M.-H. Huang and Y.-L. Lin, On the existence of 5-sun systems, Discrete Math., 313 (2013), 2942–2950. https://doi.org/10.1016/j.disc.2013.09.007
- [9] F. Harary, *Graph Theory*, Addison-Wesley, New York, 1969. https://doi.org/10.21236/ad0705364

- [10] Z. Liang, J. Guo, J. Wang, On the crown graph decompositions containing odd cycle, *Int. J. Comb. Graph Theory Appl.*, **2** (2008), 125-160.
- [11] Z. Liang, J. Guo, Decomposition of complete multigraphs into crown graphs, J. Appl. Math. Comput., 32 (2010), 507-517. https://doi.org/10.1007/s12190-009-0267-0
- [12] H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin., 108 (2013), 355–364.
- [13] H.-C. Lee and Y.-P. Chu, Multidecompositions of the Balanced Complete Bipartite Graph into Paths and Stars, *ISRN Combinatorics*, **2013** (2013), Article ID 398473, 1-4. https://doi.org/10.1155/2013/398473
- [14] J. Ma, L. Pu and H. Shen, Cycle decompositions of  $K_{n,n} I$ , SIAM J. Discrete Math., **20** (2006), 603–609. https://doi.org/10.1137/050626363
- [15] D. Sotteau, Decomposition of  $K_{m,n}$  ( $K_{m,n}^*$ ) into cycles (circuits) of length 2k, J. Combin. Theory, Ser. B, **30** (1981), 75–81. https://doi.org/10.1016/0095-8956(81)90093-9
- [16] S. Tazawa, Decomposition of a complete multi-partite graph into isomorphic claws, SIAM J. Algebraic Discrete Methods, 6 (1985), 413-417. https://doi.org/10.1137/0606043
- [17] K. Ushio, S. Tazawa and S. Yamamoto, On claw-decomposition of complete multipartite graphs, *Hiroshima Math. J.*, **8** (1978), 207–210.
- [18] S. Yamamoto, H. Ikeda, S. Shige-ede, K. Ushio and N. Hamada, On claw decomposition of complete graphs and complete bipartie graphs, *Hiroshima Math. J.*, **5** (1975), 33–42.

Received: June 10, 2018; Published: June 26, 2018