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Abstract

Two weak forms of contra-somewhat continuity, called almost contra-
1-somewhat continuity and almost contra-2-somewhat continuity are
introduced. It is shown that each of these forms is weaker than the cor-
responding version of contra-somewhat continuity. The basic properties
of these functions are developed and relationships between these forms
and other generalized continuity conditions are investigated.
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1 Introduction

The class of somewhat continuous functions was studied by Gentry and Hoyle
[8] in 1971. Two types of contra-somewhat continuity were developed in
2015 by Baker [1]. The purpose of this note is to introduce weak forms
of both of these types of contra somewhat continuity, which we call almost
contra-1-somewhat continuity and almost contra-2-somewhat continuity. It
is established that almost contra-1-somewhat continuity and almost contra-2-
somewhat continuity are independent of each other and strictly weaker than
contra-1-somewhat continuity and contra-2-somewhat continuity, respectively.
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Almost contra-1-somewhat continuity appears to be the more interesting of the
two forms, since almost contra-2-somewhat continuity turns out to be equiv-
alent to contra-2-somewhat continuity when the topology on the codomain is
modified. Characterizations and the basic properties are developed. Almost
contra-1-somewhat continuity is characterized by mapping dense sets to sets
with large regular kernels and almost contra-2-somewhat continuity is charac-
terized by mapping sets with large kernels to δ-dense sets.

2 Preliminaries

The symbols X and Y represent topological spaces with no separation proper-
ties assumed unless explicitly stated. All sets are considered to be subsets of
topological spaces. The closure and interior of a set A are signified by Cl(A)
and Int(A), respectively. A set A is said to be preopen [11] (respectively,
semiopen [10]) if A ⊆ Int(Cl(A)), (respectively, A ⊆ Cl(Int(A))). A set A is
preclosed (respectively, semi-closed provided its complement is preopen (re-
spectively, semi-open). A set A is regular open (respectively, regular closed) if
Int(Cl(A)) = A (respectively, Cl(Int(A)) = A). A set A is called δ-open [15]
if for each x ∈ A there exists a regular open set U such that x ∈ U ⊆ A. The
family of all δ-open sets in a space (X, τ) is a topology on X and is denoted
by τδ. (This topology is also referred to as the semi-regularization topology
and denoted by τs.) The collection of all regular open sets forms a base for τδ
and the space (X, τδ) will be denoted by Xδ.

Definition 2.1 A function f : X → Y is said to be contra-continuous [3]
(respectively, contra-almost continuous [2] if f−1(V ) is closed for every open
(respectively, regular open)subset V of Y .

Definition 2.2 A function f : X → Y is said to be almost contra-precontinuous
[7] (respectively, almost contra-semicontinuous) if f−1(V ) is preclosed (respec-
tively, semi-closed) for every regular open subset V of Y .

Definition 2.3 A function f : X → Y is said to be somewhat continuous
[8], if for every open subset V of Y such that f−1(V ) 6= ∅, there exists an open
subset U of X such that ∅ 6= U ⊆ f−1(V ) .

Definition 2.4 A function f : X → Y is said to be contra-1-somewhat
continuous [1] provided that for every closed set F ⊆ Y such that f−1(F ) 6= ∅,
there exists an open set U ⊆ X such that ∅ 6= U ⊆ f−1(F ).

Definition 2.5 A function f : X → Y is said to be contra-2-somewhat
continuous [1] if for every open set V ⊂ Y such that f−1(V ) 6= ∅, there exists
a closed set F ⊆ X such that ∅ 6= F ⊆ f−1(V ).
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Definition 2.6 A function f : X → Y is said to be an R-map [5] if f−1(V )
is regular open for every regular open subset V of Y .

Definition 2.7 A function f : X → Y is said to be almost semicontinuous
[13] if f−1(V ) is semiopen for every regular open subset V of Y .

Definition 2.8 Let A be a subset of a space X. The kernel (respectively
r-kernel [6]) of A [12], denoted by ker(A), (respectively, r-ker(A)), is the in-
tersection of all open (respectively, regular open) subsets of X containing A.

Lemma 2.9 [9] The following statements hold for subsets A and B of a
space X:

(a) x ∈ ker(A) if and only if A ∩ F 6= ∅ for every closed subset F of X
containing x.

(b) A ⊆ ker(A) and A = ker(A) if A is open in X.

(c) If A ⊆ B, then ker(A) ⊆ ker(B).

Remark 2.10 The analogous properties (see Lemma 1 [6]) hold for the
r-kernel and regular open (respectively, regular closed) sets.

3 Almost Contra-1-Somewhat Continuous Func-

tions

Definition 3.1 A function f : X → Y is said to be almost contra-1-
somewhat continuous provided that for every regular closed set F ⊆ Y such
that f−1(F ) 6= ∅, there exists an open set U ⊆ X such that ∅ 6= U ⊆ f−1(F ).

Theorem 3.2 If f : X → X has the property that f(F ) ⊆ F for every
closed set F ⊆ X, then f is almost contra-1-somewhat continuous.

Proof. Let F ⊆ X be regular closed and assume that f−1(F ) 6= ∅. Since
F = Cl(Int(F ), Int(F ) 6= ∅. Then, since Int(F ) ⊆ f−1(F ), f is contra-1-
somewhat continuous.

Corollary 3.3 The identity mapping f : X → X is almost contra-1-
somewhat continuous.

Example 3.4 Let X denote the real numbers with the usual topology. It
follows from Corollary 3.3 that the identity mapping f : X → X is almost
contra-1-somewhat continuous. Since Int(f−1({0})) = ∅, f is not contra-1-
somewhat continuous. Since the usual topology coincides with the δ-topology,
it is also true that f : X → Xδ is not contra-1-somewhat continuous.
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Thus almost contra-1-somewhat continuity does not imply contra-1-somewhat
continuity. Nor does it imply contra-1-somewhat continuity when the topol-
ogy on the codomain is replaced with the δ-topology. However, obviously, if
f : X → Yδ is contra-1-somewhat continuous, then f : X → Y is almost
contra-1-somewhat continuous.

Theorem 3.5 For a function f : X → Y the following conditions are
equivalent:

(a) f is almost contra-1-somewhat continuous.

(b) For every regular open set V ⊆ Y such that f−1(V ) 6= X, there exists a
closed set F ⊆ X such that F 6= X and f−1(V ) ⊆ F .

(c) For every dense set M ⊆ X, r-ker(f(M)) = r-ker(f(X)).

Proof. (a) ⇒ (b). Let V ⊆ Y be regular open such that f−1(V ) 6= X.
Then, since f−1(Y − V ) 6= ∅ and Y − V is regular closed, there exists an open
set U ⊆ X such that ∅ 6= U ⊆ f−1(Y − V ). Thus f−1(V ) ⊆ X − U . Since
U 6= ∅, X − U 6= X an thus X − U is the desired set.

(b) ⇒ (c). Let M be a dense subset of X and let V ⊆ X be regular open,
Assume f(X) 6⊆ V . Then X 6⊆ f−1(V ) and by (b) then exists a closed set
F ⊆ X such that F 6= X and f−1(V ) ⊆ F . Since M is dense in X, M 6⊆ F
and hence M 6⊆ f−1(V ) and f(M) 6⊆ V . Thus r-ker(f(X)) ⊆ r-ker(f(M)) and
hence r-ker(f(X)) = r-ker(f(M)).

(c) ⇒ (a). Assume f is not almost contra-1-somewhat continuous. Then
there exists a regular closed set F ⊆ Y such that f−1(F ) 6= ∅, and for every
open set U ⊆ X such that U 6= ∅, U 6⊆ f−1(F ). Then for every nonempty
open set U ⊆ X, U ∩ (X − f−1(F )) 6= ∅. Thus X − f−1(F ) is dense in X.
Therefore using (c) we have f(X) ⊆ r-ker(f(X)) = r-ker(f(X − f−1(F ))) ⊆
r-ker(Y −F ) = Y −F and thus f(X) ⊆ Y −F which implies that f−1(F ) = ∅
which is a contradiction. Thus f is almost contra-1-somewhat continuous.

Corollary 3.6 If f : X → Y is almost contra-1-somewhat continuous and
surjective, then r-ker(f(M)) = Y for every dense subset M of X.

Corollary 3.7 If f : X → Y is almost contra-1-somewhat continuous and
f(X) is regular open in Y , then r-ker(f(M)) = f(X) for every dense subset
M of X.

Theorem 3.8 If f : X → Y is almost contra semicontinuous, then f is
almost contra-1-somewhat continuous.
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Proof. Let F ⊆ Y such that F is regular closed and f−1(F ) 6= ∅. Since
f−1(F ) is semiopen, f−1(F ) ⊆ Cl(Int(f−1(F ))) and thus Int(f−1(F )) 6= ∅.
Hence f is almost contra-1- somewhat continuous.

Corollary 3.9 If f : X → Y is contra almost continuous, then f is almost
contra-1-somewhat continuous.

Corollary 3.10 If f : X → Y is contra continuous, then f is almost
contra-1-somewhat continuous.

Corollary 3.11 If f : X → Y is an R-map, then f is almost contra-1-
somewhat continuous.

Theorem 3.12 If f : X → Y is almost semicontinuous and X has no
proper open dense set, then f is almost contra-1-somewhat continuous.

Proof. Let V ⊆ Y be regular open such that f−1(V ) 6= X. Then since
f−1(V ) is semiopen, f−1(V ) ⊆ Cl(Int(f−1(V ))). Since Int(f−1(V )) is open,
it is not dense in X. Then f−1(V ) ⊆ Cl(Int(f−1(V ))) 6= X and therefore by
Theorem 3.5(b) f is almost contra-1-somewhat continuous.

Theorem 3.13 If f : X → Y is almost contra-1-somewhat continuous and
A is a dense subset of X, then f |A : A → Y is almost contra-1-somewhat
continuous.

Proof. Let F ⊆ Y be regular closed such that f |−1
A (V ) 6= ∅. Then f−1(V ) 6=

∅. Since f is almost contra-1-somewhat continuous, there exists an open set
U ⊆ X such that ∅ 6= U ⊆ f−1(F ). Then U ∩ A ⊆ f |−1

A (F ) and, since A is
dense in X, U ∩ A 6= ∅. Therefore f |A : A→ Y is almost contra-1-somewhat-
continuous.

Theorem 3.14 If A is a open dense subset of X and f : A→ Y is almost
contra-1-somewhat-continuous and r-ker(f(A)) = Y then any extension g :
X → Y of f is almost contra-1-somewhat-continuous.

Proof. Assume g : X → Y is an extension of f . Let F be a regular closed
subset of Y such that g|−1

A (F ) 6= ∅. Since r-ker(f(A)) = Y , f(A) 6⊆ Y − F .
Then f(A)∩F 6= ∅ and hence f−1(F ) 6= ∅. Then there exists a set U ⊆ A such
that U is open in A and ∅ 6= U ⊆ f−1(F ) ⊆ g−1(F ). Since A is open in X, U
is open in X. Therefore g : X → Y is almost contra-1-somewhat-continuous.

The proof of the following result is straightforward.

Theorem 3.15 If A and B are open subsets of X such that X = A ∪ B
and f : X → Y is a function with the property that both f |A : A → Y
and g|B : B → Y are almost contra-1-somewhat-continuous, then f is almost
contra-1-somewhat-continuous.
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4 Almost Contra-2-Somewhat Continuous Func-

tions

Definition 4.1 A function f : X → Y is said to be almost contra-2-
somewhat continuous if for every regular open set V ⊆ Y such that f−1(V ) 6= ∅,
there exists a closed set F ⊆ X such that ∅ 6= F ⊆ f−1(V ).

Theorem 4.2 A function f : X → Y is almost contra-2-somewhat contin-
uous if and only if f : X → Yδ is contra-2-somewhat continuous.

Proof. To prove the sufficiency assume that f : X → Y is almost contra-
2-somewhat continuous. Let V ⊆ Y be δ-open such that f−1(V ) 6= ∅. Then
there exists a regular open subset W of Y such that W ⊆ V and f−1(W ) 6= ∅.
Since f : X → Y is almost contra-2-somewhat continuous, there exists a
closed set F ⊆ X such that ∅ 6= F ⊆ f−1(W ) ⊆ f−1(V ). Thus f : X → Yδ is
contra-2-somewhat continuous.

The proof of the necessity is straightforward.
Obviously contra-2-somewhat continuity implies almost contra-2-somewhat

continuity. The following examples show that the converse does not hold and
that contra-2-somewhat continuity and contra-1-somewhat continuity are in-
dependent of each other.

Example 4.3 Let X = {a, b, c} have the topology τ = {X, ∅, {a}}. Obvi-
ously he identity mapping f : X → X is almost contra-2-somewhat continu-
ous. However, since f−1({a}) does not contain a nonempty closed set, f is
not contra-2-somewhat continuous.

Example 4.4 Let X = {a, b, c} have the topology τ = {X, ∅, {a}, {b}, {a, b}}.
The identity mapping f : X → X is almost contra-1-somewhat continuous by
Corollary 3.3, but, since f−1({a}) does not contain a nonempty closed set, f
is not contra-2-somewhat continuous.

Example 4.5 Let X denote the real numbers with the usual topology. Since
X is T1, the function f : X → X given by f(x) = 4 if x 6= 0 and f(0) = 2 is
contra-2-somewhat continuous. However, since f−1([1, 3]) does not contain a
nonempty open set, f is not contra-1-somewhat continuous.

Definition 4.6 Let A ⊆ B ⊆ X. Then A is said to be δ-dense in B
provided that for every δ-open set U ⊆ X, if U ∩ B 6= ∅, then U ∩ A 6= ∅.
(That is, that A is dense in B with respect to the relative topology induced on
B by the δ-topology on X.)

The following theorem is a consequence of Theorem 4.2 and Theorem 4.1
[1].
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Theorem 4.7 For a function f : X → Y the following conditions are
equivalent:

(a) f is almost contra-2-somewhat continuous.

(b) For every δ-closed set F ⊆ Y such that f−1(F ) 6= ∅, there exists an open
set U ⊆ X such that U 6= X and f−1(F ) ⊆ U .

(c) For every regular-closed set F ⊆ Y such that f−1(F ) 6= ∅, there exists
an open set U ⊆ X such that U 6= X and f−1(F ) ⊆ U .

(d) For every A ⊂ X, if the ker(A) = X, then f(A) is δ-dense in f(X).

Theorem 4.8 If f : X → Y is contra almost continuous, then f is almost
contra-2-somewhat continuous.

The proof is straightforward.

Definition 4.9 A function f : X → Y is said to be almost somewhat
continuous, if for every regular open subset V of Y such that f−1(V ) 6= ∅,
there exists a nonempty open subset U of X such that U ⊆ f−1(V ).

Theorem 4.10 If f : X → Y is almost somewhat continuous and almost
contra-precontinuous, then f is almost contra-2-somewhat continuous.

Proof. Let V be a regular open subset of Y such that f−1(V ) 6= ∅. Since
f is almost somewhat continuous, Int(f−1(V )) 6= ∅. Since f is almost contra-
precontinuous, f−1(V ) is preclosed and hence Cl(Int(f−1(V ))) ⊆ f−1(V ).
Since Int(f−1(V )) 6= ∅, Cl(Int(f−1(V ))) 6= ∅. Hence f is almost contra-2-
somewhat continuous.

Definition 4.11 A space X is said to be quasiregular [14] if for every
nonempty open set V ⊆ X, there exists a nonempty open set U such that
Cl(U) ⊆ V .

Theorem 4.12 If X is quasiregular and f : X → Y is almost somewhat
continuous, then f is almost contra-2-somewhat continuous.

Proof. Let V be a regular open subset of Y such that f−1(V ) 6= ∅. Since f
is almost somewhat continuous. Int(f−1(V )) 6= ∅. Because X is quasiregular,
there exists a nonempty open set U such that Cl(U) ⊆ Int(f−1(V )). Thus we
have ∅ 6= Cl(U) ⊆ f−1(V ), which proves that f is almost contra-2-somewhat
continuous.
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