International Journal of Contemporary Mathematical Sciences Vol. 13, 2018, no. 4, 149 - 157 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2018.8617

Almost Contra-Somewhat Continuity

C. W. Baker

Department of Mathematics Indiana University Southeast New Albany, IN 47150-6405, USA

Copyright © 2018 C. W. Baker. This article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Two weak forms of contra-somewhat continuity, called almost contra-1-somewhat continuity and almost contra-2-somewhat continuity are introduced. It is shown that each of these forms is weaker than the corresponding version of contra-somewhat continuity. The basic properties of these functions are developed and relationships between these forms and other generalized continuity conditions are investigated.

Mathematics Subject Classification: 54C10, 54D10

Keywords: somewhat continuity, contra-1-somewhat continuity, contra-2-somewhat continuity, almost contra-1-somewhat continuity, almost contra-2-somewhat continuity

1 Introduction

The class of somewhat continuous functions was studied by Gentry and Hoyle [8] in 1971. Two types of contra-somewhat continuity were developed in 2015 by Baker [1]. The purpose of this note is to introduce weak forms of both of these types of contra somewhat continuity, which we call almost contra-1-somewhat continuity and almost contra-2-somewhat continuity are independent of each other and strictly weaker than contra-1-somewhat continuity and contra-2-somewhat continuity, respectively.

Almost contra-1-somewhat continuity appears to be the more interesting of the two forms, since almost contra-2-somewhat continuity turns out to be equivalent to contra-2-somewhat continuity when the topology on the codomain is modified. Characterizations and the basic properties are developed. Almost contra-1-somewhat continuity is characterized by mapping dense sets to sets with large regular kernels and almost contra-2-somewhat continuity is characterized by mapping sets with large kernels to δ -dense sets.

2 Preliminaries

The symbols X and Y represent topological spaces with no separation properties assumed unless explicitly stated. All sets are considered to be subsets of topological spaces. The closure and interior of a set A are signified by Cl(A) and Int(A), respectively. A set A is said to be preopen [11] (respectively, semiopen [10]) if $A \subseteq Int(Cl(A))$, (respectively, $A \subseteq Cl(Int(A))$). A set A is preclosed (respectively, semi-closed provided its complement is preopen (respectively, semi-open). A set A is regular open (respectively, regular closed) if Int(Cl(A)) = A (respectively, Cl(Int(A)) = A). A set A is called δ -open [15] if for each $x \in A$ there exists a regular open set U such that $x \in U \subseteq A$. The family of all δ -open sets in a space (X, τ) is a topology on X and is denoted by τ_{δ} . (This topology is also referred to as the semi-regularization topology and denoted by τ_{δ} .) The collection of all regular open sets forms a base for τ_{δ} and the space (X, τ_{δ}) will be denoted by X_{δ} .

Definition 2.1 A function $f: X \to Y$ is said to be contra-continuous [3] (respectively, contra-almost continuous [2] if $f^{-1}(V)$ is closed for every open (respectively, regular open)subset V of Y.

Definition 2.2 A function $f: X \to Y$ is said to be almost contra-precontinuous [7] (respectively, almost contra-semicontinuous) if $f^{-1}(V)$ is preclosed (respectively, semi-closed) for every regular open subset V of Y.

Definition 2.3 A function $f: X \to Y$ is said to be somewhat continuous [8], if for every open subset V of Y such that $f^{-1}(V) \neq \emptyset$, there exists an open subset U of X such that $\emptyset \neq U \subseteq f^{-1}(V)$.

Definition 2.4 A function $f: X \to Y$ is said to be contra-1-somewhat continuous [1] provided that for every closed set $F \subseteq Y$ such that $f^{-1}(F) \neq \emptyset$, there exists an open set $U \subseteq X$ such that $\emptyset \neq U \subseteq f^{-1}(F)$.

Definition 2.5 A function $f: X \to Y$ is said to be contra-2-somewhat continuous [1] if for every open set $V \subset Y$ such that $f^{-1}(V) \neq \emptyset$, there exists a closed set $F \subseteq X$ such that $\emptyset \neq F \subseteq f^{-1}(V)$.

- **Definition 2.6** A function $f: X \to Y$ is said to be an R-map [5] if $f^{-1}(V)$ is regular open for every regular open subset V of Y.
- **Definition 2.7** A function $f: X \to Y$ is said to be almost semicontinuous [13] if $f^{-1}(V)$ is semiopen for every regular open subset V of Y.
- **Definition 2.8** Let A be a subset of a space X. The kernel (respectively r-kernel [6]) of A [12], denoted by ker(A), (respectively, r-ker(A)), is the intersection of all open (respectively, regular open) subsets of X containing A.
- **Lemma 2.9** [9] The following statements hold for subsets A and B of a space X:
 - (a) $x \in \ker(A)$ if and only if $A \cap F \neq \emptyset$ for every closed subset F of X containing x.
 - (b) $A \subseteq ker(A)$ and A = ker(A) if A is open in X.
 - (c) If $A \subseteq B$, then $ker(A) \subseteq ker(B)$.
- Remark 2.10 The analogous properties (see Lemma 1 [6]) hold for the r-kernel and regular open (respectively, regular closed) sets.

3 Almost Contra-1-Somewhat Continuous Functions

- **Definition 3.1** A function $f: X \to Y$ is said to be almost contra-1-somewhat continuous provided that for every regular closed set $F \subseteq Y$ such that $f^{-1}(F) \neq \emptyset$, there exists an open set $U \subseteq X$ such that $\emptyset \neq U \subseteq f^{-1}(F)$.
- **Theorem 3.2** If $f: X \to X$ has the property that $f(F) \subseteq F$ for every closed set $F \subseteq X$, then f is almost contra-1-somewhat continuous.
- *Proof.* Let $F \subseteq X$ be regular closed and assume that $f^{-1}(F) \neq \emptyset$. Since $F = \text{Cl}(\text{Int}(F), \text{Int}(F) \neq \emptyset$. Then, since $\text{Int}(F) \subseteq f^{-1}(F)$, f is contra-1-somewhat continuous.
- Corollary 3.3 The identity mapping $f: X \to X$ is almost contra-1-somewhat continuous.
- **Example 3.4** Let X denote the real numbers with the usual topology. It follows from Corollary 3.3 that the identity mapping $f: X \to X$ is almost contra-1-somewhat continuous. Since $Int(f^{-1}(\{0\})) = \emptyset$, f is not contra-1-somewhat continuous. Since the usual topology coincides with the δ -topology, it is also true that $f: X \to X_{\delta}$ is not contra-1-somewhat continuous.

Thus almost contra-1-somewhat continuity does not imply contra-1-somewhat continuity. Nor does it imply contra-1-somewhat continuity when the topology on the codomain is replaced with the δ -topology. However, obviously, if $f: X \to Y_{\delta}$ is contra-1-somewhat continuous, then $f: X \to Y$ is almost contra-1-somewhat continuous.

Theorem 3.5 For a function $f: X \to Y$ the following conditions are equivalent:

- (a) f is almost contra-1-somewhat continuous.
- (b) For every regular open set $V \subseteq Y$ such that $f^{-1}(V) \neq X$, there exists a closed set $F \subseteq X$ such that $F \neq X$ and $f^{-1}(V) \subseteq F$.
- (c) For every dense set $M \subseteq X$, r-ker(f(M)) = r-ker(f(X)).
- *Proof.* (a) \Rightarrow (b). Let $V \subseteq Y$ be regular open such that $f^{-1}(V) \neq X$. Then, since $f^{-1}(Y V) \neq \emptyset$ and Y V is regular closed, there exists an open set $U \subseteq X$ such that $\emptyset \neq U \subseteq f^{-1}(Y V)$. Thus $f^{-1}(V) \subseteq X U$. Since $U \neq \emptyset$, $X U \neq X$ and thus X U is the desired set.
- (b) \Rightarrow (c). Let M be a dense subset of X and let $V \subseteq X$ be regular open, Assume $f(X) \not\subseteq V$. Then $X \not\subseteq f^{-1}(V)$ and by (b) then exists a closed set $F \subseteq X$ such that $F \neq X$ and $f^{-1}(V) \subseteq F$. Since M is dense in X, $M \not\subseteq F$ and hence $M \not\subseteq f^{-1}(V)$ and $f(M) \not\subseteq V$. Thus $\operatorname{r-ker}(f(X)) \subseteq \operatorname{r-ker}(f(M))$ and hence $\operatorname{r-ker}(f(X)) = \operatorname{r-ker}(f(M))$.
- (c) \Rightarrow (a). Assume f is not almost contra-1-somewhat continuous. Then there exists a regular closed set $F \subseteq Y$ such that $f^{-1}(F) \neq \emptyset$, and for every open set $U \subseteq X$ such that $U \neq \emptyset$, $U \not\subseteq f^{-1}(F)$. Then for every nonempty open set $U \subseteq X$, $U \cap (X f^{-1}(F)) \neq \emptyset$. Thus $X f^{-1}(F)$ is dense in X. Therefore using (c) we have $f(X) \subseteq \text{r-ker}(f(X)) = \text{r-ker}(f(X f^{-1}(F))) \subseteq \text{r-ker}(Y F) = Y F$ and thus $f(X) \subseteq Y F$ which implies that $f^{-1}(F) = \emptyset$ which is a contradiction. Thus f is almost contra-1-somewhat continuous.
- **Corollary 3.6** If $f: X \to Y$ is almost contra-1-somewhat continuous and surjective, then r-ker(f(M)) = Y for every dense subset M of X.
- **Corollary 3.7** If $f: X \to Y$ is almost contra-1-somewhat continuous and f(X) is regular open in Y, then r-ker(f(M)) = f(X) for every dense subset M of X.
- **Theorem 3.8** If $f: X \to Y$ is almost contra semicontinuous, then f is almost contra-1-somewhat continuous.

Proof. Let $F \subseteq Y$ such that F is regular closed and $f^{-1}(F) \neq \emptyset$. Since $f^{-1}(F)$ is semiopen, $f^{-1}(F) \subseteq \text{Cl}(\text{Int}(f^{-1}(F)))$ and thus $\text{Int}(f^{-1}(F)) \neq \emptyset$. Hence f is almost contra-1- somewhat continuous.

Corollary 3.9 If $f: X \to Y$ is contra almost continuous, then f is almost contra-1-somewhat continuous.

Corollary 3.10 If $f: X \to Y$ is contra continuous, then f is almost contra-1-somewhat continuous.

Corollary 3.11 If $f: X \to Y$ is an R-map, then f is almost contra-1-somewhat continuous.

Theorem 3.12 If $f: X \to Y$ is almost semicontinuous and X has no proper open dense set, then f is almost contra-1-somewhat continuous.

Proof. Let $V \subseteq Y$ be regular open such that $f^{-1}(V) \neq X$. Then since $f^{-1}(V)$ is semiopen, $f^{-1}(V) \subseteq \operatorname{Cl}(\operatorname{Int}(f^{-1}(V)))$. Since $\operatorname{Int}(f^{-1}(V))$ is open, it is not dense in X. Then $f^{-1}(V) \subseteq \operatorname{Cl}(\operatorname{Int}(f^{-1}(V))) \neq X$ and therefore by Theorem 3.5(b) f is almost contra-1-somewhat continuous.

Theorem 3.13 If $f: X \to Y$ is almost contra-1-somewhat continuous and A is a dense subset of X, then $f|_A: A \to Y$ is almost contra-1-somewhat continuous.

Proof. Let $F \subseteq Y$ be regular closed such that $f|_A^{-1}(V) \neq \emptyset$. Then $f^{-1}(V) \neq \emptyset$. Since f is almost contra-1-somewhat continuous, there exists an open set $U \subseteq X$ such that $\emptyset \neq U \subseteq f^{-1}(F)$. Then $U \cap A \subseteq f|_A^{-1}(F)$ and, since A is dense in $X, U \cap A \neq \emptyset$. Therefore $f|_A : A \to Y$ is almost contra-1-somewhat-continuous.

Theorem 3.14 If A is a open dense subset of X and $f: A \to Y$ is almost contra-1-somewhat-continuous and r-ker(f(A)) = Y then any extension $g: X \to Y$ of f is almost contra-1-somewhat-continuous.

Proof. Assume $g: X \to Y$ is an extension of f. Let F be a regular closed subset of Y such that $g|_A^{-1}(F) \neq \emptyset$. Since $\operatorname{r-ker}(f(A)) = Y$, $f(A) \not\subseteq Y - F$. Then $f(A) \cap F \neq \emptyset$ and hence $f^{-1}(F) \neq \emptyset$. Then there exists a set $U \subseteq A$ such that U is open in A and $\emptyset \neq U \subseteq f^{-1}(F) \subseteq g^{-1}(F)$. Since A is open in X, U is open in X. Therefore $g: X \to Y$ is almost contra-1-somewhat-continuous.

The proof of the following result is straightforward.

Theorem 3.15 If A and B are open subsets of X such that $X = A \cup B$ and $f: X \to Y$ is a function with the property that both $f|_A: A \to Y$ and $g|_B: B \to Y$ are almost contra-1-somewhat-continuous, then f is almost contra-1-somewhat-continuous.

4 Almost Contra-2-Somewhat Continuous Functions

Definition 4.1 A function $f: X \to Y$ is said to be almost contra-2-somewhat continuous if for every regular open set $V \subseteq Y$ such that $f^{-1}(V) \neq \emptyset$, there exists a closed set $F \subseteq X$ such that $\emptyset \neq F \subseteq f^{-1}(V)$.

Theorem 4.2 A function $f: X \to Y$ is almost contra-2-somewhat continuous if and only if $f: X \to Y_{\delta}$ is contra-2-somewhat continuous.

Proof. To prove the sufficiency assume that $f: X \to Y$ is almost contra-2-somewhat continuous. Let $V \subseteq Y$ be δ -open such that $f^{-1}(V) \neq \emptyset$. Then there exists a regular open subset W of Y such that $W \subseteq V$ and $f^{-1}(W) \neq \emptyset$. Since $f: X \to Y$ is almost contra-2-somewhat continuous, there exists a closed set $F \subseteq X$ such that $\emptyset \neq F \subseteq f^{-1}(W) \subseteq f^{-1}(V)$. Thus $f: X \to Y_{\delta}$ is contra-2-somewhat continuous.

The proof of the necessity is straightforward.

Obviously contra-2-somewhat continuity implies almost contra-2-somewhat continuity. The following examples show that the converse does not hold and that contra-2-somewhat continuity and contra-1-somewhat continuity are independent of each other.

Example 4.3 Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a\}\}$. Obviously he identity mapping $f: X \to X$ is almost contra-2-somewhat continuous. However, since $f^{-1}(\{a\})$ does not contain a nonempty closed set, f is not contra-2-somewhat continuous.

Example 4.4 Let $X = \{a, b, c\}$ have the topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}\}$. The identity mapping $f: X \to X$ is almost contra-1-somewhat continuous by Corollary 3.3, but, since $f^{-1}(\{a\})$ does not contain a nonempty closed set, f is not contra-2-somewhat continuous.

Example 4.5 Let X denote the real numbers with the usual topology. Since X is T_1 , the function $f: X \to X$ given by f(x) = 4 if $x \neq 0$ and f(0) = 2 is contra-2-somewhat continuous. However, since $f^{-1}([1,3])$ does not contain a nonempty open set, f is not contra-1-somewhat continuous.

Definition 4.6 Let $A \subseteq B \subseteq X$. Then A is said to be δ -dense in B provided that for every δ -open set $U \subseteq X$, if $U \cap B \neq \emptyset$, then $U \cap A \neq \emptyset$. (That is, that A is dense in B with respect to the relative topology induced on B by the δ -topology on X.)

The following theorem is a consequence of Theorem 4.2 and Theorem 4.1 [1].

Theorem 4.7 For a function $f: X \to Y$ the following conditions are equivalent:

- (a) f is almost contra-2-somewhat continuous.
- (b) For every δ -closed set $F \subseteq Y$ such that $f^{-1}(F) \neq \emptyset$, there exists an open set $U \subseteq X$ such that $U \neq X$ and $f^{-1}(F) \subseteq U$.
- (c) For every regular-closed set $F \subseteq Y$ such that $f^{-1}(F) \neq \emptyset$, there exists an open set $U \subseteq X$ such that $U \neq X$ and $f^{-1}(F) \subseteq U$.
- (d) For every $A \subset X$, if the ker(A) = X, then f(A) is δ -dense in f(X).

Theorem 4.8 If $f: X \to Y$ is contra almost continuous, then f is almost contra-2-somewhat continuous.

The proof is straightforward.

Definition 4.9 A function $f: X \to Y$ is said to be almost somewhat continuous, if for every regular open subset V of Y such that $f^{-1}(V) \neq \emptyset$, there exists a nonempty open subset U of X such that $U \subseteq f^{-1}(V)$.

Theorem 4.10 If $f: X \to Y$ is almost somewhat continuous and almost contra-precontinuous, then f is almost contra-2-somewhat continuous.

Proof. Let V be a regular open subset of Y such that $f^{-1}(V) \neq \emptyset$. Since f is almost somewhat continuous, $\operatorname{Int}(f^{-1}(V)) \neq \emptyset$. Since f is almost contraprecontinuous, $f^{-1}(V)$ is preclosed and hence $\operatorname{Cl}(\operatorname{Int}(f^{-1}(V))) \subseteq f^{-1}(V)$. Since $\operatorname{Int}(f^{-1}(V)) \neq \emptyset$, $\operatorname{Cl}(\operatorname{Int}(f^{-1}(V))) \neq \emptyset$. Hence f is almost contra-2-somewhat continuous.

Definition 4.11 A space X is said to be quasiregular [14] if for every nonempty open set $V \subseteq X$, there exists a nonempty open set U such that $Cl(U) \subseteq V$.

Theorem 4.12 If X is quasiregular and $f: X \to Y$ is almost somewhat continuous, then f is almost contra-2-somewhat continuous.

Proof. Let V be a regular open subset of Y such that $f^{-1}(V) \neq \emptyset$. Since f is almost somewhat continuous. $\operatorname{Int}(f^{-1}(V)) \neq \emptyset$. Because X is quasiregular, there exists a nonempty open set U such that $\operatorname{Cl}(U) \subseteq \operatorname{Int}(f^{-1}(V))$. Thus we have $\emptyset \neq \operatorname{Cl}(U) \subseteq f^{-1}(V)$, which proves that f is almost contra-2-somewhat continuous.

References

[1] C. W. Baker, Contra-somewhat continuous functions, *Missouri J. Math. Sci.*, **27** (2015), 1-8.

- [2] C. W. Baker, On contra-almost β -continuous functions and weakly β -continuous functions, *Kochi J. Math.*, **1** (2006), 1-8.
- [3] J. DontchevD, Contra-continuous functions and strongly S-closed spaces, Internat. J. Math. Math. Sci., 19 (1996), 303–310. https://doi.org/10.1155/s0161171296000427
- [4] J. Dontchev and T. Noiri, Contra-semicontinuous functions, *Mathematica Pannonica*, **10** (1999), 159–168.
- [5] D. Carnahan, Some Properties Related to Compactness in Topological Spaces, PhD Thesis, Univ. of Arkansas, 1973.
- [6] E. Ekici, On contra R-continuity and weak form, *Indian J. Math.*, **46** (2004), 267–281.
- [7] E. Ekici, Almost contra-precontinuous functions, Bull. Malaysian Math. Soc., 27 (2006), 53–65.
- [8] K. R. Gentry and H. B. Hoyle, III, Somewhat continuous functions, *Czech. Math. J.*, **21** (1971), 5–12.
- [9] S. Jafari and T. Noiri, On contra-precontinuous functions, *Bull. Malaysian Math. Sci. Soc.*, **25** (2002), 115–128.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41. https://doi.org/10.2307/2312781
- [11] A. S. Mashhour, M. E. Abd El-Mansef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc.*, Egypt Vol. 53, (1982), 47–53.
- [12] M. Mrsevic, On pairwise R_0 and pairwise R_1 bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, **30** (1986), 141-148.
- [13] B. M. Munshi and D. S. Bassan, Almost-semi continuous mappings, *Math. Student*, **49** (1981), 239–248.
- [14] J. R. Porter and R. C. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York, 1988. https://doi.org/10.1007/978-1-4612-3712-9

[15] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., **78** (1968), no. 2, 103–118. https://doi.org/10.1090/trans2/078/05

Received: June 15, 2018; Published: July 6, 2018