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Abstract

A cactus graph is a connected graph in which any two cycles have
at most one vertex in common. Let γ(G) and γc(G) be the domination
number and connected domination number of a graph G, respectively.
We can see that γ(G) ≤ γc(G) for any graph G. S. Arumugam and J.
Paulraj Joseph [1] have characterized trees, unicyclic graphs and cubic
graphs with equal domination and connected domination numbers. A
few years later, Xue-gang Chena, Liang Suna, Hua-ming Xing [3] char-
acterized the cactus graphs for which the domination number is equal
to the connected domination number. Their characterization is in terms
of global properties of a construction. In this paper, we provide a con-
structive characterization of the cactus graphs with equal domination
and connected domination numbers.
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1 Introduction

A dominating set for a graph G is a subset S ⊆ V (G) such that every vertex
not in S is adjacent to at least one member of S (i.e. NG[S] = V (G)). A
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dominating set S is called a connected dominating set if the induced subgraph
≺ S � is connected. The domination number (resp. connected domination
number) γ(G)(resp.γc(G)) ofG is defined to be the minimum cardinality among
all dominating sets (resp. all connected dominating sets) of G. A dominating
set of cardinality γ(G) in G is said to be a γ-set. A connected dominating set
of cardinality γc(G) in G is said to be a γc-set. A set S is a γ-set and γc-set of
G, then we call S a (γ, γc)-set of G.

One of the fastest growing areas within graph theory is the study of dom-
ination and related subset problems. A dominating set have been proposed
as a virtual backbone for routing in wireless ad hoc networks (see [8]). The
topology of such wireless ad hoc network can be modeled as a unit-disk graph
(UDG), a geometric graph in which two vertices are adjacent if and only if
their distance is at most one. A dominating set of a wireless ad hoc network
is a dominating set of the corresponding UDG. The research of domination in
graphs are initiated by Ore [7]. Domination and its variations in graphs are
well studied, a lot of papers have been written on this topic (see [4],[5],[6]).

2 Notations and preliminary results

All graphs considered in this paper are finite, loopless, and without multiple
edges. For a graph G, V (G) and E(G) denote the vertex set and the edge set
of G, respectively. The cardinality of V (G) is called the order of G, denoted
by |G|. The (open) neighborhood NG(v) of a vertex v is the set of vertices
adjacent to v in G, and the close neighborhood NG[v] is NG(v) ∪ {v}. For any
subset A ⊆ V (G), denote NG(A) =

⋃
v∈ANG(v) and NG[A] =

⋃
v∈ANG[v].

The degree of v is the cardinality of NG(v), denoted by degG(v). A vertex x
is said to be a leaf if degG(x) = 1. A vertex of G is a support vertex if it is
adjacent to a leaf in G. Two leaves u and v are called the duplicated leaves in G
if they are adjacent to the same support vertex. We denote by L(G) and U(G)
the collections of all leaves and support vertices of G, respectively. We denote
by L̃(G) the collection of all duplicated leaves, and we denote by Ũ(G) the
collection of all support vertices which are adjacent to some duplicated leaves.
For two different sets A and B, written A−B is the set of all elements of A that
are not elements of B. For an edge e ∈ E(G) , the deletion of e from G is the
graph G−e obtained by removing the edge e. The union of two disjoint graphs
G1 and G2 is the graph G1 ∪G2 with vertex set V (G1 ∪G2) = V (G1)∪ V (G2)
and edge set E(G1∪G2) = E(G1)∪E(G2). A forest is a graph with no cycles,
and a tree is a connected forest. Denote Cn a cycle of order n. A graph G is
called a cactus graph if it is a connected graph in which any two cycles have
at most one vertex in common. For other undefined notions, the reader is
referred to [2] for graph theory.

We need the following lemmas.
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Lemma 2.1. If G is a cactus graph with at least three vertices, then there
exists a γ-set S of G such that U(G) ⊆ S.

Proof. Let S be a γ-set S of G. If U(G) ⊆ S, then we are done. So we assume
that A = U(T ) − S, where A 6= ∅. Let B = L(T ) ∩ NG(A). Then B ⊆ S
and |B| ≥ |A|. Let S ′ = (S − B) ∪ A. Note that NG[B] ⊂ NG[A]. Then
NG[S ′] = V (G), so S ′ is a dominating set of G. Thus |S| = γ(G) ≤ |S ′| =
|S|−|B|+|A| ≤ |S|. Hence we obtain a γ-set S ′ of G such that U(G) ⊆ S ′.

Lemma 2.2. If S is a γc-set of a cactus graph G, then U(G) ⊆ S.

Proof. Suppose there exists a support vertex v /∈ S for some γc-set S in G. Let
L′ = NG(v) ∩ L(G). Then L′ ⊂ S. This contradicts that ≺ S � is connected.
We complete the proof.

Lemma 2.3. If S is a (γ, γc)-set of a cactus graph G, then U(G) ⊆ S.

Proof. It is a consequence of Lemma 2.1 and Lemma 2.2.

Lemma 2.4. Suppose G is a cactus graph and v is lying on some cycle C in
G. Let S be a (γ, γc)-set of G. If degG(v) ≥ 3, then v ∈ S .

Proof. If v is a support vertex, by Lemma 2.3, then v ∈ S. So we assume that
v /∈ U(G). Since G is a cactus graph and degG(v) ≥ 3, G− v is disconnected.
Note that ≺ S � is connected, thus v ∈ S. We complete the proof.

Lemma 2.5. Suppose G is a cactus graph and C is a cycle of G. If S is a
(γ, γc)-set of G and A = {v : v ∈ V (C), v /∈ S}, then we have the following
results.

(i) A = ∅ or ≺ A � is connected.

(ii) degG(v) = 2 for each v ∈ A.
(iii) |A| ≤ 2.

Proof. (i) Let S ′ = S ∩ V (C). Then ≺ S ′ � is connected, so A = ∅ or ≺ A �
is connected. (ii) If degG(u) ≥ 3 for some u ∈ A, by Lemma 2.4, then u ∈ S.
This is a contradiction, so degG(v) = 2 for each v ∈ A. (iii) Suppose |A| ≥ 3,
say A = {v1, v2, v3, . . . }. By (ii), degG(v2) = 2 and NG[v2] = {v1, v2, v3}. Thus
S ∩ NG[v2] = ∅. This means that S is not a dominating set of G. It is a
contradiction, so |A| ≤ 2.

Lemma 2.6. Let G be a cactus graph and C be a cycle of G. Suppose S is a
(γ, γc)-set of G and A = {v : v ∈ V (C), v /∈ S}. If |A| ≤ 1, then v ∈ U(G) for
each v ∈ B, where B = V (C)− A.
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Proof. We can see that B = S∩V (C). If |A| ≤ 1, then |NG[v]∩S∩V (C)| ≥ 2
for each v ∈ V (C). Suppose there exists a vertex u ∈ B such that u /∈ U(G).
Let S ′ = S − {u}. If degG(u) = 2, then |NG(u) ∩ S ∩ V (C)| ≥ 1. So u ∈
NG[S ′] and NG[S ′] = V (G), thus S ′ is a dominating set of G of cardinality
|S ′| = |S| − 1. This is a contradiction, so degG(u) ≥ 3. Since degG(u) ≥ 3 and
u /∈ U(G), G−u is disconnected and every component of G−u has at least two
vertices. Let D = NG(u) − V (C). Note that ≺ S � is connected, this means
that D ⊂ S. Thus u ∈ NG[D]. Then u ∈ NG[S ′] and NG[S ′] = V (G), so S ′

is a dominating set of G of cardinality |S ′| = |S| − 1. This is a contradiction
again. Hence v ∈ U(G) for each v ∈ B. We complete the proof.

Lemma 2.7. [1] For k ≥ 1 and a tree T of order |T | ≥ 2k, γc(T ) = γ(T ) = k
if and only if V (T ) = U(T ) ∪ L(T ), where |U(T )| = k.

3 Characterization

Xue-gang Chena, Liang Suna, Hua-ming Xing [3] characterized the cactus
graphs for which the domination number is equal to the connected domination
number. Their characterization is in terms of global properties of a construc-
tion. In this section, we provide a constructive characterization (Theorem
3.1) of the cactus graphs with equal domination and connected domination
numbers.

For m ≥ 0 and k ≥ 1, let G(m, k) be the collection of all cactus graphs
G which have exactly m cycles and γc(G) = γ(G) = k. In order to give a
constructive characterization of G(m, k), we introduce four operations.

Operation O1. Assume u, v ∈ U(Gi), where uv /∈ E(Gi), and the u-v path
is unique in Gi. Add the edge uv.

Operation O2. Assume u ∈ L̃(Gi), v ∈ U(Gi), and the u-v path is unique in
Gi. Add the edge uv.

Operation O3. Assume u, v ∈ L̃(Gi) are adjacent to the same support
vertices in Gi. Add the edge uv.

Operation O4. Assume u ∈ L(Gi), v ∈ L̃(Gi), and the u-v path is unique in
Gi. Add the edge uv.

Let Ψ(0, k) be the collection of the tree T which are V (T ) = U(T ) ∩ L(T )
and |U(T )| = k. By Lemma 2.7, we obtain that Ψ(0, k) = G(0, k) for all
k ≥ 1. Suppose Ψ(m, k), where m ≥ 1 and k ≥ 1, is the collection of the
cactus graphs G, where G have exactly m cycles, that can be obtained from a
sequence G0, G1, . . . , Gm = G of cactus graphs, where Gi ∈ Ψ(i, k), and Gi+1

is obtained recursively from Gi by one of the operation O1-O4.
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Theorem 3.1. (Characterization) For m ≥ 0 and k ≥ 1,

G(m, k) =

{
Ψ(m, k), if m 6= 2 ;
Ψ(m, k) ∪ {C4}, if m = 2,

where C4 is the cycle of order four.

In order to prove the Theorem 3.1, we first prove the Lemma 3.2 and
Lemma 3.3.

Lemma 3.2. For m ≥ 0 and k ≥ 1, Ψ(m, k) ⊆ G(m, k).

Proof. We prove this lemma by induction on m ≥ 0. It’s true for m = 0.
Assume that it’s true for m− 1, where m ≥ 1. Suppose G ∈ Ψ(m, k) and C is
a cycle of G. Since G ∈ Ψ(m, k), G is obtained from some G′ ∈ Ψ(m − 1, k)
by one operation of O1-O4, say G′ = G − uv. By induction hypothesis, G′ ∈
G(m− 1, k). Thus G is a cactus graph and G have exactly m cycles. Let S be
a (γ, γc)-set of G′. By Lemma 2.3, U(G′) ⊆ S. Note that G′ = G− uv. So S
is a dominating set and connected dominating set of G.
Claim. S is a (γ, γc)-set of G. We consider four cases.
Case 1. G is obtained from G′ by Operation O1. Then u, v ∈ U(G′) and
U(G) = U(G′). So u, v ∈ U(G), by Lemma 2.3, u and v are in every (γ, γc)-set
of G. Note that G′ = G− uv, hence S is a (γ, γc)-set of G.
Case 2. G is obtained from G′ by Operation O2. Let NG(u) ∩ U(G′) = {u′}.
Then u′ ∈ Ũ(G′), v ∈ U(G′) and U(G) = U(G′). So u′, v ∈ U(G), by Lemma
2.3, u and v are in every (γ, γc)-set of G. Note that G′ = G − uv, hence S is
a (γ, γc)-set of G.
Case 3. G is obtained from G′ by Operation O3. Then u and v are duplicated
leaves adjacent to the same support vertex w in G′. Then we can see that
U(G′) = U(G) ∪ {w} and w ∈ S. Thus w is in in every (γ, γc)-set of G. Note
that G′ = G− uv, hence S is a (γ, γc)-set of G.
Case 4. G is obtained from G′ by Operation O4. Let NG(u) ∩ U(G′) = {u′}
and NG(v) ∩ U(G′) = {v′}, where u′ ∈ Ũ(G′). Thus u′, v′ ∈ U(G′), by Lemma

2.3, u′, v′ ∈ S. Note that u′ ∈ Ũ(G′), so u ∈ U(G). By Lemma 2.3, u′ ∈ S and
u /∈ S. Since NG(v) = {u, v′} and u /∈ S, hence S is a (γ, γc)-set of G.

By Case 1, Case 2, Case 3 and Case 4, S is a (γ, γc)-set of G. Hence G is
a cactus graph having exactly m cycles and γc(G) = γ(G) = |S| = k. That is
G ∈ G(m, k). So it’s true for m. We complete the proof.

Lemma 3.3. If G ∈ G(m, k) and G 6= C4, where m ≥ 0 and k ≥ 1, then
G ∈ Ψ(m, k).

Proof. Note that C4 is not a tree, so it’s true for m = 0. We prove this lemma
by contradiction, assume it’s not true for some m′ ≥ 1. Suppose there exists
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a graph G ∈ G(m∗, k), G /∈ Ψ(m∗, k) and G 6= C4 such that m∗ is as small as
possible. Then m∗ ≥ 1. Assume that C : v1, v2, . . . , vn, v1 is a cycle of G. Let
S be a (γ, γc)-set of G and A = {v : v ∈ V (C), v /∈ S}. By Lemma 2.5, |A| ≤ 2
and degG(v) = 2 for each v ∈ A. We consider three cases.

Case 1. |A| = 0. By Lemma 2.6, vi ∈ U(G) for each i. Let G′ = G − v1v2
be the deletion of the edge v1v2 from G. Then vi ∈ U(G′) and vi ∈ S for all i,
by Lemma 2.3, so S is a (γ, γc)-set of G′. Note that G′ is a cactus graph with
m∗− 1 cycles and γc(G

′) = γ(G′) = |S| = k. That is G′ ∈ G(m∗− 1, k), by the
hypothesis, G′ ∈ Ψ(m∗ − 1, k). Note that v1, v2 ∈ U(G′). Hence G is obtained
from G′ ∈ Ψ(m∗ − 1, k) by the Operation O1. Thus G ∈ Ψ(m∗, k), this is a
contradiction.

Case 2. |A| = 1, say A = {v1}. By Lemma 2.6, vi ∈ U(G) for all i 6= 1. Let
G′ = G− v1v2 be the deletion of the edge v1v2 from G. Then vi ∈ U(G′) and
vi ∈ S for all i 6= 1, by Lemma 2.3, so S is a (γ, γc)-set of G′. Note that G′

is a cactus graph with m∗ − 1 cycles and γc(G
′) = γ(G′) = |S| = k. That is

G′ ∈ G(m∗−1, k), by the hypothesis, G′ ∈ Ψ(m∗−1, k). Note that v1 ∈ L̃(G′)
and v2 ∈ U(G′). Hence G is obtained from G′ ∈ Ψ(m∗−1, k) by the Operation
O2. Thus G ∈ Ψ(m∗, k), this is a contradiction.

Case 3. |A| = 2, say A = {v1, v2}. By Lemma 2.6, degG(v1) = degG(v2) = 2.
Let G′ = G − v1v2 be the deletion of the edge v1v2 from G. Note that G′

is a cactus graph with exactly m∗ − 1 cycles. If |C| = 3, then v1 and v2
are duplicated leaves adjacent to the vertex v3 in G′. Then v3 ∈ U(G′) and
v3 ∈ S, so S is a (γ, γc)-set of G′, thus γc(G

′) = γ(G′) = |S| = k. That is
G′ ∈ G(m∗ − 1, k), by the hypothesis, G′ ∈ Ψ(m∗ − 1, k). Note that v1 and
v2 are duplicated leaves adjacent to the vertex v3 in G′. Hence G is obtained
from G′ ∈ Ψ(m∗ − 1, k) by the Operation O3, thus G ∈ Ψ(m∗, k). This is a
contradiction, so |C| ≥ 4. We consider two subcases.

Case 3.1. v3 ∈ U(G) or vn ∈ U(G), say vn ∈ U(G). Then vi ∈ U(G′)
and vi ∈ S for all i 6= 1, 2, by Lemma 2.3, so S be a (γ, γc)-set of G′. Then
vi ∈ U(G′) and vi ∈ S for all i 6= 1, 2, by Lemma 2.3, so S is a (γ, γc)-set of G′.
Thus γc(G

′) = γ(G′) = |S| = k. That is G′ ∈ G(m∗ − 1, k), by the hypothesis,

G′ ∈ Ψ(m∗− 1, k). Note that v1 ∈ L̃(G′) and v2 ∈ L(G′). Hence G is obtained
from G′ ∈ Ψ(m∗ − 1, k) by the Operation O4. Thus G ∈ Ψ(m∗, k), this is a
contradiction.

Case 3.2. v3 /∈ U(G) and vn /∈ U(G). Let S ′ = S − {v3, vn}. If |C| ≥ 5,
then v4, . . . , vn−1 ∈ S ′ and NG[S ′ ∪ {v1}] = V (G). So γ(G) ≤ |S ′ ∪ {v1}| =
|S| − 1 = k − 1. This is a contradiction, thus |C| = 4. If degG(v3) ≥ 3, then
NG[S ′ ∪ {v1}] = V (G). So γ(G) ≤ |S ′ ∪ {v1}| = |S| − 1 = k − 1. This is a
contradiction, thus degG(v3) = 2. Similarly, degG(vn) = 2. That is G = C4,
this is a contradiction again.

By Case 1, Case 2 and Case 3, it’s a contradiction. We complete the
proof.
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As an immediate consequence of Lemma 3.2 and Lemma 3.3, we obtain the
Theorem 3.1.
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