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Abstract

In this note, we mainly obtain the equation x2m − yn = z2 have
finite positive integer solutions (x, y, z,m, n) satisfying x > y be two
consecutive primes.
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1 Introduction and main results

In 1844, Catalan proposed the following conjecture.

Conjecture 1.1 The only two consecutive numbers in the sequence of perfect
powers of natural numbers

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, . . .

are 8 and 9.
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and the Specialized Research Fund for the Doctoral Program of Higher Education of China
(Grant No. 20133207110012).
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Between 2000 and 2004, Mihăilescu [9], [10] proved this conjecture is true.
Before this, there are many efforts on the Catalan Conjecture and a series of
such equations were studied. As a general case, the Diophantine equation

axm − byn = c, a, b, c, x, y,m, n ∈ Z

was extensive studied by many experts. One can see [3], [8], [5], [6] for more
detail.

In this note, we consider the following equation

xm − yn = z2. (1.1)

In 2002, Le [7] showed that the equation (1.1) has no solution for y = 2 and
2|n. In 2008, Bérczes and Pink [2] gave the solution about the equation (1.1)
in the case that y = p, 2|n, and 2 ≤ p < 100. In 2016, Ventullo [13] gave some
examples to the equation (1.1) in the case that x > y are two consecutive
primes.

We continue to study the equation (1.1) as in [13] which consider the case
that x > y are two consecutive primes. It is obviously that (m,n, z) = (0, 0, 0)
is a solution for any given consecutive primes p, q to the equation (1.1). We
call this solution as trivial solution. It is nature to ask the question that does
there exists consecutive primes p, q such that the equation (1.1) has only the
trivial solution? Actually, we have the following result:

Theorem 1.1 There are infinitely many consecutive primes p and q (p > q)
such that the equation

pm − qn = z2

has only the trivial solution.

Anther question is that dose it have finite solutions if the equation (1.1)
have non-trivial solutions. In fact, we obtain:

Theorem 1.2 Let p, q be two primes. Then the equation

p2m − qn = z2

has at most one non-trivial solution (m,n, z) in natural number except q = 2.

Theorem 1.3 There are only finite solutions (x, y, z,m, n) to the equation

x2m − yn = z2

in natural number such that x > y be two consecutive primes.
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2 Some lemmas

In this section, we give some examples and some useful lemmas.

Lemma 2.1 ( [12]) Let A be a discrete valuation ring, and let xi be element
of the field of fractions of A such that v(xi) > v(x1) for i ≥ 2. One then has
n∑
i=1

xi 6= 0.

Lemma 2.2 Let p be a prime and n a natural number. Then ordp(n) ≤
log n/ log p. Moreover, if n > 2, then ordp(n(n− 1)) < n− 1.

Lemma 2.3 Let m,n be two positive integers. Then
n∑

m=0

(
2n+ 1

2m+ 1

)
(−1)m+12m 6= −1.

Proof: Firstly, we assume that
n∑

m=0

(
2n+ 1

2m+ 1

)
(−1)m+12m = −1.

Then

−2n+

(
2n+ 1

3

)
2−

(
2n+ 1

5

)
22 +

n∑
m=3

(
2n+ 1

2m+ 1

)
(−1)m+12m = 0.

By Lemma 2.2, for m = 3, 4, . . . , n,

ord2


(

2n+ 1

2m+ 1

)
(−1)m+12m(

2n+ 1

5

)
22

 = m− 1 + ord2

((
2n− 4

2m− 4

))
− ord2(m(m− 1))

> ord2

((
2n− 4

2m− 4

))
≥ 0.

Then we obtain

ord2

((
2n+ 1

2m+ 1

)
(−1)m+12m

)
> ord2

(
−
(

2n+ 1

5

)
22

)
≥ ord2

((
2n+ 1

3

)
2

)
= ord2(−2n).

On the other hand,

ord2

((
2n+ 1

3

)
2− 2n

)
= ord2(8n(n−1)) > ord2(2n(n−1)) = ord2

(
−
(

2n+ 1

5

)
22

)
.

Then by Lemma 2.1, the equation is impossible. Thus the proof of Lemma 2.3
is finished.
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Proposition 2.1 The only pairs of natural numbers (x, y) such that 3x − 2y

is a perfect square are (0, 0), (1, 1), (2, 3), (3, 1), (4, 5).

Proof: Let
3x − 2y = z2 (2.1)

Clearly, if x < 5, then the integer solutions are (x, y, z) = (0, 0, 0), (1, 1, 1),
(2, 3, 1), (3, 1, 5), (4, 5, 7). We will prove that there are no solution in natural
numbers for any x ≥ 5.

If (x, y, z) is a solution of the equation 2.1, then

−2y ≡ z2 (mod 3).

So y is odd. If y = 1, then 3x − 2 = z2. Clearly, x is odd, otherwise z2 ≡ −1
(mod 4), which is impossible. In the ring of integers Z[

√
−2], we have

3x = (z −
√
−2)(z +

√
−2).

n −
√
−2 and n +

√
−2 is coprime in Z[

√
−2]. Otherwise, let d = gcd(n −√

−2, n +
√
−2). Then |N(d)| > 1 and d|2

√
−2, so N(d)|8, which impossible

since N(d)|9. We have 3 = (1 −
√
−2)(1 +

√
−2), so we have n −

√
−2 =

±(1 −
√
−2)x or n −

√
−2 = ±(1 +

√
−2)x. Consider the imaginary part of

equation n−
√
−2 = (1−

√
−2)x or n+

√
−2 = (1 +

√
−2)x. We obtain

−1 =
x∑

k=1,k odd

(
x

k

)
(−1)

k+1
2 2

k−1
2 .

This is impossible by Lemma 2.3. Then we have y ≥ 2. Hence 3x ≡ z2

(mod 4). So x is even. Therefore, equation 2.1 becomes (3
x
2 − z)(3

x
2 + z) = 2y.

It follows that gcd(3
x
2 − z, 3x

2 + z) = gcd(3
x
2 − z, 2 · 3x

2 ) = 2. Thus, 3
x
2 − z = 2,

and 3
x
2 − z = 2y−1. So we get

3
x
2 − 2y−2 = 1.

By Catalan’s conjecture, the only positive integer solution of this equation is
(x, y) = (4, 5), contradiction. Thus the proof of Proposition 2.1 is finished.

Let α be an algebraic number with minimal polynomial

f(x) = a0x
d + a1x

d−1 + · · ·+ xd ∈ Z[x],

where a0 > 0. Then we can write f(x) = a0

∏d
i=1(x − σiα), where σ1α, · · · ,

σdα are all conjugates of α. Let

h(α) =
1

d

(
log a0 +

d∑
i=1

logmax{1, |σiα|}
)

be the absolute logarithmic height of α.
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Lemma 2.4 (See [1]) Denote by α1, α2, . . . , αn algebraic numbers, not 0 or 1,
by logα1, logα2, . . . , logαn determinations of their logarithms, byD the degree
over Q of the number field K = Q(α1, α2, . . . , αn), and by b1, b2, . . . , bn rational
integers. DefineB = max{|b1|, |b2|, . . . , |bn|}, andAi = max{Dh(αi), | logαi|, 0.16}
for all 1 ≤ i ≤ n, where h(α) denotes the absolute logarithmic height of α.
Assume that the number Λ = b1 logα1 + b2 logα2 + . . . + bn logαn does not
vanish, then

|Λ| ≥ exp{−C(n, λ)D2A1A2 . . . An log(eD) log(eB)},

where λ = 1 if K ⊆ R and λ = 2 otherwise and

C(n, λ) = {1

λ
(
en

2
)λ30n+3n3.5, 26n+10}.

Lemma 2.5 Let pn denote the n-th prime. Then
(1) pn ≤ n log n+ n log log n for n ≥ 6.
(2) pn ≥ n log n+ n(log log n− 1) for n ≥ 2.

Proof: (1) was proved by J. B. Rosser and L. Schoenfeld [11] in 1962, and
(2) was proved by P. Dusart [4] in 1999.

Lemma 2.6 Let p, q be two odd primes. If (m0, n0) is a solution of

2pm − qn = 1

with m0, n0 > 0, then n0 = 2s for some nonnegative integer s.

Proof: Let (m0, n0) be a solution of 2pm − qn = 1. Suppose that there
exists an odd prime l dividing n0, we have n0 = kl for some integer k ≥ 1.
Then

2pm0 = qn0 + 1 = qkl + 1 = (qk + 1)(qk(l−1) − qk(l−2) + . . .+ 1).

Hence we have
qkl + 1

qk + 1
= qk(l−1) − qk(l−2) + . . .+ 1 > l. (2.2)

and qk + 1 = 2pm1 , for some 1 ≤ m1 < m0. Therefore,

pm0−m1 =
qkl + 1

qk + 1
=

(2pm1 − 1)l + 1

2pm1
=

l∑
i=1

(
l

i

)
(2pm1)i−1(−1)l−i. (2.3)

Modulo p in both side of the equation (2.3), we obtain

0 ≡
l∑

i=1

(
l

i

)
(2pm1)i−1(−1)l−i ≡ l (mod p).
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This force l = p. Then by equation (2.2) we have pm0−m1 > p.
On the other hand, modulo p2 in both side of the equation (2.3), we have

pm0−m1 =
l∑

i=1

(
l

i

)
(2pm1)i−1(−1)l−i ≡ p (mod p2).

This force pm0−m1 = p, contradiction. So n0 = 2s for some integer s.

Lemma 2.7 For any fixed integer n > 0, the equation 2xm−yn = 1 has finite
solutions (x, y,m) ∈ Z>0 such that x > y are two consecutive primes.

3 Proof of main results

Proof of Theorem 1.1
We will proof that if p, q satisfy the condition that

p ≡ 3 (mod 4), q ≡ 1 (mod 4) (3.1)

then px−qy = z2 has no nontrivial integer solution. Otherwise, let (x, y, z) is a
solution. Then px − qy ≡ 0 (mod 4), so 2|x. Therefore, the equation becomes

(p
x
2 − z)(p

x
2 + z) = qy.

It follows that p
x
2 − z = 1 and p

x
2 + z = qy, since gcd(p

x
2 − z, px

2 + z) = 1. So
we get

2 · p
x
2 = 1 + qy.

In the other hand, Modulo p in the equation, we obtain −qy ≡ z2 (mod p). So
y must be odd, since (−1

p
) = −1. Hence we have

2 · p
x
2 = 1 + qy = (1 + q)(qy−1 − qy−2 + . . .+ 1),

so 2p|(1 + q), it is contradict with p > q.
At last, there are infinitely many consecutive primes p and q (p > q) that

satisfy the condition 3.1. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2
By Proposition 2.1, we see that there are 3 solutions when (p, q) = (3, 2).

In the following, we suppose that q > 2. Assume the assertion is false, that is,
that there exists two different non-trivial solutions (x1, y1), (x2, y2) such that
x2 > x1 ≥ 1. Then {

p2x1 − qy1 = z2
1 ,

p2x2 − qy2 = z2
2 .
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So we obtain

(px1 − z1)(px1 − z1) = qy1 .

It follows that px1 − z1 = qa and px1 + z1 = qb, where a, b ∈ N and a+ b = y1.
Thus gcd(px1 − z1, p

x1 + z1) = qa. Hence qa | 2px1 . So we get a = 0 because
q > 2. Then we obtain

2px1 − qy1 = 1.

Similarly, we have

2px2 − qy2 = 1.

If p = 2. Then we have 2xi+1− 1 = qyi , i = 1, 2. Hence, x1 + 1 and x2 + 1
are primes. Thus, gcd(2x1+1 − 1, 2x2+1 − 1) = 2gcd(x1+1,x2+1) − 1 = 1, which is
impossible.

If p > 2. Then by Lemma 2.6, we obtain that there exist an integer s > 0
such that y2 = 2sy1. Thus

2px2 = 1 + qy2 = 1 + (2px1 − 1)2s .

Modulo p in both side of this equation, we have 0 ≡ 2 (mod p), a contradic-
tion. This completes the proof of Theorem 1.2.

Proof of Theorem 1.3

Let p > q be two consecutive primes that bigger than 2. Then by the proof
of Theorem 1.2, we have p2m − qn = z2 is equal to 2pm − qn = 1. Hence, it is
enough to prove that the equation

2xm − yn = 1 (3.2)

only have finite solutions (x, y,m, n) in natural number such that x > y be
two consecutive primes.

By Lemma 2.7, the equation (3.2) only have finite solutions for n < 16.
Hence we consider the case n ≥ 16. Let pk be the k-th prime, m, n positive
integers, and let

S0 = {(pk+1, pk,m, n) | 2pmk+1 − pnk = 1, n ≥ 16}.

We shall show that the set S0 finite. Set

S1 = {(pk+1, pk,m, n) | k + 1 > en
3/4},

S2 = {(pk+1, pk,m, n) | k + 1 < en
3/4}.

Then it’s enough to prove that the sets S0 ∩ S1 and S0 ∩ S2 are all finite.
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Let (pk+1, pk,m, n) ∈ S0∩S1. Then we have pk+1 > pk ≥ k+ 1 > en
3/4
. For

n ≥ 16, by Lemma 2.5, we have

ε =
pk+1 − pk

pk

<
(k + 1) log(k + 1) + (k + 1) log log(k + 1)− k log−k(log log k − 1)

pk

<
2 log(k + 1) + k + 3

pk

<
2k

pk
<

2

log k
≤ 1√

n
.

Then we get 1 = pm(2(1 + ε)m − pn−mk ). So for n > 7,

pk ≤ pn−mk < 2(1 + ε)m < 2(1 +
1√
n

)n < 2en
1/2

<
1

2
en

3/4

<
1

2
pk+1.

which is impossible. Hence, we obtain S0 ∩ S1 = ∅.
Let (pk+1, pk,m, n) ∈ S0 ∩ S2. We consider the linear form

Λ = m log pk+1 − n log pk + log 2.

Then we have Λ < eΛ−1 = 1
pnk
. So log Λ < −n log pk. Now we apply Lemma 2.4

with D = 1, α1 = pk+1, α2 = pk and α3 = 2. Therefore, we take A1 = log pk+1,
A2 = log pk, A3 = 2, B = n. So we have

log Λ > −9.65 · 1010 log pk+1 log pk log(en).

Therefore we have
n

log pk+1 log(en)
< 9.65 · 1010.

On the other hand, from k + 1 < en
3/4

, we have for n > 4,

pk+1 < 2(k + 1)log(k + 1) = 2en
3/4 · n3/4 < en

4/5

.

So we obtain
n < 7 · 1065.

Then by Lemma 2.7, we have S0 ∩ S2 is finite.
This complete the proof of Theorem 1.3.
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