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Abstract

In this paper we complete the determination of the k-th (3 ≤ k ≤
bn/2c − 1) largest numbers of maximal independent sets among all
forests of order n ≥ 8 and characterize the extremal graphs.
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1 Introduction

Let G = (V,E) be a simple undirected graph. A subset I ⊆ V is independent
if there is no edge of G between any two vertices of I. A maximal independent
set is an independent set that is not a proper subset of any other independent
set. The set of all maximal independent sets of G is denoted by MI(G) and its
cardinality by mi(G).

The problem of determining the largest value of mi(G) in a general graph of
order n and those graphs achieving the largest number was proposed by Erdös
and Moser, and solved by Moon and Moser [6]. It was then studied for various
families of graphs, including trees, forests, (connected) graphs with at most one
cycle, (connected) triangle-free graphs, (k-)connected graphs, bipartite graphs;
for a survey see [4]. Later, Jin and Li [1] determined the second largest number
of maximal independent sets among all graphs of order n. As for trees and
forests, it was solved by Jou and Lin [5].



52 Min-Jen Jou and Jenq-Jong Lin

The purpose of this paper is to determine the k-th (3 ≤ k ≤ bn/2c − 1)
largest number of maximal and maximum independent sets among all forests
of order n ≥ 8. Extremal graphs achieving these values are also given.

2 Preliminary

For our discussions, some terminology and notation are needed. For a graph
G = (V,E), the cardinality of V (G) is called the order, and it is denoted by
|G|. For a set A ⊆ V (G), the deletion of A from G is the graph G−A obtained
from G by removing all vertices in A and their incident edges. Two graphs G1

and G2 are disjoint if V (G1) ∩ V (G2) = ∅. The union of two disjoint graphs
G1 and G2 is the graph G1 ∪G2 with vertex set V (G1 ∪G2) = V (G1)∪ V (G2)
and edge set E(G1 ∪ G2) = E(G1) ∪ E(G2). Let nG be the short notation
for the union of n copies of disjoint graphs isomorphic to G. A component of
odd (respectively, even) order is called an odd (respectively, even) component.
Denote by Pn a path with n vertices. Throughout this paper, for simplicity,
let r =

√
2.

The following results are essential for our discussions.

Lemma 2.1. ([2]) If G is the union of two disjoint graphs G1 and G2, then
mi(G) = mi(G1) ·mi(G2).

The results of the largest numbers of maximal independent sets among all
trees and forests are described in Theorems 2.2 and 2.3, respectively.

Theorem 2.2. ([2, 3]) If T is a tree with n ≥ 1 vertices, then mi(T ) ≤ t1(n),
where

t1(n) =

{
rn−2 + 1, if n is even ,
rn−1, if n is odd.

Furthermore, mi(T ) = t1(n) if and only if T = T1(n), where

T1(n) =

{
B(2, n−2

2
) or B(4, n−4

2
), if n is even ,

B(1, n−1
2

), if n is odd.

where B(i, j) is the set of batons, which are the graphs obtained from the basic
path P of i ≥ 1 vertices by attaching j ≥ 0 paths of length two to the endpoints
of P in all possible ways (see Figure 1).

Theorem 2.3. ([2, 3]) If F is a forest with n ≥ 1 vertices, then mi(F ) ≤
f1(n), where

f1(n) =

{
rn, if n is even ,
rn−1, if n is odd.
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Figure 1: The baton B(i, j) with j = j1 + j2

Furthermore, mi(F ) = f1(n) if and only if F = F1(n), where

F1(n) =


n
2
P2, if n is even ,

B(1, n−1−2s
2

) ∪ sP2

for some s with 0 ≤ s ≤ n−1
2

, if n is odd.

The results of the second largest numbers of maximal independent sets
among all trees and forests are described in Theorems 2.4 and 2.5, respectively.

Theorem 2.4. ([5]) If T is a tree with n ≥ 4 vertices having T 6= T1(n), then
mi(T ) ≤ t2(n), where

t2(n) =


rn−2, if n is even ,
3, if n = 5 ,
3rn−5 + 1, if n is odd.

Furthermore, mi(T ) = t2(n) if and only if T = T ′2(8), T ′′2 (8), P10, or T2(n),
where T2(n) and T ′2(8), T ′′2 (8) are shown in Figures 2 and 3, respectively.
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Figure 2: The trees T2(n)
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Figure 3: The trees T ′2(8) and T ′′2 (8)

Theorem 2.5. ([5]) If F is a forest with n ≥ 4 vertices having F 6= F1(n),
then mi(F ) ≤ f2(n), where

f2(n) =


3rn−4, if n is even ,
3, if n = 5 ,
7rn−7, if n is odd.
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Furthermore, mi(F ) = f2(n) if and only if F = F2(n), where

F2(n) =


P4 ∪ n−4

2
P2, if n ≥ 4 is even ,

T2(5) or P4 ∪ P1, if n = 5 ,
P7 ∪ n−7

2
P2, if n ≥ 7 is odd.

3 Main results

In this section we determine the k-th (3 ≤ k ≤ bn/2c − 1) largest values
of mi(G) among all forests of order n ≥ 8. Moreover, the extremal graphs
achieving these values are also determined.

Define the graphs Fi(n), i = 3, 4, . . . , bn/2c − 1 and F ′4(n) of order n ≥ 8
as follows.

Fi(n) =

{
T1(2i) ∪ F1(n− 2i), if n ≥ 8 is even,
T2(2i + 3) ∪ F1(n− 2i− 3), if n ≥ 9 is odd,

and
F ′4(n) = 2T1(4) ∪ F1(n− 8), for n is even.

Let fi(n) = mi(Fi(n)). For simple calculation, we have that

fi(n) =

{
rn−2 + rn−2i, if n ≥ 8 is even,
3rn−5 + rn−2i−3, if n ≥ 9 is odd,

and
mi(F ′4(n)) = 9rn−8, for n is even.

In this paper we will prove the following result.

Theorem 3.1. For integers k and n with n ≥ 8 and 3 ≤ k ≤ bn/2c − 1.
If F is a forest of order n having F 6= Fi(n), for i = 1, 2 . . . , k − 1, then
mi(F ) ≤ fk(n). Furthermore, the equality holds if and only if F = Fk(n) or
F ′4(n) with n is even, k = 4.

Proof. Let F be a forest of order n ≥ 8 having F 6= Fi(n), for i = 1, 2 . . . , k−1
and 3 ≤ k ≤ bn/2c−1, such that mi(F ) is as large as possible. Then mi(F ) ≥
fk. We consider the following two cases.

Case 1. n is even. Suppose that there exist two odd components H1 and
H2 of F , where |Hi| = mi for i = 1, 2. By Lemma 2.1, Theorems 2.2 and 2.3,
we have that

fk(n) = rn−2 + rn−2k

≤ mi(F )

= mi(H1) ·mi(H2) ·mi(F − (V (H1) ∪ V (H2)))

≤ rm1−1 · rm2−1 · rn−m1−m2

= rn−2

< fk(n),
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which is a contradiction. Hence F has no odd component. Since F 6= F1(n),
there exists a component H of even order m ≥ 4.

Suppose that F−V (H) 6= F1(n−m), By Lemma 2.1, Theorems 2.2 and 2.5,
we have that

fk(n) = rn−2 + rn−2k

≤ mi(F )

= mi(H) ·mi(F − (V (H)))

≤ t1(m) · f2(n−m)

= (rm−2 + 1) · 3rn−m−4

= 3rn−6 + 3rn−m−4

≤ 9rn−8

= f4(n).

Furthermore, the equalities holding imply that m = k = 4, H = T1(4) and
F − V (H) = F2(n − 4) = T1(4) ∪ F1(n − 8), that is, F = F ′4(n) = 2T1(4) ∪
F1(n− 8).

Now we assume that F − V (H) = F1(n − m). Since F 6= Fi(n) for i =
1, 2, . . . , k − 1, by Lemma 2.1, Theorems 2.2 and 2.3, we have that

fk(n) = rn−2 + rn−2k

≤ mi(F )

= mi(H) ·mi(F − (V (H)))

≤
{

(t1(m)− 1) · f1(n−m), if m ≤ 2k − 2,
t1(m) · f1(n−m), if m ≥ 2k,

=

{
rm−2 · rn−m, if m ≤ 2k − 2,
(rm−2 + 1) · rn−m, if m ≥ 2k,

=

{
rn−2, if m ≤ 2k − 2,
rn−2 + rn−m, if m ≥ 2k,

≤ rn−2 + rn−2k

= fk(n).

Furthermore, the equalities holding imply that m = 2k, H = T1(2k) and
F − V (H) = F1(n− 2k). In conclusion, F = Fk(n) = T1(2k) ∪ F1(n− 2k).
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Case 2. n is odd. Suppose that there exist three odd components H1, H2

and H3 of F , where |Hi| = mi for i = 1, 2, 3. By Lemma 2.1, Theorems 2.2
and 2.3, we have that

fk(n) = 3rn−5 + rn−2k−3

≤ mi(F )

= mi(H1) ·mi(H2) ·mi(H3) ·mi(F − (V (H1) ∪ V (H2) ∪ V (H3)))

≤ rm1−1 · rm2−1 · rm3−1 · rn−m1−m2−m3

= rn−3

< fk(n),

which is a contradiction. Hence F has exactly one component H of odd order
m ≥ 1.

For the case that F − V (H) 6= F1(n −m), By Lemma 2.1, Theorems 2.2
and 2.5, we have that

fk(n) = 3rn−5 + rn−2k−3

≤ mi(F )

= mi(H) ·mi(F − (V (H)))

≤ rm−1 · 3rn−m−4

≤ 3rn−5

< fk(n),

which is a contradiction.
For the other case that F −V (H) = F1(n−m). Since F 6= F1(n), it follows

that H 6= T1(m). By Lemma 2.1, Theorems 2.3 and 2.4 , we have that

fk(n) = 3rn−5 + rn−2k−3

≤ mi(F )

= mi(H) ·mi(F − (V (H)))

≤
{

(t2(m)− 1) · f1(n−m), if m ≤ 2k + 1,
t2(m) · f1(n−m), if m ≥ 2k + 3,

=

{
3rm−5 · rn−m, if m ≤ 2k + 1,
(3rm−5 + 1) · rn−m, if m ≥ 2k + 3,

=

{
3rn−5, if m ≤ 2k + 1,
3rn−5 + rn−m, if m ≥ 2k + 3,

≤ 3rn−5 + rn−2k−3

= fk(n).

Furthermore, the equalities holding imply that m = 2k + 3, H = T2(2k + 3)
and F − V (H) = F1(n − 2k − 3). In conclusion, F = Fk(n) = T2(2k + 3) ∪
F1(n− 2k − 3).
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