International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 2, 51 - 57 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.727

A Note on Large Numbers of Maximal Independent Sets in Forests

Min-Jen Jou and Jenq-Jong Lin

Ling Tung University, Taichung 40852, Taiwan

Copyright © 2017 Min-Jen Jou and Jenq-Jong Lin. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we complete the determination of the k-th $(3 \le k \le \lfloor n/2 \rfloor - 1)$ largest numbers of maximal independent sets among all forests of order $n \ge 8$ and characterize the extremal graphs.

Mathematics Subject Classification: 05C51

Keywords: maximal independent set, forest, extremal graph

1 Introduction

Let G = (V, E) be a simple undirected graph. A subset $I \subseteq V$ is independent if there is no edge of G between any two vertices of I. A maximal independent set is an independent set that is not a proper subset of any other independent set. The set of all maximal independent sets of G is denoted by MI(G) and its cardinality by mi(G).

The problem of determining the largest value of mi(G) in a general graph of order n and those graphs achieving the largest number was proposed by Erdös and Moser, and solved by Moon and Moser [6]. It was then studied for various families of graphs, including trees, forests, (connected) graphs with at most one cycle, (connected) triangle-free graphs, (k-)connected graphs, bipartite graphs; for a survey see [4]. Later, Jin and Li [1] determined the second largest number of maximal independent sets among all graphs of order n. As for trees and forests, it was solved by Jou and Lin [5].

The purpose of this paper is to determine the k-th $(3 \le k \le \lfloor n/2 \rfloor - 1)$ largest number of maximal and maximum independent sets among all forests of order $n \ge 8$. Extremal graphs achieving these values are also given.

2 Preliminary

For our discussions, some terminology and notation are needed. For a graph G = (V, E), the cardinality of V(G) is called the *order*, and it is denoted by |G|. For a set $A \subseteq V(G)$, the *deletion* of A from G is the graph G - A obtained from G by removing all vertices in A and their incident edges. Two graphs G_1 and G_2 are *disjoint* if $V(G_1) \cap V(G_2) = \emptyset$. The *union* of two disjoint graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with vertex set $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and edge set $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. Let nG be the short notation for the union of n copies of disjoint graphs isomorphic to G. A component of odd (respectively, even) order is called an *odd* (respectively, even) component. Denote by P_n a path with n vertices. Throughout this paper, for simplicity, let $r = \sqrt{2}$.

The following results are essential for our discussions.

Lemma 2.1. ([2]) If G is the union of two disjoint graphs G_1 and G_2 , then $mi(G) = mi(G_1) \cdot mi(G_2)$.

The results of the largest numbers of maximal independent sets among all trees and forests are described in Theorems 2.2 and 2.3, respectively.

Theorem 2.2. ([2, 3]) If T is a tree with $n \ge 1$ vertices, then $mi(T) \le t_1(n)$, where

$$t_1(n) = \begin{cases} r^{n-2} + 1, & \text{if } n \text{ is even}, \\ r^{n-1}, & \text{if } n \text{ is odd.} \end{cases}$$

Furthermore, $mi(T) = t_1(n)$ if and only if $T = T_1(n)$, where

$$T_1(n) = \begin{cases} B(2, \frac{n-2}{2}) \text{ or } B(4, \frac{n-4}{2}), & \text{if } n \text{ is even}, \\ B(1, \frac{n-1}{2}), & \text{if } n \text{ is odd}. \end{cases}$$

where B(i, j) is the set of batons, which are the graphs obtained from the basic path P of $i \geq 1$ vertices by attaching $j \geq 0$ paths of length two to the endpoints of P in all possible ways (see Figure 1).

Theorem 2.3. ([2, 3]) If F is a forest with $n \ge 1$ vertices, then $mi(F) \le f_1(n)$, where

$$f_1(n) = \begin{cases} r^n, & \text{if } n \text{ is even}, \\ r^{n-1}, & \text{if } n \text{ is odd.} \end{cases}$$

Figure 1: The baton B(i,j) with $j = j_1 + j_2$

Furthermore, $mi(F) = f_1(n)$ if and only if $F = F_1(n)$, where

$$F_1(n) = \begin{cases} \frac{n}{2}P_2, & \text{if } n \text{ is even}, \\ B(1, \frac{n-1-2s}{2}) \cup sP_2 & \text{for some } s \text{ with } 0 \leq s \leq \frac{n-1}{2}, & \text{if } n \text{ is odd}. \end{cases}$$

The results of the second largest numbers of maximal independent sets among all trees and forests are described in Theorems 2.4 and 2.5, respectively.

Theorem 2.4. ([5]) If T is a tree with $n \ge 4$ vertices having $T \ne T_1(n)$, then $mi(T) \le t_2(n)$, where

$$t_2(n) = \begin{cases} r^{n-2}, & \text{if } n \text{ is even}, \\ 3, & \text{if } n = 5, \\ 3r^{n-5} + 1, & \text{if } n \text{ is odd.} \end{cases}$$

Furthermore, $mi(T) = t_2(n)$ if and only if $T = T'_2(8), T''_2(8), P_{10}$, or $T_2(n)$, where $T_2(n)$ and $T'_2(8), T''_2(8)$ are shown in Figures 2 and 3, respectively.

Figure 2: The trees $T_2(n)$

Figure 3: The trees $T'_2(8)$ and $T''_2(8)$

Theorem 2.5. ([5]) If F is a forest with $n \geq 4$ vertices having $F \neq F_1(n)$, then $mi(F) \leq f_2(n)$, where

$$f_2(n) = \begin{cases} 3r^{n-4}, & \text{if } n \text{ is even}, \\ 3, & \text{if } n = 5, \\ 7r^{n-7}, & \text{if } n \text{ is odd.} \end{cases}$$

Furthermore, $mi(F) = f_2(n)$ if and only if $F = F_2(n)$, where

$$F_2(n) = \begin{cases} P_4 \cup \frac{n-4}{2} P_2, & \text{if } n \ge 4 \text{ is even}, \\ T_2(5) \text{ or } P_4 \cup P_1, & \text{if } n = 5, \\ P_7 \cup \frac{n-7}{2} P_2, & \text{if } n \ge 7 \text{ is odd}. \end{cases}$$

3 Main results

In this section we determine the k-th $(3 \le k \le \lfloor n/2 \rfloor - 1)$ largest values of mi(G) among all forests of order $n \ge 8$. Moreover, the extremal graphs achieving these values are also determined.

Define the graphs $F_i(n)$, $i = 3, 4, ..., \lfloor n/2 \rfloor - 1$ and $F'_4(n)$ of order $n \geq 8$ as follows.

$$F_i(n) = \begin{cases} T_1(2i) \cup F_1(n-2i), & \text{if } n \ge 8 \text{ is even,} \\ T_2(2i+3) \cup F_1(n-2i-3), & \text{if } n \ge 9 \text{ is odd,} \end{cases}$$

and

$$F_4'(n) = 2T_1(4) \cup F_1(n-8)$$
, for n is even.

Let $f_i(n) = mi(F_i(n))$. For simple calculation, we have that

$$f_i(n) = \begin{cases} r^{n-2} + r^{n-2i}, & \text{if } n \ge 8 \text{ is even,} \\ 3r^{n-5} + r^{n-2i-3}, & \text{if } n \ge 9 \text{ is odd,} \end{cases}$$

and

$$mi(F'_4(n)) = 9r^{n-8}$$
, for n is even.

In this paper we will prove the following result.

Theorem 3.1. For integers k and n with $n \geq 8$ and $3 \leq k \leq \lfloor n/2 \rfloor - 1$. If F is a forest of order n having $F \neq F_i(n)$, for i = 1, 2, ..., k - 1, then $mi(F) \leq f_k(n)$. Furthermore, the equality holds if and only if $F = F_k(n)$ or $F'_4(n)$ with n is even, k = 4.

Proof. Let F be a forest of order $n \geq 8$ having $F \neq F_i(n)$, for i = 1, 2, ..., k-1 and $3 \leq k \leq \lfloor n/2 \rfloor -1$, such that mi(F) is as large as possible. Then $mi(F) \geq f_k$. We consider the following two cases.

Case 1. n is even. Suppose that there exist two odd components H_1 and H_2 of F, where $|H_i| = m_i$ for i = 1, 2. By Lemma 2.1, Theorems 2.2 and 2.3, we have that

$$f_k(n) = r^{n-2} + r^{n-2k}$$

$$\leq mi(F)$$

$$= mi(H_1) \cdot mi(H_2) \cdot mi(F - (V(H_1) \cup V(H_2)))$$

$$\leq r^{m_1 - 1} \cdot r^{m_2 - 1} \cdot r^{n - m_1 - m_2}$$

$$= r^{n-2}$$

$$< f_k(n),$$

which is a contradiction. Hence F has no odd component. Since $F \neq F_1(n)$, there exists a component H of even order $m \geq 4$.

Suppose that $F-V(H) \neq F_1(n-m)$, By Lemma 2.1, Theorems 2.2 and 2.5, we have that

$$f_k(n) = r^{n-2} + r^{n-2k}$$

$$\leq mi(F)$$

$$= mi(H) \cdot mi(F - (V(H)))$$

$$\leq t_1(m) \cdot f_2(n - m)$$

$$= (r^{m-2} + 1) \cdot 3r^{n-m-4}$$

$$= 3r^{n-6} + 3r^{n-m-4}$$

$$\leq 9r^{n-8}$$

$$= f_4(n).$$

Furthermore, the equalities holding imply that m = k = 4, $H = T_1(4)$ and $F - V(H) = F_2(n-4) = T_1(4) \cup F_1(n-8)$, that is, $F = F'_4(n) = 2T_1(4) \cup F_1(n-8)$.

Now we assume that $F - V(H) = F_1(n - m)$. Since $F \neq F_i(n)$ for i = 1, 2, ..., k - 1, by Lemma 2.1, Theorems 2.2 and 2.3, we have that

$$f_k(n) = r^{n-2} + r^{n-2k}$$

$$\leq mi(F)$$

$$= mi(H) \cdot mi(F - (V(H)))$$

$$\leq \begin{cases} (t_1(m) - 1) \cdot f_1(n - m), & \text{if } m \leq 2k - 2, \\ t_1(m) \cdot f_1(n - m), & \text{if } m \geq 2k, \end{cases}$$

$$= \begin{cases} r^{m-2} \cdot r^{n-m}, & \text{if } m \leq 2k - 2, \\ (r^{m-2} + 1) \cdot r^{n-m}, & \text{if } m \geq 2k, \end{cases}$$

$$= \begin{cases} r^{n-2}, & \text{if } m \leq 2k - 2, \\ r^{n-2} + r^{n-m}, & \text{if } m \geq 2k, \end{cases}$$

$$\leq r^{n-2} + r^{n-2k}$$

$$\leq r^{n-2} + r^{n-2k}$$

$$= f_k(n).$$

Furthermore, the equalities holding imply that m = 2k, $H = T_1(2k)$ and $F - V(H) = F_1(n - 2k)$. In conclusion, $F = F_k(n) = T_1(2k) \cup F_1(n - 2k)$.

Case 2. n is odd. Suppose that there exist three odd components H_1 , H_2 and H_3 of F, where $|H_i| = m_i$ for i = 1, 2, 3. By Lemma 2.1, Theorems 2.2 and 2.3, we have that

$$f_k(n) = 3r^{n-5} + r^{n-2k-3}$$

$$\leq mi(F)$$

$$= mi(H_1) \cdot mi(H_2) \cdot mi(H_3) \cdot mi(F - (V(H_1) \cup V(H_2) \cup V(H_3)))$$

$$\leq r^{m_1-1} \cdot r^{m_2-1} \cdot r^{m_3-1} \cdot r^{n-m_1-m_2-m_3}$$

$$= r^{n-3}$$

$$\leq f_k(n),$$

which is a contradiction. Hence F has exactly one component H of odd order $m \geq 1$.

For the case that $F - V(H) \neq F_1(n - m)$, By Lemma 2.1, Theorems 2.2 and 2.5, we have that

$$f_k(n) = 3r^{n-5} + r^{n-2k-3}$$

$$\leq mi(F)$$

$$= mi(H) \cdot mi(F - (V(H)))$$

$$\leq r^{m-1} \cdot 3r^{n-m-4}$$

$$\leq 3r^{n-5}$$

$$< f_k(n),$$

which is a contradiction.

For the other case that $F - V(H) = F_1(n - m)$. Since $F \neq F_1(n)$, it follows that $H \neq T_1(m)$. By Lemma 2.1, Theorems 2.3 and 2.4, we have that

$$\begin{split} f_k(n) &= 3r^{n-5} + r^{n-2k-3} \\ &\leq mi(F) \\ &= mi(H) \cdot mi(F - (V(H))) \\ &\leq \left\{ \begin{array}{l} (t_2(m) - 1) \cdot f_1(n-m), & \text{if } m \leq 2k+1, \\ t_2(m) \cdot f_1(n-m), & \text{if } m \geq 2k+3, \end{array} \right. \\ &= \left\{ \begin{array}{l} 3r^{m-5} \cdot r^{n-m}, & \text{if } m \leq 2k+1, \\ (3r^{m-5} + 1) \cdot r^{n-m}, & \text{if } m \geq 2k+3, \end{array} \right. \\ &= \left\{ \begin{array}{l} 3r^{n-5}, & \text{if } m \leq 2k+1, \\ 3r^{n-5} + r^{n-m}, & \text{if } m \geq 2k+3, \end{array} \right. \\ &\leq 3r^{n-5} + r^{n-2k-3} \\ &= f_k(n). \end{split}$$

Furthermore, the equalities holding imply that m = 2k + 3, $H = T_2(2k + 3)$ and $F - V(H) = F_1(n - 2k - 3)$. In conclusion, $F = F_k(n) = T_2(2k + 3) \cup F_1(n - 2k - 3)$.

References

- [1] Z. Jin and X. Li, Graphs with the Second Largest Number of Maximal Independent Sets, *Discrete Math.*, **308** (2008), 5864-5870. https://doi.org/10.1016/j.disc.2007.10.032
- [2] M. J. Jou, *Counting Independent Sets*, Ph.D Thesis, Department of Applied Mathematics, National Chiao Tung University, Taiwan, 1996.
- [3] M. J. Jou and G. J. Chang, Maximal independent sets in graphs with at most one cycle, $Dicrete\ Appl.\ Math.$, **79** (1997), 67-73. https://doi.org/10.1016/s0166-218x(97)00033-4
- [4] M. J. Jou and G. J. Chang, Survey on conunting maximal independent sets, *Proceedings of the Second Asian Mathematical Conference*, S. Tangmance and E. Schulz eds., World Scientific, Singapore, (1995), 265-275.
- [5] M. J. Jou and J. J. Lin, Trees with the second largest number of maximal independent sets, *Discrete Math.*, 309 (2009), 4469-4474. https://doi.org/10.1016/j.disc.2009.02.007
- [6] J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math., 3 (1965),
 23-28. https://doi.org/10.1007/bf02760024

Received: February 18, 2017; Published: March 15, 2017