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Abstract

In this paper we complete the determination of the k-th (3 < k <
L"T_lj) largest numbers of maximal independent sets among all quasi-

forest graphs of order n > 8 and characterize the extremal graphs.
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1 Introduction

Let G be a graph with vertex set and edge set being V(G) and E(G), respec-
tively. A subset I C V(G) is independent if there is no edge of G between
any two vertices of I. A maximal independent set is an independent set that
is not a proper subset of any other independent set. The set of all maximal
independent sets of G is denoted by MI(G) and its cardinality by mi(G).

Around 1960, Erdés and Moser proposed the problem of determining the
maximum number of mi(G) in the family of graphs of order n and character-
izing structure of graphs attaining the maximum value. Shortly after, Moon
and Moser [10] solved the problem. It was then studied for various families
of graphs, including trees, forests, (connected) graphs with at most one cycle,
(connected) triangle-free graphs, (k-)connected graphs, bipartite graphs; for a
survey see [3].
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A connected graph (respectively, graph) G with vertex set V(G) is called
a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex
x € V(G) such that G —x is a tree (respectively, forest). The concept of quasi-
tree graphs was mentioned by Liu and Lu in [9]. The problem of determining
the largest and the second largest numbers of mi(G) among all quasi-tree
graphs and quasi-forest graphs of order n was solved by Lin [7, 8].

The purpose of this paper is to determine the k-th (3 < k < L"T_lj) largest
number of maximal and maximum independent sets among all quasi-forest
graphs of order n > 8. Extremal graphs achieving these values are also given.

2 Preliminary

For a graph G = (V, E), the cardinality of V(G) is called the order, and it is
denoted by |G|. The neighborhood Ng(x) of a vertex x is the set of vertices
adjacent to x in G and the closed neighborhood Ng(x] is {z} U Ng(x). The
degree of z is the cardinality of Ng(x), denoted by degq.(z). A vertex x is
called a leaf if deg,x = 1. For a set A C V(G), the deletion of A from G
is the graph G — A obtained from G by removing all vertices in A and their
incident edges. Two graphs G; and G are disjoint if V(G1) NV (Gz) = (). The
union of two disjoint graphs G; and G5 is the graph G; U G5 with vertex set
V(G1UGy) = V(Gy) UV(Gy) and edge set E(G1 U Gy) = E(Gh) U E(G).
Let nG be the short notation for the union of n copies of disjoint graphs
isomorphic to GG. For a connected graph H and a graph G with components
G1,Ga,...,Gy, H=xG is the set of clasps, which are the graphs with vertex set
V(H*G) =V(H)UV(G) and edge set E(H *G) = E(H) U E(G) U {zu; :
i =1,2,...,k}, where z is a vertex with maximum degree in H and u; is a
vertex with maximum degree in G; for i = 1,2,..., k. A path P, of order n is
a graph with V/(P,) = {z1, 22, ...,2,} and E(P,) = {x129, 23, ..., Tpn 1Ty},
where the z; are all distinct. We refer to a path by the natural sequence of its
vertices, writing, say, P, : 1, %o, ..., x,. The vertex Tro is called the central
vertexr of P,. For positive integers m and n, P,, ® P, is the graph obtained
from P,, by adding a P, and a new edge joining the leaf of P,, and the central
vertex of P,. Denote by C), a cycle with n vertices.

Throughout this paper, for simplicity, let r = v/2.
Lemma 2.1. ([2]) If G is the union of two disjoint graphs Gy and G, then
mi(G) = mi(Gy) - mi(Ga).
Lemma 2.2. ([1, 2]) For any vertex v in a graph G, mi(G) < mi(G — v) +
mi(G — Ng[v]).

The results of the largest, the second largest and the third largest num-

bers of maximal independent sets among all forests are described in Theo-
rems 2.3, 2.4 and 2.5, respectively.
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Theorem 2.3. ([2, 4]) If F is a forest with n > 1 vertices, then mi(F) <
fi(n), where

I A if n is even,
hin) = { r"=t ifn is odd.
Furthermore, mi(F) = fi(n) if and only if F = Fy(n), where

Fi(n) = 5, if n is even,
SN (Pl*%PQ)USPQfOTOSSSHT_I, if n is odd.

Theorem 2.4. ([5]) If F is a forest with n > 4 wvertices having F # Fi(n),
then mi(F) < fa(n), where

3r"=*, if n is even,
fg(n) = 3, an:E),
T if nois odd.

Furthermore, mi(F) = fo(n) if and only if F = Fy(n), where

P U nT_ZlPQ, if n >4 is even,
Fg(n): PQEBP307°P4UP1, an:5,
Py "TJPQ, ifn > 7 1is odd.

Theorem 2.5. ([6]) If F is a forest with n > 8 vertices having F' # Fi(n),
i=1,2, then mi(F) < f3(n), where

5r"=6  if n is even,
Js(n) = { 13r"=2 if n is odd.

Furthermore, mi(F) = f3(n) if and only if F' = F3(n), where

Fy(n) = PsU™SP, or (P& Ps) U8R, ifn is even,
VT (Pre B) U PR, if n is odd.

The results of the largest numbers of maximal independent sets among all
quasi-tree graphs and quasi-forest graphs are described in Theorems 2.6 and
2.7, respectively.

Theorem 2.6. ([7])If Q is a quasi-tree graph with n > 5 wvertices, then
mi(Q) < q1(n), where

(n) = 3rn—4, if n is even,
N B if n is odd.

Furthermore, mi(Q) = q1(n) if and only if Q = Q1(n) or Q@ = C5, where Q1(n)

1s shown in Figure 1.
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Qlo

n is even n is odd

Figure 1: The graph Q;(n)

Theorem 2.7. ([7))If Q is a quasi-forest graph with n > 2 wvertices, then
mi(Q) < 7y (n), where

0,(n) = r", if n is even,
DAV =9 3/m=3 if n ds odd.

Furthermore, mi(Q) = q,(n) if and only if Q = Q,(n), where

— 5Py, if n is even,
Q(n) = { C3U2P,, if nis odd.

The results of the second largest numbers of maximal independent sets
among all quasi-tree graphs and quasi-forest graphs are described in Theo-
rems 2.8 and 2.9, respectively.

Theorem 2.8. ([8])If Q is a quasi-tree graph with n > 6 wvertices having
Q # Qu(n), then mi(Q) < g»(n), where

(n) = 5776 4+ 1, if n is even,
LI =yt if n is odd.

Furthermore, mi(Q) = qz2(n) if and only if Q = Q2(n), where

Qa(n) = Qéle)(”)’ (2)( ) QQe( )>Qgi)(”)a if n is even,
2 Py 2Py, QU(7), QP (1), Q9(7), Q4 (7), if m is odd,

where Qa(n) is shown in Figures 2 and 3.

(1) Q2

Figure 2: The graphs Qge) (n),1<i<4
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50 (7) Q5 (7) 50 (7) 50 (7)
Figure 3: The graphs Qgg(?), 1<i<4

For positive integer t, W, is the graph of order 2t + 1 obtained by ¢ copies
of C3 having one common vertex.

Theorem 2.9. ([8])If @ is a quasi-forest graph with n > 4 wvertices having
Q # Q,(n), then mi(Q) < Gy(n), where

d,(n) = 3r"=t, if n is even,
LV= 55, ifn s odd.

Furthermore, mi(Q) = Gy(n) if and only if Q = Qy(n), where

PyUREP,, Qi(n — 25) U sPy,
Q,(n) = Q2(6) U nT_6P2, Cs3 U (P * MPQ) UsP,, ifn is even,
Q1(5)UnT_5P2,W2U P2,05U P27 Zf?’L 18 Odd,

3 Main results

In this section we determine the k-th (3 <k < |251]) largest values of mi(Q)
among all quasi-forest graphs () of order n > 8. Moreover, the extremal graphs
achieving these values are also determined.

Define the graphs Q,(n), i = 3,4,...,|%*] and Q'(n) of order n > 8 as
follows.

O.(n) = Q2(2i +2) U Fy(n — 21 — 2), if n > 8 is even,
VTN Wk (i —)P) UF(n—2i— 1), ifn>9is odd,

and

Q'(n) =C5U Fy(n—3).
Let §;(n) = mi(Q,(n)). For simple calculation, we have that

7(n) = 5rn6 4 =22 if n > 8 is even,
G\ = =1 g pn=2i-1 if 5 > 9 is odd,
and 0
oy 21" if n > 8 is even,
mi(@ (n)) = { 9r"=7 if n>9is odd.
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Theorem 3.1. For integers k and n with n > 8 is even and 3 < k <n/2—1.
If Q is a quasi-forest graph of order n having Q # Q,(n), fori =1,2... k—1,
then mi(Q) < q.(n). Furthermore, the equality holds if and only if Q = Q. (n)
or Q'(n) with k = 4.

Proof. Let Q be a quasi-forest graph of even order n > 8 having Q # Q;(n),
fori = 1,2...,k —1 and 3 < k < n/2 — 1, such that mi(Q) is as large
as possible. Then mi(Q) > G,(n). Since Q@ # Q,(n),Qy(n), it follows that
Q # Fi(n), Fa(n). Suppose that @ is a forest, by Theorem 2.5, we have that
mi(Q) < 5775 which is a contradiction to mi(Q) > q,(n). Hence Q has at
least one cycle. Let ) = G U F, where (G is a quasi-tree graph of order s with
at least one cycle and F' is a forest of order n — s. We consider the following
two cases.

Case 1. s is odd. Suppose that G # Q1(s), by Lemma 2.1, Theorems 2.3
and 2.8, we have that mi(Q) = mi(G) - mi(F) < rs='.r"=571 = y"=2 which is
a contradiction to mi(Q) > G,(n).

Now we assume that G = @Q(s). For the case of s > 5, by Lemma 2.1,
Theorems 2.3 and 2.6, we obtain that mi(Q) = mi(G) - mi(F) < (r* ' +1) -
prmsTh = pn=2 4 pn=s=l < 5pn=6 which is a contradiction to mi(Q) > q,. For
the other case of s = 3, then F' # Fj(n — 3) since Q # Q,(n). By Lemma 2.1,
Theorems 2.4 and 2.5, we have that

Gp(n) = 50 4 pr2h=2
< mi(Q)
= mi(G) - mi(F)
{ 3. 7rm10 =21y 710 = (n) if ['= Fy(n—3),
3-13r"12 = 39,7712 < G, (n), if F # Fy(n—3).

Furthermore, the equali_ti,es holding imply that £ = 4, G = (3 and F =
Fy(n —3), that is, Q = Q (n) = C3 U Fy(n — 3).

Case 2. siseven. Suppose that F' # Fj(n—s), by Lemma 2.1, Theorems 2.4
and 2.6, we have that mi(Q) = mi(G)-mi(F) < 3r*=*.3r"=574 = 9r"=8 which
is a contradiction to mi(Q) > g,(n).

Now we assume that I = Fy(n—s). Note that @ # Q,(n), Qy(n), it follows
that G # 5P, Q1(s). On the other hand, since ) # Q;(n), fori =1,2... k-1,
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by Lemma 2.1, Theorems 2.3 and 2.6, we have that

-fl(n—s), 1f822]{?+2,

s
)

| b6 s if s <2k,

S (BTl 1) s if s > 2k + 2,

| S, if s <2k,

T S s if s > 2k 4 2,

S 5’)"”76 4 P 2k—2

= q(n)

Furthermore, the equalities holding imply that s = 2k+2, G = Q2(2k+2) and
F = Fi(n—2k—2). In conclusion, Q = Q,(n) = Q2(2k+2)UF(n—2k—2). O

Theorem 3.2. For integers k and n withn > 9 is odd and 3 < k < (n—1)/2.
If Q is a quasi-forest graph of order n having Q # Q,(n), fori =1,2..., k—1,
then mi(Q) < G,.(n). Furthermore, the equality holds if and only if Q = Q,(n)
or @,(n) with k = 3.

Proof. Let Q be a quasi-forest graph of odd order n > 9 having Q # Q;(n),
fori =1,2...,k—1and 3 < k < (n—1)/2, such that mi(Q) is as large as
possible. Then mi(Q) > G,(n). Suppose that @ is a forest, by Theorem 2.3,
we have that mi(Q) < r"~!, which is a contradiction to mi(Q) > g,(n). Hence
@ has at least one cycle. Let Q = G U F', where G is a quasi-tree graph of
order s with at least one cycle and F' is a forest of order n — s. Let = be a
vertex such that () — x is a forest. Then x is on some cycle of @), it follows
that degg(z) > 2. We consider the following two cases.

Case 1. @ —x # Fi(n —1). Suppose that degyx > 3, by Lemma 2.2,
Theorems 2.3 and 2.4, we have that mi(Q) < mi(Q — x) + mi(Q — Nglz]) <
3rn=D=4 4 p(n=4)=1 — 4475 which is a contradiction to mi(Q) > G,(n). So
we assume that degg z = 2.

Subcase 1.1. Q) — Ng[z] # Fi(n—3). By Lemma 2.2, Theorems 2.3 and 2.4
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again, we have that

— nfl + T,nf2k71

qi(n) =
i(Q)
i

Q — z) +mi(Q — Ng[z])

IN A

IN

3o 30—y T ) i Q== ),
Srn=l=6 4 3pm=3)=4 — =7 < g, (n), if Q —z # Fy(n — 3).

Furthermore, the equalities holding imply that £ = 3, G = C3 and F =
Fy(n —3), that is, Q = Q' (n) = C3 U Fy(n — 3).

Subcase 1.2. Q — Ng[z] = Fi(n — 3). There are two possibilities for graph
G. See Figure 4. By simple calculation, we have that mi(G7) = 7*~! + 1 and

X X

GY Gy
Figure 4: The graphs G}, 1 <17 <2

mi(G3) = 3r* 75 +2, hence, mi(GTUF) = mi(G3) -mi(F) = (r* 1 +1).-r"% =
Pt and mi(GEUF) = mi(G3)-mi(F) = (3rs=5+2).r" =% = 3rn=54-297,
Note that mi(G5 U F) = 3r"° + 2r"~% which is a contradiction to mi(Q) >
Gi(n). o

Since @ # Q;(n),i=1,2,...,k—1, it follows that G} # Q1(s), s < 2k —1.
Consider the graph G7 U F', by Lemma 2.1 and Theorem 2.6, we have that

qk(n) — Tn_l +Tn 2k—1
< mi(Q)
= mi(G7) - mi(F)

ps=h.pnes, if s <2k —1,
b4 1) s if s > 2k + 1,
rnt if s <2k —1,
,

nl g opnes if g > 2k 4 1,

IN

Furthermore, the equalities holding imply that s = 2k + 1, G = Q1(2k + 1)
and I = Fi(n—2k—1). Note that Q;(2k+1) = (Wix(k—1)F%). In conclusion,
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Case 2. @ —x = Fi(n —1). Then there are one possibility for graph
Q= Wy * (52 —t)P,) U Fy(n — s). Since @ is not a forest and Q # Q;(n),
i=1,2...,k—1, it follows that s > 2k + 1. Hence we have that g,(n) =
7,n—l + Tn—?k—l < mz(Q) — (7’8_1 + 1) s < rn—l + 7,71—216—1 — qk(n) for
s > 2k + 1. Furthermore, the equalities holding imply that s = 2k + 1. In
conclusion, @ = Q,(n) = (W, x (k —t)P,) U Fi(n — 2k — 1). O
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