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Abstract

In this paper we establish the Kolmogorov type inequality and an generalized

three series theorem for AQSI sequence of random variables. We obtain the strong

convergence and a Chung’s type strong law of large numbers for sequence of AQSI.
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1. Introduction

Let (Ω,F , P ) be a probability space, and let (Xn)n∈N be a sequence of
random variables(r.v.’s) defined on (Ω,F , P )
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Chandra and Ghosal [3] introduced the notion of asymptotically quadrant
sub-independent (AQSI).

Definition 1. A sequence (Xn)n∈N of r.v.’s is said to be asymptotically quad-
rant sub-independent (AQSI) if there exists a nonnegative sequence (qn)n∈N
such that q(n)→ 0, as n→∞ and for ∀ i 6= j

P (Xi > s,Xj > t)− P (Xi > s)P (Xj > t) ≤ q(|i− j|)αij(s, t), s, t > 0 (1.1)

P (Xi < s,Xj < t)− P (Xi < s)P (Xj < t) ≤ q(|i− j|)βij(s, t), s, t < 0 (1.2)

where αij(s, t) ≥ 0 and βij(s, t) ≥ 0.

The concept AQSI includes a lot of r.v.’s, such as pairwise independent,
negatively associated, negative quadrant dependent, asymptotically quadrant
independent. Some mixing r.v.’s also satisfy the above conditions. Therefore,
the study of AQSI sequence is more fundamental and difficult. So far, the
research for AQSI is not promising. Chandra and Ghosal studied the law of
large numbers and Marcinkiewicz-Zygmund type strong law for AQSI. Kim,
Ko and Ryu [5] established the Hájeck-Rènyi type inequality for AQSI and
obtained the strong law of large numbers. In this paper, we first establish
the Kolmogorov type inequality and the three serises of theorem for AQSI
sequence. Based on the research above, we study the almost sure convergence
of AQSI and obtain the Chung type law of large numbers.

For a sequence (Xn)n∈N of r.v.’s defined on the fixed probability space, we

set Sn =
∑n

i=1Xi,Wm,n = max1≤k≤n |
∑m+k

i=m+1Xi|, and Xc
n = −cI(Xn<−c) +

XnI(|Xn|≤c) +cI(Xn>c), for any constant c > 0, Let (an, bn)n∈N be two sequences
of positive real numbers and denote an = O(b)n( resp. an = o(bn), if there
exists a constant C > 0 satisfying that an ≤ Cbn, n → ∞,(resp. an/bn → 0).
Finally, the symbol C denotes a generic constant(0 < C < ∞) which is not
necessarily the same in different places.

Several lemmas are needed to establish the main results.

Lemma 1. [3] Let (Xn)n∈N be a sequence of AQSI, if (fn)n∈N is a sequence of
nondecreasing (nonincreasing) functions, then (fn(Xn))n∈N is also a sequence
of AQSI r.v.’s.

Lemma 2. [6] Let X1, X2, · · · , Xn be a sequence of integrable r.v.’s and let
a21, a

2
2, · · · , a2n be real numbers such that

E(Xm+1 + · · ·+Xm+p)
2 ≤ a2m+1 + a2m+p (1.3)

for all m, p ≥ 1,m+ p ≤ n. Then we have

EW 2
0,n ≤ ((log(n)/ log 3) + 2)2

n∑
k=1

a2i (1.4)
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Throughout the entire paper we will consider, unless otherwise mentioned,
r.v.’s (Xn)n∈N as a AQSI sequence with zero means and EX2

n < ∞, n =
1, 2, · · · ,

∑∞
n=1 q(n) <∞ and satisfies the following conditions∫ ∞

0

∫ ∞
0

αij(s, t)dsdt ≤ C(EX2
i + EX2

j ), (1.5)

∫ 0

−∞

∫ 0

−∞
βij(s, t)dsdt ≤ C(EX2

i + EX2
j ). (1.6)

The plan of this paper is as follows. The main results will be presented
in Section 2 which including a Kolmogorov type inequality and a generalized
three series theorem for AQSI sequence, and two illustrative examples.

2. Main Results

With the preliminaries accounted for, the main result may be established.

Theorem 1. (Kolmogorov type inequality) Let (Xn)n∈N be defined as in sec-
tion 1, then

E(
l+k∑
i=l+1

Xi)
2 ≤ C

l+k∑
i=l+1

EX2
i , (2.1)

E( max
1≤k≤n

(
l+k∑
i=l+1

Xi)
2) ≤ C log2 n

l+n∑
i=l+1

EX2
i . (2.2)

Proof. Suppose X+ = max{X, 0} and X− = max{−X, 0}. It is easy to see
{X+

n } and {X−n } form AQSI sequence by Lemma 1. Since

cov(X+
i , X

+
j ) =

∫ ∞
0

∫ ∞
0

[P (X+
i > s,X+

j > t)− P (X+
i > s)P (X+

j > t)]dsdt

≤ q(|i− j|)
∫ ∞
0

∫ ∞
0

αij(s, t)dsdt ≤ Cq(|i− j|)(EX2
i + EX2

j ).

We have by the condition
∑∞

n=1 q(n) <∞,

V ar(
l+k∑
i=l+1

X+
i ) ≤ C

l+k∑
i=l+1

EX2
i , (2.3)

Similarly, we have

V ar(
l+k∑
i=l+1

X−i ) ≤ C
l+k∑
i=l+1

EX2
i . (2.4)
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Noticing EXn = 0, we have

E(
l+k∑
i=l+1

Xi)
2 = V ar(

l+k∑
i=l+1

Xi)

≤ 2

[
V ar(

l+k∑
i=l+1

X+
i ) + V ar(

l+k∑
i=l+1

X−i )

]
≤ C

l+k∑
i=l+1

EX2
i

By lemma 2, we have

E( max
1≤k≤n

(
l+k∑
i=l+1

Xi)
2) ≤ ((log n/ log 3) + 2)2C

l+n∑
i=l+1

EX2
i ≤ C log2 n

l+n∑
i=l+1

EX2
i .

�

Theorem 2. Suppose that

∞∑
n=1

log2 nV arXn <∞. (2.5)

Then
∑∞

n=1Xn a.s. convergence.

Proof. From (2.1) and (2.5), if integer m > n→∞, we have

E(Sm − Sn)2 ≤ C
m∑

k=n+1

EX2
k → 0.

Hence (Sn)n∈N is Cauchy in L2. Since L2 is complete, there exists a unique
r.v.S∞ (up to a.s. equivalence) in L2, such that Sn → S∞ in L2, this together
with (2.1) and (2.5) imply

P (|S2k − S∞| > ε) ≤ ε−2E(S2k − S∞)2

=O[lim sup
n→∞

E(Sn − S2k)2]

≤C
∞∑

i=2k+1

EX2
i = C

∞∑
i=2k+1

EX2
i log2 i · 1

log2 i

≤ C

(log 2k)2

∞∑
i=2k+1

log2 iEX2
i = O(k−2),

Therefore

∞∑
k=1

P (|S2k − S∞| > ε) <∞. (2.6)



On almost sure limiting behavior of AQSI sequence 159

Theorem 1 and (2.5) imply
∞∑
k=1

P ( max
2k−1<j≤2k

|Sj − S2k−1| ≥ ε)

=O(
∞∑
k=1

(log 2k)2
2k∑

j=2k−1+1

EX2
j )

=O(
∞∑
k=1

2k∑
j=2k−1+1

(log j)2EX2
j ) =

∞∑
j=1

(log j)2EX2
j <∞. (2.7)

By (2.6), (2.7) and Borel-Cantelli lemma, we have, as k →∞
S2k → S∞ a.s. and max

2k−1<j≤2k
|Sj − S2k−1| → 0 a.s.

According to the method of subsequence, we have

Sn → S∞ a.s., n→∞.
�

Theorem 3. Assume
(1)

∞∑
n=1

P (|Xn| > c) <∞, (2.8)

(2)
∞∑
n=1

EXc
n <∞, (2.9)

(3)
∞∑
n=1

log2 nV arXc
n <∞. (2.10)

Then
∞∑
n=1

Xn a.s. convergence. (2.11)

Proof. It is easy to see that (Xc
n)n∈N also form a sequence of AQSI and we

have for every i 6= j

P (Xc
i > s,Xc

j > t)− P (Xc
i > s)P (Xc

j > t) ≤ q(|i− j|)α∗ij(s, t), s, t > 0

P (Xc
i < s,Xc

j < t)− P (Xc
i < s)P (Xc

j < t) ≤ q(|i− j|)β∗ij(s, t), s, t < 0

where

α∗ij(s, t) =

{
αij(s, t), 0 < s, t ≤ c
0, otherwise
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and

β∗ij(s, t) =

{
βij(s, t), −c ≤ s, t < 0
0, otherwise

Hence, by (2.10) and Theorem 2, we have

∞∑
n=1

(Xc
n − EXc

n) <∞ a.s. (2.12)

(2.9) and (2.12) imply

∞∑
n=1

Xc
n <∞ a.s. (2.13)

From (2.8), we have

∞∑
n=1

P (Xn 6= Xc
n) =

∞∑
n=1

P (|Xn| > c) <∞,

Thus the Borel-Catelli lemma implies that

P (Xn 6= Xc
n, i.o.) = 0, (2.14)

(2.13) and (2.14) imply
∑∞

n=1Xn a.s. convergence.

Theorem 4. Let functions: ϕn(x) : R → R+ be nonnegative, even, contin-
uous and nondecreasing on (0,∞) and suppose that one of the following two
conditions prevails:
(a) x/ϕn(x) is nondecreasing in x > 0 for each n ≥ 1;
(b) x/ϕn(x) and ϕn(x)/x2 are nonincreasing in x > 0 for each n ≥ 1;
Furthermore, let (an)n∈N be a sequence of positive constants with an ↑ ∞, if
the series

∞∑
n=1

log2 nEϕn(Xn)

ϕn(an)
<∞, (2.15)

then the series
∑∞

n=1
Xn

an
converges a.s. and

lim
n
a−1n Sn → 0 a.s. (2.16)

Proof. By Kronecker lemma, to prove (2.16), it is sufficent to prove the con-
vergence of

∑∞
n=1

Xn

an
a.s.. Since ϕn(x) is nondecreasing on x > 0, we have

P (|Xn| ≥ an) ≤
∫
|Xn|≥an

ϕn(Xn)

ϕn(an)
dP ≤ Eϕn(Xn)

ϕn(an)
,

this and (2.15) imply

∞∑
n=1

P (|Xn| ≥ an) <∞. (2.17)
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In case (a), for |x| ≤ an, we have

|x|
ϕn(x)

≤ an
ϕn(an)

,

and

x2

a2n
≤ ϕ2

n(x)

ϕ2
n(an)

≤ ϕn(x)

ϕn(an)
;

In case (b), by ϕn(x)
x2
↘, for |x| ≤ an, we have

x2

ϕn(x)
≤ a2n
ϕn(an)

.

Hence, in case (a) or (b), for |x| ≤ an, we have

x2

a2n
≤ ϕn(x)

ϕn(an)
. (2.18)

From Cr inequality, we have for any n

E(Xan
n )2 ≤ 3E(a2nI(Xn<−an) +X2

nI(|Xn|≤an) + a2nI(Xn>an))

= O(Ea2nI(|Xn|>an) + EX2
nI(|Xn|≤an)),

Noticing that ϕn(x) are even functions and nondecreasing in x > 0, we have

Ea2nI(|Xn|>an) ≤ Ea2n
ϕn(Xn)

ϕn(an)
I(|Xn|>an) ≤

a2n
ϕn(an)

Eϕn(Xn).

By (2.18), we have

EX2
nI(|Xn|≤an) =

∫
|Xn|≤an

X2
ndP ≤

a2n
ϕn(an)

∫
|Xn|≤an

ϕn(Xn)dP ≤ a2n
ϕn(an)

Eϕn(Xn),

Hence

E(Xan
n )2 = O(

a2n
ϕn(an)

Eϕn(Xn)), (2.19)

This and (2.15) imply

∞∑
n=1

log2 nE(Xan
n )2

a2n
= O

[
∞∑
n=1

log2 nEϕn(Xn)

ϕn(an)

]
<∞. (2.20)
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In case (a), we have

|EXan
n | = |E(−anI(Xn<−an) +XnI(|Xn|≤an) + anI(Xn>an))|

≤ EanI(|Xn|>an) + |EXnI(|Xn|≤an)|

≤ Ean
ϕn(Xn)

ϕn(an)
I(|Xn|>an) + |

∫
|Xn|≤an

XndP |

≤ an
ϕn(an)

Eϕn(Xn) +
an

ϕn(an)

∫
|Xn|≤an

ϕn(Xn)dP

≤ 2an
ϕn(an)

Eϕn(Xn)

On the other hand, in case (b), note that EXn = 0 and x/ϕn(x)↘, we have

|EXan
n | ≤ EanI(|Xn|>an) + |EXnI(|Xn|≤an)|

= anEI(|Xn|>an) + |EXnI(|Xn|>an)|

≤ an
ϕn(an)

Eϕn(Xn) +
an

ϕn(an)

∫
|Xn|>an

ϕn(Xn)dP

≤ 2an
ϕn(an)

Eϕn(Xn)

Hence
∞∑
n=1

E

[
Xan
n

an

]
≤ 2

∞∑
n=1

Eϕn(Xn)

ϕn(an)
<∞. (2.21)

Combine (2.17), (2.20) and (2.21) and Theorem 3, we have
∑∞

n=1
Xn

an
a.s.convergence.

Thus the proof is complete. �

Let ϕn(x) = |x|p, 0 < p ≤ 2 in Theorem 4, we get the following lemmas.

Corollary 1. Let (an)n∈N be a sequence of positive constants with an ↑ ∞, 0 <
p ≤ 2, if

∑∞
n=1

log2 nE|Xn|p
apn

<∞, then a−1n Sn = o(1) a.s. as n→∞.

Take an = n1/p or an = n1/p(log n)(3+δ)/p, δ > 0 respectively in Corollary 1,
we immediately obtain the following corollary 2 and 3.

Corollary 2. Let E|Xn|p ≤ C log−3−δ n, δ > 0, 0 < p ≤ 2, then n−1/pSn =
o(1) a.s. as n→∞.

Corollary 3. Let E|Xn|p ≤ C, 0 < p ≤ 2, then n−1/p(log n)−(3+δ)/pSn =
o(1) a.s. as n→∞.

Corollary 4. Let (bn)n∈N be a positive sequence of nondecreasing real numbers.

If
∑∞

n=1
EX2

n

bn
<∞, then (bn log n)−1Sn → 0 as n→∞.

Proof. By taking an = bn log n in Corollary 1 which complete the proof. �
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Corollary 5. If
∑∞

n=1EX
2
n <∞, then for 0 < p < 2, we have n−1/p(log n)−1Sn →

0 as n→∞.

Corollary 6. If supnEX
2
n <∞, then for 0 < p < 2, we have n−1/p(log n)−1Sn →

0 as n→∞.

In recent years, two-dimension dependent r.v.’s was usually described by
Copula, with the purpose of a wider usage of two-dimension dependent r.v.’s
by putting forward some special r.v.’s. Let us recall the definition of copula.

Definition 2. Let X and Y be r.v.’s with distribution functions FX(x) and
FY (y), the function CX,Y (u, v) defined for u, v ∈ [0, 1] such that

P (X ≤ x, Y ≤ y) = CXY (FX(x), FY (y)) = CXY (µ, ν)

is called the copula of X and Y .

The theory of Copula can be dated back to 1959, when Sklar related multiple
distribution function to Copula in the form of Theorem. We can establish
multiple distribution by Copula function and the marginal distributions.

As pointed in [4], in order to satisfy the existence of AQSI sequence in (1.5)
and (1.6), we need to consider if r.v.’s can meet the following Copula:

CXiXj
(u, v)− uv ≤ ρijuv(1− u)(1− v), (2.22)

Where (u, v) ∈ [0, 1]× [0, 1],ρij ≥ 0 and if |i− j| → ∞, ρi,j → 0.
Denote q(|i− j|) = ρij, for the sequence which satisfies (2.19), we have

P (Xi ≤ s,Xj ≤ t)− P (Xi ≤ s)P (Xj ≤ t)

≤q(|i− j|)P (Xi ≤ s)P (Xj ≤ t)P (Xi > s)P (Xj > t)

It is not difficult to verify

P (Xi > s,Xj > t)− P (Xi > s)P (Xj > t)

=P (Xi ≤ s,Xj ≤ t)− P (Xi ≤ s)P (Xj ≤ t)

Therefore, s is replaced by s− 1
n
, t is replaced by t− 1

n
, let n→∞, we conclude

that the sequence above is AQSI, where

αij(s, t) = P (Xi ≤ s)P (Xj ≤ t)P (Xi > s)P (Xj > t)

βij(s, t) = P (Xi < s)P (Xj < t)P (Xi ≥ s)P (Xj ≥ t)

Note the definitions of αij and βij and (E|X|)2 ≤ EX2, we have∫ ∞
0

∫ ∞
0

αij(s, t)dsdt ≤
∫ ∞
0

∫ ∞
0

P (Xi > s)P (Xj > t)dsdt

=EX+
i EX

+
j ≤ E|Xi|E|Xj|

≤(E|Xi|)2 + (E|Xj|)2

2
≤
EX2

i + EX2
j

2
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−∞

∫ 0

−∞
βij(s, t)dsdt ≤

∫ 0

−∞

∫ 0

−∞
P (Xi < s)P (Xj < t)dsdt

=EX−i EX
−
j ≤ E|Xi|E|Xj|

≤(E|Xi|)2 + (E|Xj|)2

2
≤
EX2

i + EX2
j

2

Example 5. Let (Xn)n∈N be a sequence of r.v.’s such that EX2
n < ∞, n =

1, 2, · · · , and with Copula:

CXi,Xj
(u, v) = uv[1− 1

(i− j)2
(1− u)(1− v)].

Example 6. Let (Xn)n∈N be a sequence of r.v.’s such that EX2
n < ∞, n =

1, 2, · · · , and with Copula:

CXi,Xj
(u, v) =

uv

1− 1
(i−j)2 (1− u)(1− v)

.
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