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Abstract

The aim of this study is to investigate a property which can be
used measure and category named β-Baire property and a space called
β-Baire space. For this purpose β-dense, nowhere β-dense and β-first
category sets are defined and some results about these new definitions
are obtained. Also we give under which conditions β-Baire spaces pre-
served.
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1 Introduction

Frolik [3] showed that X is a Baire space if and only if Y is a Baire space
where f is a bijective feebly open and feebly continuous function from X to
Y . In this paper we define new concepts called β-dense sets, nowhere β-dense
sets. We investigated some properties of these new concepts. Also we define
of β-first category sets which is used to give β-Baire property. We obtain a
characterization of β-Baire property. Finally by using β-dense sets we define
β-Baire spaces and investigate under which mappings this space preserves.

2 Preliminaries

Throughout the present paper, X and Y denote the topological spaces. Let A
be a subset of X. The closure (resp. the interior) of A is denoted by A−(resp.
A◦). A subset A is defined to be β-open [1] (or semipreopen [2] ) if A ⊂ A−◦−.
The complement of a β-open set is called β-closed. The intersection of all
β-closed sets containing A is called the β-closure [1] of A and is denoted by
A−β . The β-interior of A is defined by the union of all β-open sets contained
in A and is denoted by A◦β. The family of all β-open sets of X is denoted by
βO(X). Andrijevic [2] show that A−β = A ∪ A◦−◦ and A◦β = A ∩ A−◦−.

A subset A of X is called dense if A− = X. A subset A of X is called
nowhere dense if A−◦ = ∅.

3 Baire Property and β-Baire Spaces

Definition 3.1 A subset A of X is defined to be β-dense if A−β = X.

Remark 3.2 Every β-dense set is dense but the converse is not true in
general.

Example 3.3 Let (R,U) be the usual topological space and Q be the rational
numbers set. Then Q is a dense set but it is not a β-dense set.

Lemma 3.4 If a subset A ⊂ X is both open and dense then it is β-dense.

Proof. Let A be an open and dense set. Then, A−β = A ∪ A−◦ = X. This
shows that A is β-dense.

The converse of Lemma does not hold in general.

Example 3.5 Let X = {a, b, c}, τ = {∅, X, {a}}. Then the set {a, b} is a
β- dense and so a dense set but it is not an open set.
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Definition 3.6 A subset A ⊂ X is defined to be nowhere β-dense set if
there exists a β-open and dense set contained in complement of A.

Lemma 3.7 A subset A ⊂ X is nowhere β-dense if and only if (A−β ) has
no interior points.

Proof. Let A be a nowhere β-dense set. Then there exists a β-open and dense
set B such that B ⊂ X − A. It is clear that B◦β ⊂ (X − A)◦β. Since B is a β-
open set B◦β = B ⊂ (X−A)◦β = X−A−β . Then B− ⊂ (X−A−β )−= X− (A−β )◦.
Since B is a dense set B− = X = X − (A−β )◦. Hence (A−β )◦ = ∅.

Remark 3.8 Every nowhere dense set is a nowhere β- dense set. The
converse is not true in general as shown in example.

Example 3.9 Let R be the set of real numbers endowed with usual topology
and Q be the set of rational numbers. Then Q is nowhere β-dense but it is not
nowhere dense, moreover it is a dense set.

Proposition 3.10 Let A,B be subsets of X. The following statements
hold:

1. If A ⊂ B and B is nowhere β-dense then A is nowhere β-dense.
2. If A is nowhere β-dense then A−B is nowhere β-dense.
3. If A or B is nowhere β-dense then A ∩B is nowhere β-dense.

Proof. 1. Since A ⊂ B, (A−β )◦ ⊂ (B−β )◦ = ∅. Hence A is nowhere β-dense.
2. This is a consequence of 1.
3. This is a consequence of 1.

Definition 3.11 Let A be a subset of X. A is defined to be of β-first
category if it can be represented as a countable union of nowhere β-dense sets.

Remark 3.12 Every of first category set is of β-first category. But the
converse is not true in general as seen in example.

Example 3.13 Let R be the set of real numbers endowed with usual topology
and Q be the set of rational numbers. Then R is of β-first category since it
can be represented as R = Q ∪ (R − Q) where Q and (R − Q) are nowhere
β-dense sets.

Theorem 3.14 The family of all of β-first category sets composes a σ-ideal.

Proof. Let A ⊂ B and B is of β-first category. It is clear that A is of β-first
category. Now we show that the countable union of β-first category sets is
of β-first category. Let An be of β-first category set. Then An = ∪m∈NBm,
where N is the set of natural numbers and Bm is nowhere β-dense. ∪n∈NAn =
∪m,n∈NBmn. Hence ∪n∈NAn is of β-first category.
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Definition 3.15 A subset A ⊂ X is defined to have β-Baire property if
it can be represented as A = G∆P , where G is β-open and P is of β-first
category.

Theorem 3.16 A subset A ⊂ X has the property of β-Baire if and only if
it can be represented as A = F∆Q, where F is β-closed and Q is of β-first
category.

Proof. Neccesity. Let A = G∆P , where G is β-open and P is of β-first
category. We set N = G−β −G.Then N is a β -closed set since the intersection
of two β- closed set is a β-closed set and N is a nowhere β-dense set. Now we
show it. (N−β )◦ = ((G−β ∩(X−G))−β )◦ ⊂ (G−β ∩(X−G◦β))◦ = (G−β )◦∩(X−G)◦ ⊂
G−β ∩ (X −G)−) = ∅. N ∪P is of β- first category sets. Since N∆P ⊂ N ∪P,
N∆P is of β− first category. We can see that, G−β ∆N = G. Set F = G−β and
Q = N∆P. A = G∆P = (G−β ∆N)∆P = F∆Q, where F is β -closed and Q is
of β- first category.

Sufficiency. Let A = F∆Q, where F is β-closed and Q is of β-first category.
We setG = F ◦β , N = F−G and P = N∆Q. N is nowhere β-dense since (N−β )◦=
((F ∩ (X −G))−β )◦ ⊂ (F−β ∩ (X −G)−β )◦= (F ∩ (X −G)−β )◦ = (F ∩ (X −G◦β))◦

⊂ F ◦∩ (X−F ◦β ) = ∅ and N ∪Q is of β-first category. Hence N∆Q is of β-first
category. We can easily see that, G∆N = F . A = F∆Q = (G∆N)∆Q =
G∆P , where G is β-open and P is of β-first category.

Proposition 3.17 If A has the β-Baire property then X − A has the β-
Baire property.

Proof. Let A = G∆P , where G is a β-open and P is of β-first category set.
X − A = X − (G∆P ) = (X − G)∆P , where X − G is β-closed and P is of
β-first category set. This shows that X − A has the β-Baire property.

Lemma 3.18 If a subset A ⊂ X is β-dense then A is β-open.

Proof. Let A be a β-dense set. Then X = A−β and A−β ⊂ A−. A◦β =
A ∩ A−◦− = A ∩X = A. Hence A is a β-open set.

Definition 3.19 A space X is defined to be β-Baire if the countable inter-
section of β-dense sets of X is β-dense in X.

Example 3.20 The usual topological space (R,U) is a β-Baire space.

Theorem 3.21 The following properties are equivalent for a space X:
1. X is a β-Baire space
2. Every countable union of sets with no β- interior point in X has no β-

interior point in X.
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Proof. (1) ⇒ (2) : Let X be a β-Baire space and (An)◦β = ∅ for each n ∈ N
, where N is the set of the natural numbers. Then X − ((An)◦β) = (X −
An)−β = X. Since X is a β-Baire space, (∩n∈N(X − An))−β = X. Therefore
(∪n∈NAn)◦β = ∅.

(2)⇒ (1) : It is obvious.

Definition 3.22 A surjective function f : X −→ Y is defined to be

1. β-feebly continuous if (f−1(V ))◦β 6= ∅ whenever V ◦β 6= ∅ for a subset V
of Y .

2. β-feebly open if (f(U))◦β 6= ∅ whenever U◦β 6= ∅ for a subset U of X.

Theorem 3.23 Let f : X −→ Y be a surjective function. The following
statements hold:

1. If f is β-feebly continuous and A is β-dense in X, then f(A) is β-dense
in Y .

2. If f is β-feebly open and B is β-dense in Y , then f−1(B) is β-dense in
X.

Proof.

1. Let f be a β-feebly continuous function and A be a β-dense set in X.
Suppose that f(A) is not β-dense. Then X 6= (f(A))−β and ∅ 6= Y − (f(A))−β .
Set T = Y − (f(A))−β . Then T is a nonempty β-open set. Since f is β-feebly
continuous (f−1(T ))◦β 6= ∅. Also (f−1(T ))◦β ∩ A ⊂ f−1(T ) ∩ f−1(f(A)) =
f−1(T ∩ f(A)) ⊂ f−1(T ∩ (f(A))−β ) = ∅. This is a contradiction since A is
β-dense. Hence f(A) is β-dense.

2. Let f be β-feebly open and B be β-dense in Y . Suppose that f−1(B) is
not β-dense in X. Then there exists a nonempty β-open set U of X such that
U ∩ f−1(B) = ∅. Since f is β-feebly open (f(U))◦β 6= ∅. Moreover, we have
(f(U))◦β∩B ⊂ f(U)∩B = ∅. This is a contradiction since B is β-dense. Hence
f−1(B) is β-dense.

Theorem 3.24 Let f : X −→ Y be a β-feebly continuous and β-feebly open
surjection. If X is a β-Baire space , then Y is a β-Baire space.

Proof. Let X be a β-Baire space and Bn ⊂ Y be a β -dense set for each n ∈ N ,
where N is the set of natural numbers. Since f is β-feebly open f−1(Bn) is
β-dense in X. Since X is a β-Baire space, ∩n∈Nf−1(Bn) is β-dense in X. By
the β-feebly continuity of f , f(∩n∈Nf−1(Bn)) = ∩n∈NBn is β-dense in Y . This
shows that Y is a β-Baire space.
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