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Abstract

In this paper we give some sufficient conditions for the decomposition
of crowns into isomorphic suns.
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1 Introduction

Suppose that G and H are graphs and the edges of G can be decomposed
into subgraphs which are isomorphic to H. Then we say that G has an H-
decomposition. The crown Cn,n−1 is the graph with vertex set {a1, a2, · · · , an, b1,
b2, · · · , bn} and edge set {aibj : 1 ≤ i, j ≤ n, i 6= j}. Equivalently, the crown
Cn,n−1 is the graph obtained by deleting a perfect matching from the complete
bipartite graph Kn,n. The crown has been investigated for the star decomposi-
tion [10, 11], path decomposition [11] and complete bipartite decomposition [9].
A k-cycle, denoted by Ck, is a cycle of length k. Let (v1v2 . . . vk) denote the k-
cycle with vertex set {v1, v2, . . . , vk} and edge set {v1v2, v2v3, . . . , vk−1vk, vkv1}.
For an even integer k ≥ 6, a k-sun SUNk is obtained from Ck/2 by adding
a pendant edge to each vertex of Ck/2. If the pendant vertex set of SUNk is
{w1, w2, . . . , wk/2} and the pendant edge set is {v1w1, v2w2, . . . , vk/2wk/2}, then
SUNk is denoted by

SUNk =

(
v1 v2 . . . vk/2
w1 w2 . . . wk/2

)
.
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The concept of a sun was defined by Harary [6]. Anitha and Lekshmi [1, 2] have
decomposed K2k into k-sun, Hamilton cycles, and perfect matchings. A k-sun
system of order v is a decomposition of the complete graph Kv into k-suns.
Liang and Guo [7, 8] gave the existence spectrum of a k-sun system of order
v as k = 3, 4, 5, 6, 8 by using a recursive construction. Recently, Fu et al. [3]
investigate the problem of the decomposition of complete tripartite graphs into
3-suns and find the necessary and sufficient condition for the existence of a k-
sun system of order v in [4, 5]. In this paper we give some sufficient conditions
for the decomposition of crowns into isomorphic suns.

2 Preliminaries

We consider only SUN4r-decompositions of crowns because crowns (being bi-
partite) possess no odd cycles. For positive integers m and n, Bm,n denotes
the bipartite graph with parts of sizes m and n. A bipartite graph is bal-
anced if m = n. In a balanced bipartite graph, the label of the edge aibj is
defined to be j − i if i ≤ j and n + j − i if i > j. Let Bpr,qr = ∪q−1j=0 ∪

p−1
i=0

Gi,j, where Gi,j is a complete bipartite graph (or a crown) with bipartition
({air, air+1, air+2, . . . , air+r−1}, {bjr, bjr+1, bjr+2, . . . , bjr+r−1}) for 0 ≤ i ≤ p− 1

and 0 ≤ j ≤ q− 1. Let M
(`)
i,j (respectively, C

(`)
i,j ) be the matching (respectively,

cycle) with the edges labeled ` (respectively, labeled ` and `+ 1) in Gi,j. Note

that C
(`1)
i,j , M

(`2)
i,j′ and M

(`3)
i′,j , for i 6= i′, j 6= j′, constitute a 4r-sun. The follow-

ing lemma for the sun decomposition of the complete bipartite graph is needed
for our discussions.

Lemma 2.1. For an integer r ≥ 2, then K4r,2r has a SUN4r-decomposition.

Proof. We distinguish two cases by the values of r.

Case 1. r is even.

First, we have that K2r,2r has a SUN4r-decomposition as follows.

K2r,2r = ∪1j=0 ∪1i=0 Gi,j

= ∪
r
2
−1

`=0 [(C
(2`)
0,0 ∪M

(2`)
0,1 ∪M

(2`)
1,0 ) ∪ (C

(2`)
1,1 ∪M

(2`+1)
1,0 ∪M (2`+1)

0,1 )].

Since K4r,2r = K2r,2r ∪K2r,2r, it follows that K4r,2r can be decomposed into 2r
copies of SUN4r.

Case 2. r is odd.
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Similar to Case 1, we have that

K4r,2r = ∪1
j=0 ∪3i=0 Gi,j

= ∪
r−3
2

`=0 [(C
(2`)
0,0 ∪M

(2`)
0,1 ∪M

(2`)
1,0 ) ∪ (C

(2`)
1,1 ∪M

(2`+1)
1,0 ∪M (2`+1)

0,1 ) ∪

(C
(2`)
2,0 ∪M

(2`)
2,1 ∪M

(2`)
3,0 ) ∪ (C

(2`)
3,1 ∪M

(2`+1)
3,0 ∪M (2`+1)

2,1 )] ∪

(∪1j=0 ∪3i=0 M
(r−1)
i,j ).

On the other hand, since

(C
(0)
0,0 ∪M

(0)
0,1 ∪M

(0)
1,0 ) ∪ (C

(r−3)
1,1 ∪M (r−2)

1,0 ∪M (r−2)
0,1 ) ∪ (∪1j=0 ∪3

i=0 M
(r−1)
i,j )

= (C
(0)
0,0 ∪M

(0)
0,1 ∪M

(r−1)
2,0 ) ∪ (C

(r−3)
1,1 ∪M (r−2)

1,0 ∪M (r−1)
2,1 ) ∪

(C
(r−1)
1,0 ∪M (r−1)

1,1 ∪M (r−1)
3,0 ) ∪ (C

(r−2)
0,1 ∪M (r−1)

0,0 ∪M (r−1)
3,1 ),

it follows that K4r,2r can be decomposed into 2r copies of SUN4r.

3 Main results

Suppose S is the 4r-sun (
v1 v2 . . . v2r
w1 w2 . . . w2r

)
in Cn,n−1, and µ is a nonnegative integer. Then we use S+ µ to be denote the
the 4r-sun (

v1 + µ v2 + µ . . . v2r + µ
w1 + µ w2 + µ . . . w2r + µ

)
,

where the indices are taken modulo n. In this paper we prove the following
results.

Theorem A. Suppose that n ≥ 9, r ≥ 2 are integers such that 4r|n− 1. Then
Cn,n−1 has a SUN4r-decomposition.

Theorem B. Suppose that n ≥ 8, r ≥ 2 are integers such that 4r|n. Then
Cn,n−1 has a SUN4r-decomposition.

We now prove Theorem A. Let us begin with Lemma 3.1.

Lemma 3.1. C4r+1,4r has a SUN4r-decomposition for all r ≥ 2.

Proof. We distinguish two cases by the values of r.

Case 1: r is even.
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Let S be the 4r-sun

S =

(
b1 a0 b2 a4r b3 a4r−1 b4 a4r−2 . . .
ar+2 b4r ar+5 b4r−2 ar+7 b4r−4 ar+9 b4r−6 . . .

. . . br−2 a3r+4 br−1 a3r+3 br a2r+2

. . . a3r−3 b2r+6 a3r−1 b2r+4 a3r+2 br+2

)
.

It is not difficult to check that all vertices of S are distinct. In addition, one
sees that that S consists of edges in the cycle with labels 1, 2, 3, 4, 5, 6, 7, · · · ,
2r − 5, 2r − 4, 2r − 3, 2r − 2, 3r − 1, 2r and the pendant edges with labels
3r, 4r, 3r− 2, 4r− 1, 3r− 3, 4r− 2, 3r− 4, 4r− 3, . . . , 2r+ 2, 3r+ 3, 2r+ 1, 3r+
2, 2r − 1, 3r + 1 consecutively. Thus C4r+1,4r is decomposed into the following
4r-suns: S + µ (µ = 0, 1, 2, · · · , 4r).

Case 2: r is odd.

Let S be the 4r-sun

S =

(
b1 a0 b2 a4r b3 a4r−1 b4 a4r−2 . . .
ar+2 b4r a2r+4 b4r−2 ar+6 b4r−4 ar+8 b4r−6 . . .

. . . br−2 a3r+4 br−1 a3r+3 br a2r+2

. . . a3r−4 b2r+6 a3r−2 b2r+4 a3r br+2

)
.

It is not difficult to check that all vertices of S are distinct. In addition, one
sees that that S consists of edges in the cycle with labels 1, 2, 3, 4, 5, 6, 7, · · · ,
2r − 5, 2r − 4, 2r − 3, 2r − 2, 3r − 1, 2r and the pendant edges with labels
3r, 4r, 2r− 1, 4r− 1, 3r− 2, 4r− 2, 3r− 3, 4r− 3, . . . , 2r+ 3, 3r+ 3, 2r+ 2, 3r+
2, 2r + 1, 3r + 1 consecutively. Thus C4r+1,4r is decomposed into the following
4r-suns: S + µ (µ = 0, 1, 2, · · · , 4r).

Proof of Theorem A. Let n = 4rq+ 1 where r ≥ 2, q ≥ 1. We need to show
that C4rq+1,4rq has a SUN4r-decomposition. We prove the result by induction
on q. By Lemma 3.1, the case q = 1 is true. Let q ≥ 2 and suppose the
result holds for values smaller than q. Note that C4rq+1,4rq can be decomposed
into subgraphs G1, G2, G3, G4 where G1

∼= C4r+1,4r, G2
∼= C4r(q−1)+1,4r(q−1)

and G3
∼= G4

∼= K4r,4r(q−1). By the induction hypothesis, both G1 and G2

have SUN4r-decompositions. Since K4r,4r(q−1) = K4r,2r ∪K4r,2r ∪ · · · ∪K4r,2r︸ ︷︷ ︸
2(q − 1) copies of K4r,2r

,

by Lemma 2.1, both G3 and G4 have SUN4r-decompositions. Thus C4rq+1,4rq

has a SUN4r-decomposition.

We next prove Theorem B. Let us begin with Lemma 3.2.

Lemma 3.2. C4r,4r−1 has a SUN4r-decomposition for all r ≥ 2.
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Proof. We distinguish two cases by the values of r.

Case 1. r is even.
First, we have that C4r,4r−1 has a decomposition as follows.

C4r,4r−1 = ∪3j=0 ∪3i=0 Gi,j

= ∪
r
2
−1

`=0 [(C
(2`)
0,1 ∪M

(2`+1)
0,0 ∪M (2`+1)

1,1 ) ∪ (C
(2`)
2,3 ∪M

(2`+1)
2,2 ∪M (2`+1)

3,3 ) ∪

(C
(2`)
2,0 ∪M

(2`)
2,1 ∪M

(2`)
3,0 ) ∪ (C

(2`)
3,1 ∪M

(2`+1)
3,0 ∪M (2`+1)

2,1 ) ∪

(C
(2`)
0,2 ∪M

(2`)
0,3 ∪M

(2`)
1,2 ) ∪ (C

(2`)
1,3 ∪M

(2`+1)
1,2 ∪M (2`+1)

0,3 )] ∪

∪
r
2
−1

`=1 [(C
(2`)
1,0 ∪M

(2`)
1,1 ∪M

(2`)
0,0 ) ∪ (C

(2`)
3,2 ∪M

(2`)
3,3 ∪M

(2`)
2,2 )] ∪

(M
(0)
1,0 ∪M

(1)
1,0 ) ∪ (M

(0)
3,2 ∪M

(1)
3,2 ).

On the other hand, since

(C
(0)
2,0 ∪M

(0)
2,1 ∪M

(0)
3,0 ) ∪ (C

(0)
3,1 ∪M

(1)
3,0 ∪M

(1)
2,1 ) ∪ (M

(0)
1,0 ∪M

(1)
1,0 ) ∪ (M

(0)
3,2 ∪M

(1)
3,2 )

= (C
(0)
2,0 ∪M

(0)
2,1 ∪M

(0)
1,0 ) ∪ (C

(0)
3,1 ∪M

(0)
3,2 ∪M

(1)
2,1 ) ∪ (C

(0)
3,0 ∪M

(1)
3,2 ∪M

(1)
1,0 ),

it follows that C4r,4r−1 can be decomposed into 4r − 1 copies of SUN4r.
Case 2. r is odd.

Similar to Case 1, we have that

C4r,4r−1 = ∪3j=0 ∪3i=0 Gi,j

= ∪
r−3
2

`=0 [(C
(2`)
2,0 ∪M

(2`)
2,1 ∪M

(2`)
3,0 ) ∪ (C

(2`)
3,1 ∪M

(2`+1)
3,0 ∪M (2`+1)

2,1 ) ∪

(C
(2`)
1,2 ∪M

(2`)
1,3 ∪M

(2`)
0,2 ) ∪ (C

(2`)
0,3 ∪M

(2`+1)
0,2 ∪M (2`+1)

1,3 ) ∪

(C
(2`+1)
0,0 ∪M (2`)

0,1 ∪M
(2`)
1,0 ) ∪ (C

(2`+1)
1,1 ∪M (2`+1)

1,0 ∪M (2`+1)
0,1 ) ∪

(C
(2`+1)
2,2 ∪M (2`)

2,3 ∪M
(2`)
3,2 ) ∪ (C

(2`+1)
3,3 ∪M (2`+1)

3,2 ∪M (2`+1)
2,3 )] ∪

(∪i 6=jM
(r−1)
i,j ).

On the other hand, since

(C
(0)
2,0 ∪M

(0)
2,1 ∪M

(0)
3,0 ) ∪ (C

(r−2)
3,3 ∪M (r−2)

3,2 ∪M (r−2)
2,3 )

∪(C
(0)
1,2 ∪M

(0)
1,3 ∪M

(0)
0,2 ) ∪ (∪i 6=jM

(r−1)
i,j )

= (C
(0)
2,0 ∪M

(0)
2,1 ∪M

(r−1)
1,0 ) ∪ (C

(r−1)
3,0 ∪M (r−1)

3,1 ∪M (r−1)
2,0 ) ∪

(C
(r−2)
3,3 ∪M (r−2)

3,2 ∪M (r−1)
0,3 ) ∪ (C

(r−2)
2,3 ∪M (r−1)

2,1 ∪M (r−1)
1,3 ) ∪

(C
(0)
1,2 ∪M

(0)
1,3 ∪M

(r−1)
3,2 ) ∪ (C

(r−1)
0,2 ∪M (r−1)

0,1 ∪M (r−1)
1,2 ),

it follows that C4r,4r−1 can be decomposed into 4r − 1 copies of SUN4r.
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Proof of Theorem B. Let n = 4rq where r ≥ 2, q ≥ 1. We need to show
that C4rq,4rq−1 has a SUN4r-decomposition. We prove the result by induction
on q. By Lemma 3.2, the case q = 1 is true. Let q ≥ 2 and suppose the
result holds for values smaller than q. Note that C4rq,4rq−1 can be decomposed
into subgraphs G′1, G

′
2, G

′
3, G

′
4 where G′1

∼= C4r,4r−1, G
′
2
∼= C4r(q−1),4r(q−1)−1

and G′3
∼= G′4

∼= K4r,4r(q−1). By the induction hypothesis, both G′1 and G′2
have SUN4r-decompositions. Since K4r,4r(q−1) = K4r,2r ∪K4r,2r ∪ · · · ∪K4r,2r︸ ︷︷ ︸

2(q − 1) copies of K4r,2r

,

by Lemma 2.1, both G′3 and G′4 have SUN4r-decompositions. Thus C4rq,4rq−1
has a SUN4r-decomposition.
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