International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 5, 227 - 233 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2016.637

Sun Decompositions of Crowns

Jenq-Jong Lin

Ling Tung University, Taichung 40852, Taiwan

Copyright © 2016 Jenq-Jong Lin. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we give some sufficient conditions for the decomposition of crowns into isomorphic suns.

Mathematics Subject Classification: 05C51

Keywords: sun, decomposition, crown

1 Introduction

Suppose that G and H are graphs and the edges of G can be decomposed into subgraphs which are isomorphic to H. Then we say that G has an H-decomposition. The $crown C_{n,n-1}$ is the graph with vertex set $\{a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n\}$ and edge set $\{a_ib_j : 1 \leq i, j \leq n, i \neq j\}$. Equivalently, the crown $C_{n,n-1}$ is the graph obtained by deleting a perfect matching from the complete bipartite graph $K_{n,n}$. The crown has been investigated for the star decomposition [10, 11], path decomposition [11] and complete bipartite decomposition [9]. A k-cycle, denoted by C_k , is a cycle of length k. Let (v_1v_2, \dots, v_k) denote the k-cycle with vertex set $\{v_1, v_2, \dots, v_k\}$ and edge set $\{v_1v_2, v_2v_3, \dots, v_{k-1}v_k, v_kv_1\}$. For an even integer $k \geq 6$, a k-sun \mathbb{SUN}_k is obtained from $C_{k/2}$ by adding a pendant edge to each vertex of $C_{k/2}$. If the pendant vertex set of \mathbb{SUN}_k is $\{w_1, w_2, \dots, w_{k/2}\}$ and the pendant edge set is $\{v_1w_1, v_2w_2, \dots, v_{k/2}w_{k/2}\}$, then \mathbb{SUN}_k is denoted by

$$\mathbb{SUN}_k = \left(\begin{array}{cccc} v_1 & v_2 & \dots & v_{k/2} \\ w_1 & w_2 & \dots & w_{k/2} \end{array} \right).$$

228 Jenq-Jong Lin

The concept of a sun was defined by Harary [6]. Anitha and Lekshmi [1, 2] have decomposed K_{2k} into k-sun, Hamilton cycles, and perfect matchings. A k-sun system of order v is a decomposition of the complete graph K_v into k-suns. Liang and Guo [7, 8] gave the existence spectrum of a k-sun system of order v as k = 3, 4, 5, 6, 8 by using a recursive construction. Recently, Fu et al. [3] investigate the problem of the decomposition of complete tripartite graphs into 3-suns and find the necessary and sufficient condition for the existence of a k-sun system of order v in [4, 5]. In this paper we give some sufficient conditions for the decomposition of crowns into isomorphic suns.

2 Preliminaries

We consider only SUN_{4r}-decompositions of crowns because crowns (being bipartite) possess no odd cycles. For positive integers m and n, $B_{m,n}$ denotes the bipartite graph with parts of sizes m and n. A bipartite graph is balanced if m=n. In a balanced bipartite graph, the label of the edge a_ib_j is defined to be j-i if $i \leq j$ and n+j-i if i > j. Let $B_{pr,qr} = \bigcup_{j=0}^{q-1} \bigcup_{i=0}^{p-1} G_{i,j}$, where $G_{i,j}$ is a complete bipartite graph (or a crown) with bipartition $(\{a_{ir}, a_{ir+1}, a_{ir+2}, \ldots, a_{ir+r-1}\}, \{b_{jr}, b_{jr+1}, b_{jr+2}, \ldots, b_{jr+r-1}\})$ for $0 \leq i \leq p-1$ and $0 \leq j \leq q-1$. Let $M_{i,j}^{(\ell)}$ (respectively, $C_{i,j}^{(\ell)}$) be the matching (respectively, cycle) with the edges labeled ℓ (respectively, labeled ℓ and $\ell+1$) in $G_{i,j}$. Note that $C_{i,j}^{(\ell_1)}$, $M_{i,j'}^{(\ell_2)}$ and $M_{i',j}^{(\ell_3)}$, for $i \neq i'$, $j \neq j'$, constitute a 4r-sun. The following lemma for the sun decomposition of the complete bipartite graph is needed for our discussions.

Lemma 2.1. For an integer $r \geq 2$, then $K_{4r,2r}$ has a \mathbb{SUN}_{4r} -decomposition.

Proof. We distinguish two cases by the values of r.

Case 1. r is even.

First, we have that $K_{2r,2r}$ has a SUN_{4r} -decomposition as follows.

$$K_{2r,2r} = \bigcup_{j=0}^{1} \bigcup_{i=0}^{1} G_{i,j}$$

= $\bigcup_{\ell=0}^{\frac{r}{2}-1} [(C_{0,0}^{(2\ell)} \cup M_{0,1}^{(2\ell)} \cup M_{1,0}^{(2\ell)}) \cup (C_{1,1}^{(2\ell)} \cup M_{1,0}^{(2\ell+1)} \cup M_{0,1}^{(2\ell+1)})].$

Since $K_{4r,2r} = K_{2r,2r} \cup K_{2r,2r}$, it follows that $K_{4r,2r}$ can be decomposed into 2r copies of SUN_{4r} .

Case 2. r is odd.

Similar to Case 1, we have that

$$K_{4r,2r} = \bigcup_{j=0}^{1} \bigcup_{i=0}^{3} G_{i,j}$$

$$= \bigcup_{\ell=0}^{\frac{r-3}{2}} \left[\left(C_{0,0}^{(2\ell)} \cup M_{0,1}^{(2\ell)} \cup M_{1,0}^{(2\ell)} \right) \cup \left(C_{1,1}^{(2\ell)} \cup M_{1,0}^{(2\ell+1)} \cup M_{0,1}^{(2\ell+1)} \right) \cup \left(C_{2,0}^{(2\ell)} \cup M_{2,1}^{(2\ell)} \cup M_{3,0}^{(2\ell)} \right) \cup \left(C_{3,1}^{(2\ell)} \cup M_{3,0}^{(2\ell+1)} \cup M_{2,1}^{(2\ell+1)} \right) \right] \cup \left(\bigcup_{j=0}^{1} \bigcup_{i=0}^{3} M_{i,j}^{(r-1)} \right).$$

On the other hand, since

$$\begin{array}{l} (C_{0,0}^{(0)} \cup M_{0,1}^{(0)} \cup M_{1,0}^{(0)}) \cup (C_{1,1}^{(r-3)} \cup M_{1,0}^{(r-2)} \cup M_{0,1}^{(r-2)}) \cup (\cup_{j=0}^{1} \cup_{i=0}^{3} M_{i,j}^{(r-1)}) \\ = (C_{0,0}^{(0)} \cup M_{0,1}^{(0)} \cup M_{2,0}^{(r-1)}) \cup (C_{1,1}^{(r-3)} \cup M_{1,0}^{(r-2)} \cup M_{2,1}^{(r-1)}) \cup \\ (C_{1,0}^{(r-1)} \cup M_{1,1}^{(r-1)} \cup M_{3,0}^{(r-1)}) \cup (C_{0,1}^{(r-2)} \cup M_{0,0}^{(r-1)} \cup M_{3,1}^{(r-1)}), \end{array}$$

it follows that $K_{4r,2r}$ can be decomposed into 2r copies of SUN_{4r} .

3 Main results

Suppose \mathbb{S} is the 4r-sun

$$\left(\begin{array}{cccc} v_1 & v_2 & \dots & v_{2r} \\ w_1 & w_2 & \dots & w_{2r} \end{array}\right)$$

in $C_{n,n-1}$, and μ is a nonnegative integer. Then we use $\mathbb{S} + \mu$ to be denote the the 4r-sun

$$\begin{pmatrix} v_1 + \mu & v_2 + \mu & \dots & v_{2r} + \mu \\ w_1 + \mu & w_2 + \mu & \dots & w_{2r} + \mu \end{pmatrix},$$

where the indices are taken modulo n. In this paper we prove the following results.

Theorem A. Suppose that $n \geq 9$, $r \geq 2$ are integers such that 4r|n-1. Then $C_{n,n-1}$ has a \mathbb{SUN}_{4r} -decomposition.

Theorem B. Suppose that $n \geq 8$, $r \geq 2$ are integers such that 4r|n. Then $C_{n,n-1}$ has a \mathbb{SUN}_{4r} -decomposition.

We now prove Theorem A. Let us begin with Lemma 3.1.

Lemma 3.1. $C_{4r+1,4r}$ has a SUN_{4r} -decomposition for all $r \geq 2$.

Proof. We distinguish two cases by the values of r.

Case 1: r is even.

230 Jeng-Jong Lin

Let \mathbb{S} be the 4r-sun

$$\mathbb{S} = \begin{pmatrix} b_1 & a_0 & b_2 & a_{4r} & b_3 & a_{4r-1} & b_4 & a_{4r-2} & \dots \\ a_{r+2} & b_{4r} & a_{r+5} & b_{4r-2} & a_{r+7} & b_{4r-4} & a_{r+9} & b_{4r-6} & \dots \end{pmatrix}$$

$$\dots \quad b_{r-2} \quad a_{3r+4} \quad b_{r-1} \quad a_{3r+3} \quad b_r \quad a_{2r+2}$$

$$\dots \quad a_{3r-3} \quad b_{2r+6} \quad a_{3r-1} \quad b_{2r+4} \quad a_{3r+2} \quad b_{r+2}$$

It is not difficult to check that all vertices of $\mathbb S$ are distinct. In addition, one sees that that $\mathbb S$ consists of edges in the cycle with labels $1, 2, 3, 4, 5, 6, 7, \cdots$, 2r - 5, 2r - 4, 2r - 3, 2r - 2, 3r - 1, 2r and the pendant edges with labels $3r, 4r, 3r - 2, 4r - 1, 3r - 3, 4r - 2, 3r - 4, 4r - 3, \ldots, 2r + 2, 3r + 3, 2r + 1, 3r + 2, 2r - 1, 3r + 1$ consecutively. Thus $C_{4r+1,4r}$ is decomposed into the following 4r-suns: $\mathbb S + \mu$ ($\mu = 0, 1, 2, \cdots, 4r$).

Case 2: r is odd.

Let \mathbb{S} be the 4r-sun

$$\mathbb{S} = \begin{pmatrix} b_1 & a_0 & b_2 & a_{4r} & b_3 & a_{4r-1} & b_4 & a_{4r-2} & \dots \\ a_{r+2} & b_{4r} & a_{2r+4} & b_{4r-2} & a_{r+6} & b_{4r-4} & a_{r+8} & b_{4r-6} & \dots \end{pmatrix}$$

$$\dots b_{r-2} \quad a_{3r+4} \quad b_{r-1} \quad a_{3r+3} \quad b_r \quad a_{2r+2}$$

$$\dots \quad a_{3r-4} \quad b_{2r+6} \quad a_{3r-2} \quad b_{2r+4} \quad a_{3r} \quad b_{r+2})$$

It is not difficult to check that all vertices of $\mathbb S$ are distinct. In addition, one sees that that $\mathbb S$ consists of edges in the cycle with labels $1,2,3,4,5,6,7,\cdots$, 2r-5,2r-4,2r-3,2r-2,3r-1,2r and the pendant edges with labels $3r,4r,2r-1,4r-1,3r-2,4r-2,3r-3,4r-3,\ldots,2r+3,3r+3,2r+2,3r+2,2r+1,3r+1$ consecutively. Thus $C_{4r+1,4r}$ is decomposed into the following 4r-suns: $\mathbb S+\mu$ ($\mu=0,1,2,\cdots,4r$).

Proof of Theorem A. Let n=4rq+1 where $r\geq 2, q\geq 1$. We need to show that $C_{4rq+1,4rq}$ has a \mathbb{SUN}_{4r} -decomposition. We prove the result by induction on q. By Lemma 3.1, the case q=1 is true. Let $q\geq 2$ and suppose the result holds for values smaller than q. Note that $C_{4rq+1,4rq}$ can be decomposed into subgraphs G_1, G_2, G_3, G_4 where $G_1 \cong C_{4r+1,4r}, G_2 \cong C_{4r(q-1)+1,4r(q-1)}$ and $G_3 \cong G_4 \cong K_{4r,4r(q-1)}$. By the induction hypothesis, both G_1 and G_2 have \mathbb{SUN}_{4r} -decompositions. Since $K_{4r,4r(q-1)} = \underbrace{K_{4r,2r} \cup K_{4r,2r} \cup \cdots \cup K_{4r,2r}}$

2(q-1) copies of $K_{4r,2r}$

by Lemma 2.1, both G_3 and G_4 have \mathbb{SUN}_{4r} -decompositions. Thus $C_{4rq+1,4rq}$ has a \mathbb{SUN}_{4r} -decomposition.

We next prove Theorem B. Let us begin with Lemma 3.2.

Lemma 3.2. $C_{4r,4r-1}$ has a SUN_{4r} -decomposition for all $r \geq 2$.

Proof. We distinguish two cases by the values of r.

Case 1. r is even.

First, we have that $C_{4r,4r-1}$ has a decomposition as follows.

On the other hand, since

$$(C_{2,0}^{(0)} \cup M_{2,1}^{(0)} \cup M_{3,0}^{(0)}) \cup (C_{3,1}^{(0)} \cup M_{3,0}^{(1)} \cup M_{2,1}^{(1)}) \cup (M_{1,0}^{(0)} \cup M_{1,0}^{(1)}) \cup (M_{3,2}^{(0)} \cup M_{3,2}^{(1)})$$

$$= (C_{2,0}^{(0)} \cup M_{2,1}^{(0)} \cup M_{1,0}^{(0)}) \cup (C_{3,1}^{(0)} \cup M_{3,2}^{(0)} \cup M_{2,1}^{(1)}) \cup (C_{3,0}^{(0)} \cup M_{3,2}^{(1)} \cup M_{1,0}^{(1)}),$$

it follows that $C_{4r,4r-1}$ can be decomposed into 4r-1 copies of SUN_{4r} . Case 2. r is odd.

Similar to Case 1, we have that

$$\begin{array}{ll} C_{4r,4r-1} & = & \cup_{j=0}^{3} \cup_{i=0}^{3} G_{i,j} \\ & = & \cup_{\ell=0}^{\frac{r-3}{2}} \big[\big(C_{2,0}^{(2\ell)} \cup M_{2,1}^{(2\ell)} \cup M_{3,0}^{(2\ell)} \big) \cup \big(C_{3,1}^{(2\ell)} \cup M_{3,0}^{(2\ell+1)} \cup M_{2,1}^{(2\ell+1)} \big) \cup \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

On the other hand, since

$$\begin{split} & (C_{2,0}^{(0)} \cup M_{2,1}^{(0)} \cup M_{3,0}^{(0)}) \cup (C_{3,3}^{(r-2)} \cup M_{3,2}^{(r-2)} \cup M_{2,3}^{(r-2)}) \\ & \qquad \qquad \cup (C_{1,2}^{(0)} \cup M_{1,3}^{(0)} \cup M_{0,2}^{(0)}) \cup (\cup_{i \neq j} M_{i,j}^{(r-1)}) \\ & = & (C_{2,0}^{(0)} \cup M_{2,1}^{(0)} \cup M_{1,0}^{(r-1)}) \cup (C_{3,0}^{(r-1)} \cup M_{3,1}^{(r-1)} \cup M_{2,0}^{(r-1)}) \cup \\ & \qquad \qquad (C_{3,3}^{(r-2)} \cup M_{3,2}^{(r-2)} \cup M_{0,3}^{(r-1)}) \cup (C_{2,3}^{(r-2)} \cup M_{2,1}^{(r-1)} \cup M_{1,3}^{(r-1)}) \cup \\ & \qquad \qquad (C_{1,2}^{(0)} \cup M_{1,3}^{(0)} \cup M_{3,2}^{(r-1)}) \cup (C_{0,2}^{(r-1)} \cup M_{0,1}^{(r-1)} \cup M_{1,2}^{(r-1)}), \end{split}$$

it follows that $C_{4r,4r-1}$ can be decomposed into 4r-1 copies of SUN_{4r} .

232 Jenq-Jong Lin

Proof of Theorem B. Let n=4rq where $r\geq 2,\ q\geq 1$. We need to show that $C_{4rq,4rq-1}$ has a \mathbb{SUN}_{4r} -decomposition. We prove the result by induction on q. By Lemma 3.2, the case q=1 is true. Let $q\geq 2$ and suppose the result holds for values smaller than q. Note that $C_{4rq,4rq-1}$ can be decomposed into subgraphs G'_1, G'_2, G'_3, G'_4 where $G'_1 \cong C_{4r,4r-1}, G'_2 \cong C_{4r(q-1),4r(q-1)-1}$ and $G'_3 \cong G'_4 \cong K_{4r,4r(q-1)}$. By the induction hypothesis, both G'_1 and G'_2 have \mathbb{SUN}_{4r} -decompositions. Since $K_{4r,4r(q-1)} = \underbrace{K_{4r,2r} \cup K_{4r,2r} \cup \cdots \cup K_{4r,2r}}_{2(q-1) \text{ copies of } K_{4r,2r}}$

by Lemma 2.1, both G_3' and G_4' have \mathbb{SUN}_{4r} -decompositions. Thus $C_{4rq,4rq-1}$ has a \mathbb{SUN}_{4r} -decomposition.

References

- [1] R. Anitha, R.-S. Lekshmi, N-sun decomposition of complete graphs and complete bipartite graphs, World Acad. Sci. Eng. Tech., 27 (2007), 262-266.
- [2] R. Anitha, R.-S. Lekshmi, N-sun decomposition of complete, complete bipartite and some Harary graphs, *Int. J. Math. Sci.*, **2** (2008), 33-38.
- [3] C.-M. Fu, N.-H. Jhuang, Y.-L. Lin and H.-M. Sung, From Steiner triple systems to 3-sun systems, *Taiwanese J. Math.*, **16** (2012), no. 2, 531-543.
- [4] C.-M. Fu, N.-H. Jhuang, Y.-L. Lin and H.-M. Sung, On the existence of k-sun systems, *Discrete Math.*, 312 (2012), 1931-1939. http://dx.doi.org/10.1016/j.disc.2012.03.007
- [5] C.-M. Fu, M.-H. Huang and Y.-L. Lin, On the existence of 5-sun systems, *Discrete Math.*, 313 (2013), 2942-2950.
 http://dx.doi.org/10.1016/j.disc.2013.09.007
- [6] F. Harary, Graph Theory, Addison-Wesley, New York, 1969.
- [7] Z. Liang, J. Guo, J. Wang, On the crown graph decompositions containing odd cycle, *Int. J. Comb. Graph Theory Appl.*, **2** (2008), 125-160.
- [8] Z. Liang, J. Guo, Decomposition of complete multigraphs into crown graphs, J. Appl. Math. Comput., 32 (2010), 507-517. http://dx.doi.org/10.1007/s12190-009-0267-0
- [9] C. Lin, J.-J. Lin and T.-W. Shyu, Complete Bipartite Decomposition of Crowns, with Applications to Complete Directed Graphs, Chapter in *Combinatorics and Computer Science*, Springer Berlin Heidelberg, 1996, 58-66. http://dx.doi.org/10.1007/3-540-61576-8_74

- [10] C. Lin, J.-J. Lin, and T.-W. Shyu, Isomorphic Star Decompositions of Multicrowns and the Power of Cycles, *Ars Combin.*, **53** (1999), 249-256.
- [11] T.-W. Shyu, *The Decomposition of Complete Graphs, Complete Bipartite Graphs and Crowns*, Ph.D. Thesis, Department of Mathematics, National Central University, Taiwan, 1997.

Received: March 16, 2016; Published: April 25, 2016