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In this note we obtain polynomials such that their images are all
integers.
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1 Introduction

The problem of the representation of integers is an old problem. Waring’s
problem establish that every nonnegative integer is the sum of a fixed number
of nonnegative k-th powers. This fixed number depends of k. For example,
all nonnegative integer is the sum of four nonnegative squares (Lagrange’s
Theorem). The Waring’s problem was solved by Hilbert. This is a very difficult
problem. The history of the Waring’s problem is given in [3].

Goldbach conjectured that every even positive integer is the sum of two
prime numbers. The Goldbach’s conjecture is an open problem.

It is also natural to consider the problem of the representation of an integer
as the sum of a fixed number of members of the set

0, 1k, 2k, 3k, . . . ,−1k,−2k,−3k, . . .
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This fixed number depends of k. This problem has also a positive solution, as
the Waring’s problem (see [3]).

Also, every integer is the sum of three triangular numbers. This was con-
jectured by Fermat and proved by Gauss (1801), Art. 293 [2]. A modern proof
via q-series has been given by Andrews (1986)[1].

In this note we obtain some polynomials with integer coefficients such that
every integer pertains to the image of the polynomial, that is, the polynomial
generates all integers. The polynomials that we consider have terms of the
form Axk

i , where A is an integer, k ≥ 2 and the variable xi takes only integer
values.

2 Main Results

In [3](Chapter XXI) is proved the formula

k−1∑
r=0

(−1)k−1−r

(
k − 1

r

)
(a + r)k = k!a + dk, (1)

where dk is an integer independient of a. In fact dk = 1
2
(k− 1)k!, but we make

no use of this.
Therefore every integer of the linear form k!a + dk is representable by the

polynomial of k terms and k variables x0,k, x1,k, . . . , xk−1,k.

P (x0,k, x1,k, . . . , xk−1,k) =
k−1∑
r=0

(−1)k−1−r

(
k − 1

r

)
xk
r,k, (2)

and consequently every integer is representable by the polynomial in k+k!−1
variables with the same exponent k ≥ 2

P (x0,k, x1,k, . . . , xk−1,k, y1, . . . , y(k!−1)) =
k−1∑
r=0

(−1)k−1−r

(
k − 1

r

)
xk
r,k +

k!−1∑
r=1

ykr . (3)

If we wish that in the polynomial appear only the exponents k1 > k2 > · · · >
ks ≥ 2 (s ≥ 2), we have the following polynomial whose image are all integers
(see (2)).

ks!−1∑
r=1

yk1r + P (x0,k1 , x1,k1 , . . . , xk1−1,k1)

−
s∑

i=2

(
ki−1!

ki!
− 1

)
P (x0,ki , x1,ki , . . . , xki−1,ki), (4)

since (see (1))

k1!a−
s∑

i=2

(
ki−1!

ki!
− 1

)
ki!a = ks!a.
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Note that the part of the polynomial(
ki−1!

ki!
− 1

)
P (x0,ki , x1,ki , . . . , xki−1,ki) (i = 2, . . . , s)

can not generates every integer since only generates integers multiple of(
ki−1!

ki!
− 1

)
> 1.

We also can consider the following another polynomial (see (4))

ks!−1∑
r=1

yk0r + P (x0,k1 , x1,k1 , . . . , xk1−1,k1)

−
s∑

i=2

(
ki−1!

ki!
− 1

)
P (x0,ki , x1,ki , . . . , xki−1,ki), (5)

where the fixed positive integer k0 > k1 can be arbitrarily large and even.

Let us consider a polynomial P1, we shall say that the polynomial P2 is included
in the polynomial P1 if and only if every term of P2 is in P1. For example the
polynomial P2 = 2x5

1 − 3x7
2 + x8

3 is included in the polynomial P1 = x3
1 +

x3
2 + 2x5

3 + 5x6
4 − 3x7

5 + x7
6 + x8

7. Let us consider a polynomial P1 such that
every integer pertain to its image, that is, the polynomial generates every
integer. For example the polynomials (3), (4) and (5). We shall say that the
polynomial P1 is primitive if and only if it does not include a polynomial P2

that also generates every integer. The author thinks the proof that a certain
polynomial is primitive is very difficult in the general case.

For example, if we wish to obtain a polynomial where only appear cubes and
squares (4) becomes (see (1))

x3
1 + x3

2 − 2x3
3 + x3

4 − 2x2
5 + 2x2

6.

This polynomial has 6 terms. It is not the unique polynomial with cubes and
squares that generates every integer, there exist polynomials with this property
with less terms.

For example, we have the polynomial with 4 terms

x3
1 + x3

2 + 2x2
3 + x2

4,

since we have the identity

(a− 1)3 + (−a)3 + 2a2 + (a− 1)2 = a.
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We also have the polynomial with 4 terms

x3
1 + x3

2 + 4x2
3 + 2x2

4,

since we have the identities

4(a)2 + 2(2a− 2)2 + (2a− 2)3 + (−2a + 1)3 = 2a + 1

4(a)2 + 2(a− 2)2 + (−a)3 + (a− 2)3 = 2(2a)

4(a + 1)2 + 2(a)2 + (a− 1)3 + (−a− 1)3 = 2(4a + 1)

4(a)2 + 2(a− 4)2 + (−a + 1)3 + (a− 3)3 = 2(4a + 3)

If we wish a polynomial with only quartic and cubic powers then polynomial
(4) has 5 + 4 + 3 = 12 terms. In this case, we also have polynomials with less
terms. For example the polynomial with 4 terms

x4
1 + 2x4

2 − 2x4
3 − x3

4,

since we have the identity

2(a + 1)4 − 2a4 − (2a + 1)3 = 2a + 1.

If we wish a polynomial with only quintic and quartic powers then polyno-
mial (4) has 23+5+4 = 32 terms. It is well-known (see [3]) that every integer
can be written as a sum of 10 quintic powers. Therefore this polynomial is not
primitive. In this case, we also have polynomials with less terms. For example
the polynomial with 5 terms

27x5
1 + 864x5

2 + x5
3 − 540x4

4 − 20x4
5,

since we have the identity

27(2a + 1)5 + 864(−a)5 − 540a4 − 20(3a + 1)4 = 30a + 7,

and x5 ≡ x mod(30) (x = 0, 1, . . . , 29).
If we wish a polynomial with only 6-th powers and quintic powers then

polynomial (4) has 119 + 6 + 5 = 130 terms. In this case, we also have
polynomials with less terms. For example the polynomial with 8 terms

x5
1 + 2x5

2 + 2x5
3 + 2x5

4 + 8x5
5 + x6

6 − x6
7 + 4x6

8,

since we have the identity

2(a + 1)5 + 2(a− 1)5 + 8a5 + (a− 1)6 − (a + 1)6 = 8a
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and x5 ≡ x mod(8) (x = 1, 3, 5, 7), 2x5 ≡ 2, 6 mod(8) x = 1, 3 respectively,
4.16 ≡ 4 mod(8).

If we wish that appear in the polynomial the exponents n, n − 1, . . . , 2,
where n ≥ 3 , polynomials (4) and (5) have many terms. However, in this
case, the problem is not very difficult. Since (binomial formula)

(a + 1)n =
n∑

k=0

(
n

k

)
ak = 1 + na +

n−2∑
k=2

(
n

k

)
ak + nan−1 + an

and

(a + 1)n−1 =
n−1∑
k=0

(
n− 1

k

)
ak = 1 + (n− 1)a +

n−2∑
k=2

(
n− 1

k

)
ak + an−1

Therefore

(a + 1)n − (a + 1)n−1 = a +
n−2∑
k=2

((
n

k

)
−
(
n− 1

k

))
ak + (n− 1)an−1 + an

That is, we have the identity

n−2∑
k=2

((
n− 1

k

)
−
(
n

k

))
ak − (n− 1)an−1 − (a + 1)n−1 + (a + 1)n − an = a,

and consequently we have the following polynomial, with n + 1 terms, that
represent every integer

n−2∑
k=2

((
n− 1

k

)
−
(
n

k

))
xk
k−1 − (n− 1)xn−1

n−2 − xn−1
n−1 + xn

n − xn
n+1

Note that if we wish a polynomial with only k-th powers (k ≥ 3) and squares
then the polynomial (4) becomes

yk1 + P (x0,k, x1,k, . . . , xk−1,k)−
(
k!

2
− 1

)
x2
0,2 +

(
k!

2
− 1

)
x2
1,2.

This polynomial has k + 3 terms.
In identity (1) all exponents are k. Now, we shall obtain identities where

the exponents are different. Besides, we shall choose the exponents that we
wish in our identity.

Let us consider the binomial formula.

(a + b)k =
k∑

j=0

(
k

k − j

)
ak−jbj.
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The binomial formula gives

(a + i)k =
k∑

j=0

(
k

k − j

)
ak−jij = ak +

k−2∑
j=1

(
k

k − j

)
ak−jij + kik−1a + ik, (6)

where i = 1, 2, . . . , k.
Suppose that we wish an identity where only appear the exponents 4 and

3, and clearly, always the exponent 1. Then we write the following 4 formulae
(see (6) with k = 4)

(a + 1)4 = a4 +

(
4

3

)
a3 +

(
4

2

)
a2 + 4a + 1, (7)

(a + 2)4 = a4 +

(
4

3

)
2a3 +

(
4

2

)
22a2 + 4.23a + 24, (8)

(a + 3)4 = a4 +

(
4

3

)
3a3 +

(
4

2

)
32a2 + 4.33a + 34, (9)

(a + 4)4 = a4 +

(
4

3

)
4a3 +

(
4

2

)
42a2 + 4.43a + 44. (10)

Now, we establish the following system of linear equations

x1 + x2 + x3 + x4 = 0 (11)

x1 + 2x2 + 3x3 + 4x4 = 1 (12)

x1 + 22x2 + 32x3 + 42x4 = 0 (13)

x1 + 23x2 + 33x3 + 43x4 = 1 (14)

The determinant of the coefficients in this system of linear equations is a
Vandermonde’s determinant whose value is 1!2!3! 6= 0. Consequently, it has
an unique solution. This unique solution is

(x1, x2, x3, x4) =
(
−9

2
, 10,−15

2
, 2
)
. (15)
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If we multiply equation (7) by x1, equation (8) by x2, equation (9) by x3,
equation (10) by x4 and sum, then we obtain (see equations (11), (12), (13)
and (14))

−9

2
(a + 1)4 + 10(a + 2)4 − 15

2
(a + 3)4 + 2(a + 4)4 −

(
4

3

)
a3 = 4a

+
(
−9

2
14 + 10.24 − 15

2
34 + 2.44

)
. (16)

Finally. if we multiply (16) by 2 (the least common multiple of the denomina-
tors of x1, x2, x3 and x4) then we obtain the desired identity

−9(a + 1)4 + 20(a + 2)4 − 15(a + 3)4 + 4(a + 4)4 − 8a3 = 8a + 120.

This identity can be used to obtain a polynomial that represent every integer,
for example, the following polynomial

7∑
i=1

xn
i − 9x4

8 + 20x4
9 − 15x4

10 + 4x4
11 − 8x3

12,

where n > 4 is a fixed but arbitrary integer.
The method used in this example is general.
If we wish that in the identity appear only the exponents k > d1 > d2 >

· · · > ds ≥ 2 then we consider the square system of linear equations in k
unknowns x1, x2, . . . , xk. We put b1 = 1, bdi = 1 (i = 1, 2, . . . , s) and in the
rest of the bi we put bi = 0 (see (6)).

x1 + x2 + x3 + · · ·+ xk = bk

x1 + 2x2 + 3x3 + · · ·+ kxk = bk−1

x1 + 22x2 + 32x3 + · · ·+ k2xk = bk−2

...

x1 + 2k−1x2 + 3k−1x3 + · · ·+ kk−1xk = b1

The determinant of the coefficients of this square system of linear equations is
a Vandermonde’s determinant whose value is 1!2! . . . (k − 1)! 6= 0. Therefore
the system of linear equations has an unique solution (x1, x2, x3, . . . , xk) =
(q1, q2, q3, . . . , qk), where the qi (i = 1, 2, . . . , k) are rational numbers. Conse-
quently we obtain the identity.(

k∑
i=1

qi(a + i)k
)
−
(

s∑
i=1

(
k

di

)
adi
)

= ka +

(
k∑

i=1

ikqi

)
. (17)
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Let l be the least common multiple of the denominators of the qi (i = 1, 2, . . . , k).
If we multiply both sides of (17) by l then we obtain the desired identity. Note
that lqi (i = 1, 2, . . . , k) is an integer.(

k∑
i=1

lqi(a + i)k
)
−
(

s∑
i=1

l

(
k

di

)
adi
)

= kla +

(
k∑

i=1

iklqi

)
.

This identity can be used to obtain a polynomial that represent every integer,
for example, the following polynomial

kl−1∑
i=1

yni +

(
k∑

i=1

lqix
k
i

)
−
(

s∑
i=1

l

(
k

di

)
xdi
k+i

)
,

where n > k is a fixed but arbitrary integer.

References

[1] G. E. Andrews, EΥPHKA! num = ∆ + ∆ + ∆, J. Number Theory, 23
(1986), 285 - 293. http://dx.doi.org/10.1016/0022-314x(86)90074-0

[2] C. F. Gauss, Disquisitiones Arithmeticae, Fleischer, Leipzig, 1801, Ger-
man translation: Untersuchungen über höhere Arithmetik, Springer,
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