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Abstract

The Hodge Decomposition Theorem plays a significant role in the
study of partial differential equations. Several interrelated propositions
which are required for the proof of the Hodge theorem in Euclidean
three-space are introduced and proved in a novel way.
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1 Introduction

Let Ω be a bounded subset of three-space R3 and let V(x, y, z) be a vector
field on Ω. In applications it is often useful to be able to determine whether
V(x, y, z) is the gradient of a function, or the curl of another vector field, or
perhaps a divergence-free field. The answer to such questions is based on an
understanding of the relationship between vector calculus and the topology of
their domains of definition [1]. The Hodge Decomposition theorem addresses
these questions by studying the space of vector fields as a decomposition into
five mutually orthogonal subspaces that are topologically and analytically sig-
nificant. This kind of decomposition is useful not only in mathematical terms,
but also from the physical point of view in such diverse areas as electrody-
namics and fluid dynamics. This theorem also has significant applications in
the study of partial differential equations as well [2-3]. Here several theorems
which can be used to develop the Hodge theorem will be stated and proved
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and some applications of homology and cohomology theory will be illustrated
[4-6]. Hodge decomposition also generalizes to a similar but more restrictive
proposition on Riemannian manifolds [2, 7-9].

2 Preliminaries and Main Results

To state the Hodge theorem, suppose Ω is a compact domain in three-space
with smooth boundary ∂Ω. Denote by V (Ω) the infinite-dimensional vector
space of all smooth vector fields on Ω. This means all partial derivatives of
all orders exist and are continuous over Ω. Let Ω be endowed with the L2(Ω)
inner product, which is defined for vector fields U,V ∈ V (Ω) as

〈U,V〉 =

∫
Ω

U ·V dv.

The purpose here is to give some novel proofs to some of the theorems which
are required in the proof of the Hodge Decomposition theorem in three-space.

Hodge Decomposition Theorem. The vector space V (Ω) is the direct
sum of five mutually orthogonal subspaces

V (Ω) = FK ⊕HK ⊕ CG⊕HG⊕GG. (1)

Furthermore, there exist the following set of isomorphisms between ho-
mologies: HK ∼= H1(Ω) ∼= H2(Ω, ∂Ω) and HG ∼= H2(Ω) ∼= H1(Ω, ∂Ω). �

The five different subspaces of V (Ω) which appear on the right-hand side
of (1) must be defined. With the understanding V ∈ V (Ω) in these sets, the

fluxless knots are given by FK = {~∇·V = 0,V·n = 0, all interior fluxes zero},
harmonic knots are HK = {~∇·V = 0, ~∇×V = 0,V·n = 0} and the curly gra-

dients are defined to be CG = {V = ~∇ϕ, ~∇·V = 0, all boundary fluxes zero},
then harmonic gradients areHG = {V = ~∇ϕ, ~∇·V = 0, ϕ is locally constant on

∂Ω} and finally, the grounded gradients are defined asGG = {V = ~∇ϕ, ϕ|∂Ω =
0}.

The aim is to prove several theorems which play a basic role in one verion
of the proof of (1) which proceeds in well-defined steps. Consider first the
subspace of V (Ω) which consists of all divergence-free vector fields on Ω that
are tangent to ∂Ω. This class of vector field arises in the study of incompressible
fluid flows with fixed boundaries as well as magnetic fields in plasmas. Let the
vector fields referred to as knots be defined as

K = {V ∈ V (Ω) : ~∇ ·V = 0,V · n|∂Ω = 0}. (2)

In (2), n is the unit normal outward everywhere to ∂Ω, and the second condi-
tion will be written simply as V · n = 0 on ∂Ω.
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The set of vector fields which are determined as gradients of a scalar func-
tion are defined as

G = {V ∈ V (Ω) : V = ~∇ϕ}, (3)

for some smooth, real-valued function ϕ, which is defined on Ω. A preliminary
version of the Hodge theorem can be given in the following form. It asserts
the V (Ω) breaks up orthogonally as a direct sum of K and G, which means all
smooth vector fields on Ω can be split up into those that are divergence-free
and tangent to the boundary, and those that are gradients of smooth functions.

Proposition 1: The space V (Ω) is the direct sum of the two orthogonal
subspaces (2) and (3) in the form

V (Ω) = K ⊕ G. (4)

Proof: Let V be an arbitrary, smooth vector field on Ω, and suppose f
is the smooth function f = ~∇ · V defined on Ω with g the smooth function
defined by g = ~∇ · n on ∂Ω. If Ω has components Ωi, the divergence theorem
applied to f on Ωi gives∫

Ωi

fdv =

∫
Ωi

~∇ ·V dv =

∫
∂Ωi

V · n da =

∫
∂Ωi

g da.

By the existence-uniquness theorem for the Neumann problem, this implies
that there is a solution ϕ of the Poisson equation ∆ϕ = f on Ω with the
Neumann boundary condition ∂ϕ/∂n = g on ∂Ω. Define the vector fields

V2 = ~∇ϕ and V1 = V −V2, so that on ∂Ω, it follows that

V2 · n = ~∇ϕ · n =
∂ϕ

∂n
= g = V · n.

Since V = V1 + V2, this result implies that ~∇ ·V1 = 0. This result is stating
that V1 is divergence-free on Ω, and is tangent to ∂Ω. However, V2 is a
gradient vector field, so this implies decomposition (4).

It remains to show that (4) is an orthogonal direct sum. To carry this out,
let V1 denote a smooth, divergence-free vector field on Ω tangent to ∂Ω, and
let V2 = ~∇ϕ denote any smooth gradient vector field on Ω. Using the product
rule ~∇ · (ϕV1) = (~∇ϕ) ·V1 + ϕ(~∇ ·V1), we get

〈V1,V2〉 =

∫
Ω

V1 ·V2 dv =

∫
Ω

V1 · ~∇ϕdv =

∫
Ω

~∇· (ϕV1) dv−
∫

Ω

ϕ(~∇·V1) dv.

Since V1 satisfies ~∇ ·V1 = 0, this reduces to∫
Ω

V1 ·V2 dv =

∫
Ω

~∇ · (ϕV1) dv =

∫
∂Ω

ϕV1 · n da = 0.



158 Paul Bracken

The last integral vanishes since V1 is tangent to ∂Ω. Hence the summands K
and G in (4) are orthogonal and in particular their sum is direct which proves
(4). �

It is necessary to create more tools at this point which will be needed to
refine the mathematical description of V (Ω) to the form (1). Let Σ denote
any smooth, orientable surface in Ω whose boundary ∂Σ lies in the boundary
∂Ω of domain Ω. Then Σ is called a cross-sectional surface and one writes
(Σ, ∂Σ) ⊂ (Ω, ∂Ω). Now Σ can be oriented by picking one of its two unit
normal vector fields n on Σ. For any vector field V on Ω, define the flux of V
through Σ to be

Φ =

∫
Σ

V · n da. (5)

Suppose V is divergence-free and tangent to ∂Ω. Then the value of Φ depends
only on the homology class of Σ in the relative homology group H2(Ω, ∂Ω).
For example, if Ω is an n-holed solid torus, then H2(Ω, ∂Ω) is generated by
disjoint oriented cross-sectional disks Σ1, · · · ,Σn which are positioned so that
cutting Ω along these disks produces a simply-connected region. The fluxes
Φ1, · · · ,Φn of V through these disks produces a simply-connected region. The
fluxes Φ1, · · · ,Φn of V through these disks determine the flux of V through
any other cross-sectional surface.

The following integral formula and the related expression for its curl play
a very prominent role in the decompositions. Let Ω be a compact domain in
3-space which has a smooth boundary ∂Ω and V(x) ∈ V (Ω). Define a new
vector field for y ∈ Ω as follows,

B(V)(y) =
1

4π

∫
Ω

V(x)× y − x

|y − x|3
dvx. (6)

If V is thought of as a current throughout Ω, (6) constitutes the Biot-Savart
law which gives the resulting magnetic field B in R3.

Vector field B is well-defined on all of R3 as (6) converges for every y ∈ R3.
Also B is continuous on all of R3, though its derivatives experience a jump
discontinuity as one crosses ∂Ω. Thus B is C∞ on Ω and on the closure Ω′ of
R3 − Ω.

Theorem 1. Vector field B is divergence-free so that

~∇y ·B(V) = 0, (7)

on Ω and Ω′, for all V ∈ V (Ω).
Proof: Set R = |y − x| and let Vj(x) be the components of V. The

integrand of B in (6) is

V(x)× R

R3
=

1

R3
[(V2R3 − V3R2)̂i+ (V3R1 − V1R3)ĵ + (V1R2 − V2R1)k̂].
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Since only the components of R contain the y variable, it follows that ∂(R−3)/∂yi =

−3RiR
−5, i = 1, 2, 3. Taking the operator ~∇y inside the integrand, it is found

to annihilate the integrand, which implies that

~∇y · (V(x)× R

R3
) = 0.

�
Theorem 2. Let B be the vector field (6), then its curl is given by the

following expression

~∇y×B(V)(y) = V(y)δy,Ω+
1

4π
~∇y

∫
Ω

~∇x ·V(x)

|y − x|
dvx−

1

4π
~∇y

∫
∂Ω

V(x) · n
|y − x|

dax,

(8)

where the operator ~∇x differentiates with respect to x while ~∇y differentiates
with respect to the y variable coordinates. Moreover, let us define δy,Ω = 1 for
y ∈ Ω and δy,Ω = 0 when y 6∈ Ω.

Proof: It is the case that (6) can be written in the form

B(V)(y) = − 1

4π

∫
Ω

V(x)× ~∇y
1

|y − x|
dvx. (9)

Define R = |y − x| and so, using a basic vector identity, equation (9) becomes

~∇y ×B(V)(y) = − 1

4π

∫
Ω

~∇y ×V(x)× ~∇y(
1

R
) dvx

= − 1

4π

∫
Ω

~∇2
yV(x)(

1

R
) dvx +

1

4π

∫
Ω

(V(x) · ~∇y)~∇y(
1

R
) dvx. (10)

In each integral of (10), V(x) commutes with the differential operators in the

y variable, so upon using ~∇y(1/R) = −~∇x(1/R), we obtain

~∇y ×B(V)(y) = − 1

4π

∫
Ω

V(x)∆y(
1

R
) dvx +

1

4π
~∇y

∫
Ω

(V(x) · ~∇y)(
1

R
) dvx

= − 1

4π

∫
Ω

V(x)∆y(
1

R
) dvx −

1

4π
~∇y

∫
Ω

(V(x) · ~∇x
1

R
) dvx

= − 1

4π

∫
Ω

V(x)∆y(
1

R
) dvx −

1

4π
~∇y

∫
Ω

(~∇x · (
V(x)

R
)− (~∇x ·V(x))(

1

R
)) dvx.

(11)
The product rule

~∇x · (
V(x)

R
) = ~∇x ·V(x)(

1

R
) + V(x) · ~∇x

1

R



160 Paul Bracken

has been substituted to arrive at (11). The first term in (11) can be simplified
by substituting

∆y(
1

R
) = −4πδ(3)(x− y)

and integrating over Ω to obtain V(y)δy,Ω as in (8). To finish the proof,
Gauss’s Theorem is used to write the second integral in (11) as an integral
over ∂Ω to obtain the final result

~∇y×B(V)(y) = V(y)δy,Ω+
1

4π
~∇y

∫
Ω

~∇x·V(x)(
1

R
) dvx−

1

4π
~∇y

∫
∂Ω

V(x) · n
R

dax

= V(y)δy,Ω +
1

4π
~∇y

∫
Ω

~∇x ·V(x)

|y − x|
dvx −

1

4π
~∇y

∫
∂Ω

V(x) · n
|y − x|

dax. (12)

�
This theorem contains an enormous amount of information. If the vector

field V is divergence-free, then the first integral on the right of (12) vanishes.
If V is tangent to ∂Ω, the second integral vanishes. If both conditions apply,
then V ∈ K, the set of knots, and it is found that on Ω, the image of curl
contains FK ⊕HK.

The absolute homology of Ω consists of vector spaces Hi(Ω) for i = 0, 1, 2, 3
while the relative homology of Ω modulo its boundary consists of the vector
spaces Hi(Ω, ∂Ω), and only homology with real coefficients is used.

The absolute homology vector space H0(Ω) is generated by equivalence
classes of points in Ω, with two points equivalent if they can be connected by
a path in Ω; H1(Ω) is generated by equivalence classes of oriented loops in
Ω, with two loops being equivalent if their difference is the boundary of an
oriented surface in Ω. The space H2(Ω) is generated by equivalence classes
of closed oriented surfaces in Ω, with two such surfaces equivalent if their
difference is the boundary of some oriented subregion of Ω. The space H3(Ω)
is always zero. Similar descriptions can be given for the spaces Hi(Ω, ∂Ω), but
Poincaré duality provides the following isomorphisms:

H0(Ω) ∼= H3(Ω, ∂Ω), H1(Ω) ∼= H2(Ω, ∂Ω),

H2(Ω) ∼= H1(Ω, ∂Ω), H3(Ω) ∼= H0(Ω, ∂Ω).

Alexander duality provides the isomorphisms

H0(Ω) ∼= H2(Ω′), H1(Ω) ∼= H1(Ω′), H2(Ω) ∼= H̃0(Ω′),

where H̃0 has dimension reduced by one. The isomorphisms here state that
the homology of the closed complementary domain Ω′ depends only on the
homology of Ω, and not on how Ω is embedded in three-space. This is quite
different from how fundamental groups behave.
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Thus homology of the domain of definition plays a significant role here.
For example, if V has zero curl, then the circulation of V around C depends
only on the homology class of C in H1(Ω). A consequence of Stokes theorem,
for if the oriented loops C and C ′ together bound a surface S, ∂S = C − C ′,
then we have∫

C

V ·ds−
∫
C′

V ·ds =

∫
C−C′

V ·ds =

∫
∂S

V ·ds =

∫
S

~∇×V ·n da = 0. (13)

Also V can be integrated along an oriented path P . If the end points of P lie on
∂Ω and V has zero curl and is orthogonal to ∂Ω, then the value of the integral∫
P

V ·ds depends only on the relative homology class of P in H1(Ω, ∂Ω), again
a consequence of Stokes theorem.

The next proposition requires the fact that the harmonic knots HK on
Ω are rich enough to reflect a significant portion of its topology. It must be
shown that the subspace of divergence-free vector fields that are tangent to the
boundary of Ω is the orthogonal direct sum of the subspace of fluxless knots
and the subspace of harmonic knots.

Proposition 2. The subspace K is the direct sum of the orthogonal
subspaces FK and HK

K = FK ⊕HK. (14)

Proof: Let V be a divergence-free vector field defined in Ω and tangent
to its boundary. Let Σ1, · · · ,Σk be a family of cross-sectional surfaces in Ω
that form a basis for the relative homology H2(Ω, ∂Ω). Let Φ1, · · · ,Φk be the
fluxes through these surfaces.

Now since HK ∼= H1(Ω) ∼= H2(Ω, ∂Ω), there exists a harmonic knot VH in
Ω with precisely these flux values. Define VF = V −VH then VF is fluxless.
Hence, every divergence-free vector field V defined in Ω and tangent to its
boundary can be written as the sum of a fluxless knot and a harmonic knot.
In fact, the fluxless knots are orthogonal to harmonic knots.

To see this, let V = FK be a fluxless knot, so ~∇·V = 0, and V ·n = 0 and
all interior fluxes are zero. By the theorem, it is possible to write V = ~∇×U
where ~∇ · U = 0 and U × n = 0. Let W ∈ HK be a harmonic knot so
that ~∇ ·W = 0, ~∇ ×W = 0 and W · n = 0. By means of the identity
~∇ · (U×W = (~∇×U) ·W−U · (~∇×W), then since ~∇×W = 0, it is found
that

〈V,W〉 = 〈~∇×U,W〉 =

∫
Ω

(~∇×U)·W dv =

∫
Ω

[~∇·(U×W)+U·(~∇×W)] dv

=

∫
Ω

~∇ · (U×W) dv =

∫
∂Ω

(U×W) · n da = 0.

The last integral vanishes since vector field U is orthogonal to ∂Ω. �
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Moreover, the subspace G of gradient vector fields can be decomposed as
follows.

Proposition 3. The subspace G is the direct sum of two orthogonal
subspaces

G = DFG⊕GG. (15)

Proof: Consider a gradient vector field V = ~∇ϕ, where ϕ is any smooth
function on Ω. Let ϕ1 be a solution of Laplace’s equation on Ω which satisifes
the Dirichlet boundary condition ϕ1|∂Ω = ϕ|∂Ω. Set ϕ2 = ϕ − ϕ1 so that

V1 = ~∇ϕ1 and V2 = ~∇ϕ2 satisfy V = V1 + V2.
Since ϕ1 is harmonic ~∇ ·V1 = ∆ϕ1 = 0, it follows that V ∈ DFG. Simi-

larly, ϕ2|∂Ω = ϕ|∂Ω − ϕ1|∂Ω = 0, which implies that V2 ∈ GG. Consequently,
the subspaces DFG and GG span G.

It has to be shown that the divergence-free gradients are orthogonal to the
grounded gradients. Let V ∈ DFG so that V = ~∇ϕ and ~∇ · V = ∆ϕ = 0.
Moreover, let W ∈ GG and take the function ψ satisfy W = ~∇ψ with ψ|∂Ω =

0. Starting with the identity ~∇ · (ψ~∇ϕ) = ~∇ψ · ~∇ϕ + ψ∆ϕ, then using the
fact ϕ is harmonic, we have

〈V,W〉 =

∫
Ω

V·W dv =

∫
Ω

~∇ϕ·~∇ψ dv =

∫
Ω

~∇·(ψ~∇ϕ) dv =

∫
∂Ω

(ψ~∇ϕ)·n da = 0.

The last integral is zero since ψ|∂Ω = 0 and so the integrand vanishes on ∂Ω.
�

Proposition 4.
im curl = FK ⊕HK ⊕ CG. (16)

Proof: It is clear first of all that

im curl ⊂ FK ⊕HK ⊕ CG. (17)

To obtain (17), suppose that V = ~∇ × U, hence it follows that ~∇ · V = 0
and so the flux of V through every closed surface in Ω is zero. Suppose ϕ is
a solution of ∆ϕ = 0 with Neumann boundary condition ∂ϕ/∂n = V · n on

∂Ω, which implies that V2 = ~∇ϕ lies in CG. The vector field V1 = V −V2

satisfies ~∇ ·V = ~∇ ·V − ~∇ ·V2 = −∆ϕ = 0. Thus, V is divergence free and
tangent to ∂Ω since V1 · n = V · n− ~∇ϕ · n = ~∇ϕ · n = 0. Hence, V resides
in FK ⊕HK, and since we can write V = V1 + V2, this establishes (17).

Suppose V ∈ FK ⊕HK ⊕ CG which implies that ~∇ ·V = 0 and the flux
of V through each component of ∂Ω vanishes. It is to be shown that V can
be expressed as a curl, V = ~∇×U for some vector field U, and the way to do
this is to make use of Theorem 2 for divergence-free fields

~∇y ×B(V)(y) = V(y)δy,Ω −
1

4π
~∇y

∫
∂Ω

V(x)

|y − x|
dax. (18)
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To show that vector field V can be expressed as a curl, it suffices to show that
the last term in (18) is a curl.

To this end, construct a new domian set Ω∗ by looking at a ball β large
enough to contain Ω in its interior, and then removing the interior of Ω. The
boundary components of Ω∗ then will consist of the boundary components of
Ω union the boundary of the ball, ∂β.

Now a Neumann problem is solved for the Laplacian on Ω∗, that is, a
harmonic function ϕ∗ is to be found on Ω∗ such that ∂ϕ∗/∂n∗ = −V · n on
each of the boundary components that Ω∗ shares with Ω, and moreover, we
have ∂ϕ∗/∂n∗ = 0 on the boundary of the ball. Suppose we let V = ~∇ϕ∗, the
curl equation for V∗ is

~∇y ×B(V∗)(y) = V∗(y)δy,Ω∗ −
1

4π
~∇y

∫
∂Ω∗

V∗(x) · n∗

|y − x|
dax.

In the domain complementary to Ω∗, namely Ω∗
′
, this equation takes the form

~∇y ×B(V∗)(y) = − 1

4π
~∇y

∫
∂Ω∗

V∗(x) · n∗

|y − x|
dax = − 1

4π
~∇y

∫
∂Ω∗

~∇ϕ∗ · n∗

|y − x|
dax

=
1

4π
~∇y

∫
∂Ω

V(x) · n
|y − x|

dax −
1

4π
~∇y

∫
∂β

V∗(x) · n∗

|y − x|
dax

=
1

4π

∫
∂Ω

V(x) · n
|y − x|

dax. (19)

The second integral over ∂β here vanishes since V∗ · n∗ = 0 on the boundary
of the ball. Since Ω ⊂ Ω∗

′
, this result holds in Ω as well. Thus, in Ω the result

(18) and (19) can be added together to obtain

~∇y(B(V)−B(V∗))(y) = V(y)− 1

4π
~∇y

∫
∂Ω

V(x) · n
|y − x|

dax+
1

4π
~∇y

∫
∂Ω

V(x) · n
|y − x|

dax = V(y).

(20)

Equation (20) illustrates that V(y) is in the image of the operator curl, and
hence the statement of the theorem follows. �
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