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Abstract

In this paper we study the Hilbert-Schmidt Tuples of operators on
a Banach space.
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1 Introduction

Let T1, T2, ..., Tn be commutative bounded linear operators on a Hilbert space
H, and T = (T1, T2, ..., Tn) be an n-Tuple, put

Γ = {Tm1
1 Tm2

2 ...Tmn
n : m1, m2, ...,mn ≥ 0}

the semigroup generated by T . For x ∈ X , the orbit of x under T is the set
Orb(T , x) = {S(x) : S ∈ Γ}, that is

Orb(T , x) = {Tm1
1 Tm2

2 ...Tmn
n (x) : m1, m2, ...,mn ≥ 0}

The vector x is called Hypercyclic vector for T and n-Tuple T is called Hy-
percyclic n-Tuple, if the set Orb(T , x) is dense in X , that is

Orb(T , x) = {Tm1
1 Tm2

2 ...Tmn
2 (x) : m1, m2, ...,mn ≥ 0} = X
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Suppose above assumptions, also let {ai}+∞
i=1 and {bj}+∞

j=1 be orthonormal ba-
sises in a Hilbert space H. The Tuple T is said to be Hilbert-Schmidt Tuple,
if we have

∞∑

i=1

∞∑

j=1

| (T1T2...Tnai, bj) |2<∞

All operators in this paper are commutative operator, reader can see [1–9] for
more information.

2 Main Results

Theorem 2.1.[The Hypercyclicity Criterion] Let B be a separable Banach
space and T = (T1, T2, ..., Tn) is an n-tuple of continuous linear mappings on
B. If there exist two dense subsets Y and Z in B, and strictly increasing
sequences {mj,1}, {mj,2}, ...,{mj,n} such that:
1. T

mj,1

1 T
mj,2

2 ...T
mj,n
n → 0 on Y as mj,i → ∞ for i = 1, 2, 3, ..., n,

2. There exist function {Sk : Z → B} such that for every z ∈ Z, Skz → 0,
and T

mj,1

1 T
mj,2

2 ...T
mj,n
n Skz → z,

then T is a Hypercyclic n-tuple.
If the tuple T satisfying the hypothesis of previous theorem then we say that
T satisfying the hypothesis of Hypercyclicity criterion.

Theorem 2.2. Suppose X be an F-sequence space whit the unconditional
basis {eκ}κ∈N . Let T1, T2, ..., Tn are unilateral weighted backward shifts with
weight sequence {ai,1 : i ∈ N}, {ai,2 : i ∈ N},..., {ai,n : i ∈ N} and T =
(T1, T2, ..., Tn) be an n-tuple of operators T1, T2, ..., Tn. Then the following
assertions are equivalent:
(1). T is chaotic,
(2). T is Hypercyclic and has a non-trivial periodic point,
(3). T has a non-trivial periodic point,
(4). the series Σ∞

m=1(
∏m

k=1(ak,i)
−1em) convergence in X for i = 1, 2, ..., n.

Proof. Proof of the cases (1) → (2) and (2) → (3) are trivial, so we just
proof (3) → (4) and (4) → (1). First we proof (3) → (4), for this, Suppose that
T has a non-trivial periodic point, and x = {xn} ∈ X be a non-trivial periodic
point for T , that is there are μ1, μ2, ..., μn ∈ N such that, T μ1

1 T μ2
2 ...T μn

n (x) = x.
Comparing the entries at positions i+ kMλ for λ = 1, 2, 3, ..., n, k ∈ N ∪ {0},
of x and T μ1

1 T μ2
2 ...T μn

n (x) we find that

xj+kMλ
= (

Mλ∏

t=1

(aj+kN+t))xj+(k+1), λ = 1, 2, 3, ..., n
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so that we have,

xj+kMλ
= (

j+kMλ∏

t=j+1

(at))
−1xj = cλ(

j+kMλ∏

t=1

(at))
−1, k ∈ N ∪ {0}, λ = 1, 2, 3, ..., n

with

cλ = (
j∏

t=1

(mj,λ))xj , λ = 1, 2, 3, ..., n

Since {eκ} is an unconditional basis and x ∈ X it follows that

∞∑

k=0

(
1

∏j+kMλ
t=1 (mj,λ)

)ej+kMλ
=

1

cλ

∞∑

k=0

xj+kMλ
.ej+kMλ

, λ = 1, 2, 3, ..., n

convergence in X . Without loss of generality, assume that j ≥ N , applying
the operators T

μ1,j

1 T
μ2,j

2 ...T
μn,j
n (x) for j = 1, 2, 3, ...Q− 1, with Q = Min{Mi :

i = 1, 2, ..., n}, to this series and note that T
μ1,j

1 T
μ2,j

2 ...T
μn,j
n (en) = ajen−1 for

n ≥ 2 and j = 1, 2, 3, ..., n, we deduce that

∞∑

k=0

(
1

∏j+kMλ−υλ
t=1 (mj,λ)

)ej+kMλ−υλ
, λ = 1, 2, 3, ..., n

convergence in X for γ = 0, 1, 2, ..., N − 1. By adding these series, we see that
condition (4) holds.
Proof of (4) ⇒ (1). It follows from theorem (2.1), that under condition (4)
the operator T is Hypercyclic. Hence it remains to show that T has a dense
set of periodic points. Since {eκ} is an unconditional basis, condition (4) with
proposition 2.3 implies that for each j ∈ N and M,N ∈ N the series

ψ1(j,Mλ) =
∞∑

k=0

(
1

∏j+kMλ
t=1 (mk,λ)

)ej+kMλ
= (

j∏

t=1

mk,λ).(
∞∑

k=0

1
∏j+kMλ

t=1 mk,λ

ej+kMλ
)

converges for λ = 1, 2, 3, ..., n and define n elements in X . Moreover, if M ≥ i
then T

mjλ,1

1 T
mjλ,2

2 ...T
mjλ,n
n = ψλ(jλ,Mλ) for λ = 1, 2, 3, ..., n, and

T
mjλ,1

1 T
mjλ,2

2 ...T
mjλ,n
n = ψλ(jλ,Mλ)T

M1
1 TM2

2 ...TMn
n ψλ(jλ,Mλ) = ω(jλ,Mλ

) (1)

Also, if N ≥ ji then

T
mj,1

1 T
mj,2

2 ...Tmj,n
n ω((j, i), N) = ω((j, i), N) (2)

for mj,i ≥ N and i = 1, 2, ..., n. So that each ψ(j,N) for j ≤ N is a periodic
point for T . We shall show that T has a dense set of periodic points. Since
{eκ} is a basis, it suffices to show that for every element x ∈ span{eκ : κ ∈ N}
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there is a periodic point y arbitrarily close to it. For this, let x =
∑m

j=1 xjej

and ε > 0. Without lost of generality, for λ = 1, 2, 3, ..., n we can assume that

| xi

i∏

t=1

at,λ |≤ 1 , i = 1, 2, 3, ...,mλ

Since {en} is an unconditional basis, then condition (4) implies that there are
an M,N ≥ m such that

‖
∞∑

n=Mλ+1

εκ,1
1

∏κ
t=1 at,λ

eκ‖ <
ε

mλ
, λ = 1, 2, 3, ..., n

for every sequences {εκ,i}, i = 1, 2, ..., n taking values 0 or 1. By (1) and (2)
the elements

y1 =
m1∑

i=1

xiψ(i,Mϕ), ϕ = 1, 2, 3, ..., n

of X is a periodic point for T , and we have
‖yλ − x‖ = ‖∑mλ

i=1 xi(ψ(i,Mλ) − ei)‖
= ‖∑mλ

i=1(xi
∏i

t=1 dt,Mλ
)(

∑∞
k=1

1∏i+kMλ
t=1

at,Mλ

ei+kMλ
)‖

≤ ∑mλ
i=1 ‖(xi

∏i
t=1 dt,Mλ

)(
∑∞

k=1
1∏i+kMλ

t=1
at,Mλ

ei+kMλ
)‖

≤ ∑mλ
i=1 ‖(

∑∞
k=1

1∏i+kMλ
t=1

at,Mλ

ei+kMλ
)‖

≤ ε
as λ = 1, 2, ..., n and by this, the proof is complete.
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