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Abstract

Recall that a Cλ method is obtained by deleting a set of rows from the Cesáro

matrix C1. The purpose of this article is to introduce a new class of sequence

space using a modulus function f , namely Cλ−rate sequence space. It is denoted

by Cλ (f, p, π), and study some inclusion relations and topological properties of this

space.
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Introduction

The notion of modulus function was introduced by Nakano [11] and further
investigated by Ruckle [12], Maddox [9], Tripathy and Chandra [15] and many
others. A function f : [0,∞)→ [0,∞) is called a modulus if

(i) f(x) = 0 if and only if x = 0,
(ii) f(x+ y) ≤ f(x) + f(y),
(iii) f is increasing,
(iv) f is continuous from the right at 0.
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It is immediate from(ii) and (iv) that f is continuous everywhere on [0, ∞) .
It is easy to see that f1 +f2 is a modulus function when f1 and f2 are modulus
functions and that the function f i (i is a positive integer), the composition of
a modulus function f with itself i times is also a modulus function.

Let `0 be the space of all real sequences. For 1 < p <∞, the Cesáro sequence
space

cesp =

{
x ∈ `0 :

∞∑
n=1

[
1

n

n∑
k=1

|xk|

]p
<∞

}
was first defined by Shiue in [14] . Various geometric properties of this space
were studied by many others. The mentioned space was used in the theory of
matrix operator and others. Also, it is used by Lee [1] and Lui, Wu, Lee [3] .
The generalized Cesáro sequence space ces (p) were introduced and studied by
Sanhan and Suantai [13] . It is defined as follows

ces (p) =
{
x ∈ `0 : ρ (λx) <∞ for some λ > 0

}
,

where

ρ (x) =
∞∑
n=1

[
1

n

n∑
k=1

|xk|

]pn
is a convex modular on ces (p) . Bala, in [7] continued to work on Cesáro
sequence space defined by a modulus function and to give some algebraic and
topological properties.

Let w denote the space of all real or complex-valued sequence. It can be
topologized with the seminorms pn(x) = |xn| , (n = 1, 2, ...), any vector sub-
space X of w is a sequence space. A sequence space X with a vector space
topology τ , is a K-space provided that the inclusion map i : (X, τ) → w,
i (x) = x, is continuous. If, in addition, τ is complete, metrizable and locally
convex then (X, τ) is an FK-space. So an FK-space is a complete, metrizable
locally convex topological vector space of sequences for which the coordinate
functionals Pn(x) = xn, (n = 1, 2, ...), are continuous. The basic properties of
FK-spaces may be found in [18], [19] and [21].

Ruckle [12] used the idea of a modulus function f to construct a class of FK
spaces

L(f) =

{
x = (xk) :

∞∑
k=1

f(|xk|) <∞

}
.

Let π = (πn) be a sequence of positive numbers i.e, πn > 0,∀n ∈ N and
X an FK−space. We shall consider the sets of sequences x = (xn)

Xπ = {x ∈ w : (
xn
πn

) ∈ X}.

The set Xπ may be considered as FK-space.We shall call them as rate spaces
(see, [4] and [5] ).
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Let F be an infinite subset of N and F as the range of a strictly increasing
sequence of positive integers, say F = {λ (n)}∞n=1. The Cesáro submethod Cλ
is defined as

(Cλx)n =
1

λ (n)

λ(n)∑
k=1

xk, (n = 1, 2, ...) ,

where {xk} is a sequence of a real or complex numbers. Therefore, the Cλ-
method yields a subsequence of the Cesáro method C1, and hence it is regular
for any λ. Cλ is obtained by deleting a set of rows from Cesáro matrix. The
basic properties of Cλ-method can be found in [16] and [17]. We need the
following inequality throughout the paper. Let p = (pk) be a sequence of
positive real numbers with G = supk pk and D = max(1, 2G−1). Then, it is
well known that for all ak, bk ∈ C, the field of complex numbers, for all k ∈ N,

(1) |ak + bk|pk ≤ D (|ak|pk + |bk|pk) .

Also for any complex µ,

(2) µpk ≤ max(1, µG)

see in [8] .
Now we introduce the Cλ−rate sequence space Cλ(f, p, π) using a modulus

function f as follows

Cλ(f, p, π) =

x ∈ w :
∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn <∞

 .

Similarly, we can define that

Cλ(p, π) =

x ∈ w :
∞∑
n=1

 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn <∞

 .

MAIN RESULTS

THEOREM 1. Let the sequence p = (pn) be bounded. Then the set
Cλ(f, p, π) is linear space over the complex field C, for any modulus function
f .

Proof. Let x, y ∈ Cλ(f, p, π). For α, β ∈ C, there exist integers Mα ve
Nβ such that α ≤ Mα and β ≤ Nβ. By definition of modulus function and
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inequalities (1) and (2) we can get

∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣α xk + β yk
πk

∣∣∣∣
pn

≤
∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣αxkπk
∣∣∣∣
+ f

 1

λ(n)

λ(n)∑
k=1

∣∣∣∣β ykπk

∣∣∣∣
pn

≤ D

max(1,MG
α )

∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

+D

max(1, NG
β )

∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣ ykπk
∣∣∣∣
pn .

This implies that αx+ βy ∈ Cλ(f, p, π), and completes the proof of Theorem.
THEOREM 2. Cλ(f, p, π) topological linear space paranormed by

g∗(x) =

 ∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

1
M

,

where G = supnpn <∞ and M = max (1, G).
The proof follows by using standart techniques and the fact that every para-

normed space is a topological linear space [20, p. 37] . So we omit the details.
THEOREM 3. Cλ(f, p, π) is a Fréchet space paranormed by

g∗(x) =

 ∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

1
M

where G = supnpn <∞ and M = max(1, G).
Proof. In view of Theorem 2. it suffices to prove the completeness of Cλ(f, p, π).
(x(i)) be any Cauchy sequence in Cλ (f, p, π), where(

x(i)
)

= (x
(i)
1 , x

(i)
2 , ...), ∀i ∈ N.

Then given any ε > 0 there exist a positive integer N depending on ε such
that
g∗(x(i) − x(j)) < ε, ∀i, j ≥ N.
Using the definition of paranorm we write

g∗(x(i) − x(j)) =

 ∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣∣x(i)k − x(j)kπk

∣∣∣∣∣
pn

1
M

< ε, ∀i, j ≥ N.
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This implies that for each fixed k,

∣∣∣∣x(i)k

πk
− x

(j)
k

πk

∣∣∣∣→ 0 as i, j →∞ and so (x(i)) is

any Cauchy sequence in C, but C is complete so as j →∞ x
(j)
k → xk ∀k ∈ N.

Now from (3) we have

(4)
∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣∣x(i)kπk − x
(j)
k

πk

∣∣∣∣∣
pn < εM , for each i, j > N.

From (4), for any fixed natural number K, we have

K∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣∣x(i)kπk − x
(j)
k

πk

∣∣∣∣∣
pn < εM , for each i, j > N,

by taking j →∞ in the above expression we can get

K∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣∣x(i)kπk − xk
πk

∣∣∣∣∣
pn < εM , for each i > N.

Since K is arbitrary by taking K →∞ we obtain

∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

x
(i)
k

πk
− xk
πk

pn < εM , for each i > N,

that is g∗(x(i) − x) < ε for each i > N.
To show that x ∈ Cλ(f, p, π), let j > N and fix n0. Since pk/M ≤ 1 and

1 ≤ M using Minkowski’s inequality and definition of modulus function we
obtain n0∑

n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

1
M

=

 n0∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣∣xkπk − x
(j)
k

πk
+
x
(j)
k

πk

∣∣∣∣∣
pn

1
M

≤

 n0∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣∣xkπk − x
(j)
k

πk

∣∣∣∣∣
+ f

 1

λ(n)

λ(n)∑
k=1

∣∣∣∣∣x(j)kπk
∣∣∣∣∣
pn

1
M

≤

 n0∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣∣xkπk − x
(j)
k

πk

∣∣∣∣∣
pn

1
M

+

 n0∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣∣x(j)kπk
∣∣∣∣∣
pn

1
M

.

≤ ε+ g∗(x(j)).

This completes the proof.
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The below theorem gives us the inclusion relations between Cλ(f, p, π) and
Cλ(f, q, π) spaces.
THEOREM 4. Let p = (pn) and q = (qn) are bounded sequences of positive
real numbers with 0 < pn ≤ qn < ∞ for each n. Then for any modulus f,
Cλ(f, p, π) ⊂ Cλ(f, q, π).
Proof. Let x ∈ Cλ(f, p, π). Then we have

∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn <∞.

Hence, since f non-decreasing, we get

f

 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
 ≤ 1

for sufficiently large n. Thus we have

∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
qn ≤ ∞∑

n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn <∞.

This shows that x ∈ Cλ(f, q, π) and completes the proof.
THEOREM 5. If r = (rn) and t = (tn) are bounded sequences of positive
real numbers with 0 < rn, tn <∞ and pn = min(rn, tn), then for any modulus
f, Cλ(f, q, π) = Cλ(f, r, π) ∩ Cλ(f, t, π).
Proof. Since pn = min(rn, tn) we can write pn ≤ rn and pn ≤ tn. It fol-
lows from Theorem 4 we obtain Cλ(f, q, π) ⊂ Cλ(f, r, π) and Cλ(f, q, π) ⊂
Cλ(f, t, π). For any complex µ, µpn ≤ max(µrn , µtn); thus Cλ(f, r, π)∩Cλ(f, t, π) ⊂
Cλ(f, q, π) and the proof is completed.

Consequently, we now give some information on multipliers for Cλ(f, p, π).
For any set E of sequences, the space of multipliers of E, denoted by M(E),
is given by

M(E) = {a ∈ w : a.x ∈ E for all x ∈ E} .

THEOREM 6. If G = supk pk < ∞, then for any modulus f, the inclusion
`∞ ⊂M(Cλ(f, p, π)) is strict.
Proof. Let a = (ak) ∈ `∞. Then for ∀k ∈ N we write ak < 1 + [K] for some
K > 0, where [K] denotes the integer part of K.. From (2), we obtain

∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣ak xkπk

∣∣∣∣
pn ≤ (1 + [K])G

 ∞∑
n=1

f
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn .

Since x ∈ Cλ(f, p, π) hence we get `∞ ⊂M(Cλ(f, p, π)).
We take modulus function fu instead of f in the space Cλ (f, p, π). Now we
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define the composite space Cλ(f
u, p, π) as follows. For a fixed natural number

u we define

Cλ(f, p, π) =

x ∈ w :
∞∑
n=1

fu
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn <∞

 .

THEOREM 7. Let f be a modulus function and u ∈ N,then

(i) If limt→∞
f(t)
t

= γ > 0 then Cλ(f
u, p, π) ⊂ Cλ(p, π),

(ii) If there exists a positive constant δ such that f(t) ≤ δt at for all t ≥ 0
then Cλ(p, π) ⊂ Cλ(f

u, p, π).
Proof. (i) Following the proof of Proposition of Maddox [6] , we have γ =

limt→∞
f(t)
t

= inf
{
f(t)
t

: t > 0
}
. Let γ > 0. By definition of γ we have γ

t ≤ f(t) for all t > 0. Since f is increasing we write γ2t ≤ f 2(t). So by
induction we get γut ≤ fu(t). Let x ∈ Cλ(f

u, p, π). Using inequality (2), we
obtain

∞∑
n=1

 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

≤
∞∑
n=1

γ−ufu
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

≤ max(1, γ−uG)
∞∑
n=1

fu
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

hence x ∈ Cλ(p, π).
(ii) Since f(t) ≤ δt for all t > 0 and f is an increasing function we have

fu(t) ≤ δut

for each υ ∈ N. Let x ∈ Cλ(p, π), then from inequality (2) we obtain

∞∑
n=1

fu
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn ≤ ∞∑

n=1

δu
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

≤ max(1, δuG)
∞∑
n=1

 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn <∞

and hence x ∈ Cλ(fu, p, π). This completes the proof.
THEOREM 8. Let m,u ∈ N be such that m ≤ u. If there exists a positive
constant δ such that f(t) ≤ δt for all t > 0, then

Cλ(p, π) ⊆ Cλ(f
m, p, π) ⊆ Cλ(f

u, p, π).

Proof. Let r = u−m > 0. Since f(t) < δt we have

fu(t) ≤M rfm(t) ≤Mut,
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where M = 1 + [δ]. Let x ∈ Cλ(p, π). By the above inequality, we obtain

∞∑
n=1

fu
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn ≤ M rG

∞∑
n=1

fm
 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

≤ MυG

∞∑
n=1

 1

λ(n)

λ(n)∑
k=1

∣∣∣∣xkπk
∣∣∣∣
pn

and hence the proof is completed.
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