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Abstract
In this paper, we derive some estimates for the 3D non-autonomous

linearization Brinkman-Forchheimer equation with singularly oscillating
forces together with the averaged equation.
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1 Introduction

Let ρ ∈ [0, 1) be a fixed parameter, Ω ⊂ R3 be a bounded domain with suffi-
ciently smooth boundary ∂Ω. We consider the 3D non-autonomous Brinkman-
Forchheimer equation with singularly oscillating forces that governs the motion
of fluid in a saturated porous medium:

ut − ν�u + αu + β|u|u + γ|u|2u + ∇p = f0(t, x) + ε−ρf1(t/ε, x), (1)

∇ · u = 0, x ∈ Ω, (2)

u(t, x)|∂Ω = 0, (3)

u(τ, x) = uτ (x), τ ∈ R, (4)
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Here u = u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) is the velocity vector field, p is
the pressure, ν > 0 is the Brinkman kinematic viscosity coefficient, α > 0 is
the Darcy coefficient, β > 0 and γ > 0 are the Forchheimer coefficients.

Along with (1)-(4), we consider the averaged Brinkman-Forchheimer equa-
tion

ut − ν�u + αu + β|u|u + γ|u|2u + ∇p = f0(t, x), x ∈ Ω, (5)

∇ · u = 0, x ∈ Ω, (6)

u(t, x)|∂Ω = 0, (7)

u(τ, x) = uτ (x), τ ∈ R. (8)

formally corresponding to the case ε = 0.

The function

f ε(x, t) =

{
f0(x, t) + ε−ρf1(x, t/ε), 0 < ε < 1,
f0(x, t), ε = 0

(9)

represents the external forces of problem (1)-(4) for ε > 0 and problem (5)-(8)
for ε = 0 respectively.

The functions f0(x, s) and f1(x, s) are taken from the space L2
b(R, H) of

translational bounded functions in L2
loc(R, H), namely,

‖f0‖2
L2

b
:= sup

t∈R

∫ t+1

t
‖f0(s)‖2ds = M2

0 , (10)

‖f1‖2
L2

b
:= sup

t∈R

∫ t+1

t
‖f1(s)‖2ds = M2

1 , (11)

for some constants M0, M1 ≥ 0. We denote

Qε =

{
M0 + 2M1ε

−ρ, 0 < ε < 1,
M0, ε = 0.

As a straightforward consequence of (9), we have

‖f ε‖L2
b
≤ Qε. (12)

Note that Qε is of the order ε−ρ as ε → 0+.

In this paper, we shall derive some estimates for the 3D non-autonomous
linearization Brinkman-Forchheimer equation with singularly oscillating forces
together with the averaged equation to arrive the convergence of corresponding
equations.
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2 Main Results and Discussion

Throughout this paper, C will stand for a generic positive constant, depending
on Ω and some constants, but independent of the choice of the initial time
τ ∈ R and t.

The Hausdorff semidistance in X from one set B1 to another set B2 is
defined as distX(B1, B2) = supb1∈B1

infb2∈B2 ‖b1 − b2‖X .
Lp(Ω)(1 ≤ p ≤ +∞) is the generic Lebesgue space, Hs(Ω) is the usual

Sobolev space. We set E := {u|u ∈ (C∞
0 (Ω))3, divu = 0}, H is the closure

of the set E in (L2(Ω))3 topology, V is the closure of the set E in (H1
0 (Ω))3

topology.
The problem (1)-(2) can be written as an abstract form

ut + νAu + αu + B(u) = σ(t, x), (13)

divu = 0, (14)

where the pressure p has disappeared by force of the application of the Leray-
Helmholtz projection P , B(u) = PF (u), F (u) = β|u|u + γ|u|2u. Clearly,
system (13)-(14) is equivalent to (1)-(2).

The existence and uniqueness of global solution for the initial boundary
value problem to (13)-(14) can be derived by standard method as in [8], [2] or
[4]:

Theorem 2.1 Assume σ ∈ L2
loc(R, H), uτ ∈ H, then problem (13)-(14)

possesses a unique global solution u(t, x) which satisfies

u ∈ C([τ, +∞); H) ∩ L2(τ, T ; V ) ∩ L4(τ, T ; (L4(Ω))3). (15)

Firstly, we shall consider the auxiliary linear equation with non-autonomous
singularly oscillating external force for 3D non-autonomous Brinkman-Forchheimer
equation and give some useful estimates in H and V .

Considering the linear equation for the 3D non-autonomous Brinkman-
Forchheimer equation with singularly oscillating forces as

Yt + νAY + αY = K(t), Y |t=τ = 0, (16)

we obtain the following theorems.

Theorem 2.2 Assume K ∈ L2
loc(R, H), then problem (16) has a unique

solution

Y ∈ L2((τ, T ); V ) ∩ C((τ, T ); H), (17)

∂tY ∈ L2((τ, T ); V ′). (18)
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Moreover, the following inequalities

‖Y (t)‖2
V ≤ C

∫ t

τ
e−Cν(t−s)‖K(s)‖2

Hds, (19)∫ t+1

t
‖Y (s)‖2

Hds ≤ C
(
‖Y (t)‖2

H +
∫ t+1

t
‖K(s)‖2

Hds
)

(20)

hold for every t ≥ τ and some constant C = C(λ) > 0, independent of the
initial time τ ∈ R.

Proof. Using Galerkin approximation method, we can deduce the existence
of global solution, here we omit the details.

Then multiplying (16) by Y and AY respectively, using the Poincaré in-
equality we get

1

2

d

dt
‖Y ‖2 + νλ1/2‖Y ‖2 + α‖Y ‖2 =

1

2

d

dt
‖Y ‖2 + ν‖∇Y ‖2 + α‖Y ‖2

= (K(t), Y ) ≤ 1

α
‖K(t)‖2 + α‖Y ‖2 (21)

and

1

2

d

dt
‖∇Y ‖2 + νλ1/2‖∇Y ‖2 + α‖∇Y ‖2 =

1

2

d

dt
‖∇Y ‖2 + ν‖AY ‖2 + α‖∇Y ‖2

= (K(t), AY ) ≤ 1

α
‖K(t)‖2 + α‖AY ‖2. (22)

By the Gronwall inequality, we can easily prove the lemma.
Setting K(t, τ) =

∫ t
τ k(s)ds, t ≥ τ, τ ∈ R, we have the following theorem.

Theorem 2.3 Let k ∈ L2
loc(R, H). Assume that

sup
t≥τ,τ∈R

{
‖K(t, τ)‖2

H +
∫ t+1

t
‖K(s, τ)‖2

Hds
}
≤ l2, (23)

for some constant l ≥ 0. Then the solution Y (t) to the following Cauchy
problem

Yt + νAY + αY = k(t/ε), Y |t=τ = 0, (24)

with ε ∈ (0, 1) satisfies the inequality

‖Y (t)‖2
V +

∫ t+1

t
‖Y (s)‖2

Hds ≤ Cl2ε2, ∀ t ≥ τ, (25)

where constant C > 0 is independent of K.
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Proof. Noting that

Kε(t) =
∫ t

τ
k(s/ε)ds = ε

∫ t/ε

τ/ε
k(s)ds = εK(t/ε, τ/ε), (26)

we can derive the following estimates of Kε(t) from (23)

sup
t≥τ

‖Kε(t)‖H ≤ lε, (27)

∫ t+1

t
‖Kε(s)‖2

Hds = ε2
∫ t+1

t
‖K(s/ε, τ/ε)‖2

Hds (28)

≤ Cε2 sup
t≥τ

{∫ t+1

t
‖K(s, τ)‖2

Hds
}

≤ Cl2ε2.

From Theorem 2.2, we have

∫ t

τ
e−Cν(t−s)‖Kε(s)‖2

Hds

≤
∫ t

t−1
eCν(s−t)‖Kε(s)‖2ds +

∫ t−1

t−2
eCν(s−t)‖Kε(s)‖2ds + · · ·

≤
∫ t

t−1
‖Kε(s)‖2ds + e−Cν

∫ t−1

t−2
‖Kε(s)‖2ds + e−2Cν

∫ t−2

t−3
‖Kε(s)‖2ds + · · ·

≤
(
1 + e−Cν + e−2Cν + · · ·

)
‖Kε(s)‖2

L2
b
(R;H)

≤ 1(
1 − e−Cν

)‖Kε(s)‖2
L2

b
(R;H)

≤ 1(
1 − e−Cν

) sup
t≥τ

∫ t+1

t
‖Kε(s)‖2

Hds

≤ Cl2ε2. (29)

Hence, from the Poincaré inequality, (19)-(20) and (29), we derive

‖Y (t)‖2
V ≤ Cl2ε2, (30)∫ t+1

t
‖Y (s)‖2

Hds ≤ C
(
‖Y (t)‖2

H +
∫ t+1

t
‖K(s)‖2

Hds
)

≤ Cl2ε2. (31)

Integrating (24) with respect to time from τ to t, we see that Y (t) is a
solution to the problem

∂tY (t) + νAY (t) + αY (t) = Kε(t), Y (t)|t=τ = 0, (32)
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such that we can deduce that

‖Y (t)‖2
H + ‖∇Y (t)‖2

H +
∫ t+1

t
‖Y (s)‖2

Hds

= ‖Y (t)‖2
V +

∫ t+1

t
‖Y (s)‖2

Hds

≤ Cl2ε2 (33)

from (30) and (31). The proof for the Lemma is finished.
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